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I. ABSTRACT

The proper orthogonal decomposition (POD), also known
as Karhunen-Loève decomposition or principal component
analysis, and balanced truncation, are shown to be optimal
in the sense of distance minimizations in spaces of Hilbert-
Schmidt or trace-class 2 integral operators. Both POD and
balanced truncation are shown to be optimal approximations
by finite rank operators in the Hilbert-Schmidt norm. Opti-
mality of balanced truncation seems to have been overlooked
in the literature, and in fact, it is commonly thought to be
non-optimal in any sense. The role of POD and balanced
truncation in minimizing different n-widths of specific com-
pact operators is discussed. The n-widths quantify inherent
and representation errors due to lack of data or inaccurate
measurements and loss of information.

II. INTRODUCTION

In this paper, we consider two popular model reduction
techniques, the proper orthogonal decomposition (POD),
which has been extensively investigated in distributed pa-
rameters systems due to its order reduction capability [1]-
[13], and balanced truncation, which is a simple yet efficient
model reduction technique widely used in reducing model
orders of high order linear systems [23], [15]. In particular,
we study the optimality of both model reduction techniques
and show that, in fact, the two techniques are related, and
optimal in the sense of minimizing the Hilbert-Schmidt or
trace class 2 norm, although on different spaces. Note that
POD is known to solve a certain constrained optimization
problem [16], and is optimal in with respect to capturing the
energy of the data set [19], but here we show in fact that POD
is optimal in a wider sense. Optimality of balanced truncation
seems to be missing in the literature. Actually, it has been
widely claimed that balanced truncation is not optimal in any
sense [23]. We first compute the optimal approximation in
the sense of approximating the associated Hankel operator
in a specific Hilbert-Schmidt norm. The optimum is a finite
rank operator which is not necessarily a Hankel operator.
However, by using a particular balanced realization based on
the Schmidt pairs of the Hankel operator associated to the
original system, we show that the optimal operator can be
realized by the corresponding truncated balanced realization.
Optimality of both POD and balanced truncation was stated
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in [14] but without formal proofs.
Geometric interpretation of POD and balanced truncation in
terms of optimizing the Kolmogorov, Gel’fand and linear n-
widths of the corresponding compact operators is discussed.
These n-widths quantify the inherent error generated in the
information collecting stage of simulation or identification,
due to lack of data and inaccurate measurements, and the
representation error due to the loss of information in the
information processing stage.
The paper is organized as follows. In section III, POD is
showed to be optimal as a shortest distance minimization
between an L2 function of the time and space variables to a
particular subspace with explicit computations. In section IV,
balanced truncation is shown to be in some sense analogous
to POD, in that, it is also optimal in the sense of shortest
distance minimization in the Hilbert-Schmidt norm, albeit
in different integral operator spaces. Section V discussed
optimality of both POD and the balanced truncation in
terms of minimization of various n-widths. In section VI
we conclude with the summary of our contribution.

III. OPTIMALITY OF PROPER ORTHOGONAL
DECOMPOSITION

Proper orthogonal Decomposition (POD) has been used
extensively to determine efficient bases for dynamical sys-
tems, random processes and large data set in general. It was
introduced in the context of turbulence by Lumley [16].
It is also known as the Karhunen-Loéve decomposition,
principal component analysis, singular systems analysis, and
singular value decomposition [17], [18]. The fundamental
idea behind POD is as follows: Given a set of simulation data
or snapshots {Si}N

i=1 of a function w(t,x), in the standard
Hilbert space L2(T, Ω), where x ∈ Ω for some set Ω of Rp

and T represents a finite or infinite time interval. The nth
POD vector φn(x) is chosen recursively so as to minimize
the cost function [16], [20]

J(φn) :=
∫ T

0

∫

Ω

∣∣∣Si(t, x)−
n∑

j=1

αjφj(x)
∣∣∣
2

dxdt (1)

subject to the constraints

αj(t) =
∫

Ω

Si(t, x)φj(x)dx (2)
∫

Ω

φi(x)φj(x)dx = δij , for i, j = 1, 2, · · · , n (3)

The optimal POD basis is given by the eigenfunctions {φi}
of the averaged autocorrelation function, denoted R

(
x,x′

)
,
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of the snapshots, that is, [16], [17]

R
(
x,x′

)
:=

∫ T

0

Si(t,x)Si(t,x′)dt (4)

which solves the eigenvalue problem
∫

Ω

∫ T

0

Si(t,x)Si(t,x′)φ(x′)dtdx′ = λφ(x) (5)

The Hilbert space L2(T, Ω) is endowed with the norm

‖w(t, x)‖2 :=

(∫ T

0

∫

Ω

|w(t, x)|2dxdt

) 1
2

< ∞ (6)

For fixed n, define the shortest distance minimization in the
‖ · ‖2-norm from the function w(t, x) to the subspace S , by

µ := inf
s∈S

‖w(t, x)− s(t,x)‖2 (7)

where the subspace S is defined as

S :=
{ n∑

i=1

ai(t)ϕi(x) : ai(t) ∈ L2(T ), ϕi(x) ∈ L2(Ω)
}

(8)

Note that this distance problem is posed in an infinite-
dimensional space. For finite dimensional spaces, in partic-
ular for distances to lower rank matrices see [27], where
SVD techniques are used. To compute the distance we
view w(t, x) as a Hilbert-Schmidt kernel for an integral
operator T mapping L2(Ω) into L2(T ) both endowed with
the standard ‖ · ‖2-norm, and defined by

(Tφ)(t) :=
∫

Ω

w(t,x)φ(x)dx (9)

It is known that such an operator is compact [21], that is,
an operator which maps bounded sets into pre-compact sets.
The operator T is said to be a Hilbert-Schmidt or a trace-
class 2 operator [25]. Let us denote the class of Hilbert-
Schmidt operators acting from L2(T ) into L2(Ω), by C2,
and the Hilbert-Schmidt norm ‖ · ‖HS. Define the adjoint of
T ? as the operator acting from L2(T ) into L2(Ω) by

< Tf, g >2:=
∫ T

0

∫

Ω

w(t,x)f(x)dxg(t)dt

=
∫

Ω

f(x)
∫ T

0

w(t,x)g(t)dtdx =:< f, T ?g >1 (10)

showing that (T ?g)(t) =
∫ T

0
w(t,x)g(t)dt.

Using the polar representation of compact operators [25],
T = U(T ?T )

1
2 , where U is a partial isometry and (T ?T )

1
2

the square root of T , which is also a Hilbert-Schmidt
operator, and admits a spectral factorization of the form [25]

(T ?T )
1
2 =

∑

i

λiνi ⊗ νi (11)

where λi > 0, λi ↘ 0 as i ↑ ∞, are the eigenvalues
of (T ?T )

1
2 , and νi form the corresponding orthonormal

sequence of eigenvectors, i.e., (T ?T )
1
2 νi = λiνi, i =

1, 2, · · · . Putting Uνi =: ψi, we can write

T =
∑

i

λi νi ⊗ ψi (12)

Both {νi} and {ψi} are orthonormal sequences in L2(T )
and L2(Ω), respectively. The sum (12) has either a finite or
countably infinite number of terms. The above representation
is unique. Noting that the polar decomposition of T ? =
U?(TT ?)

1
2 , a similar argument yields

(TT ?)
1
2 =

∑

i

λiψi ⊗ ψiT
? =

∑

i

λiψi ⊗ νi (13)

which shows that αi from an orthonormal sequence of
eigenvectors of (TT ?)

1
2 corresponding to the eigenvalues λi.

From (11) and (13) it follows that

Tψi = U(T ?T )
1
2 ψi = λiνi (14)

T ?νi = U?(TT ?)
1
2 νi = λiψi (15)

We say that ψi and νi constitute a Schmidt pair [21]. In
terms of integral operators expressions, identities (14) and
(15) can be written, respectively, as

νi(t) =
∫

Ω

w(t,x)ψi(x)dx (16)

ψi(x) =
∫ T

0

w(t,x)νi(t)dt (17)

In terms of the eigenvalues λi’s of T , its Hilbert-Schmidt
norm ‖ · ‖HS is given by [25]

‖T‖HS =
(∑

i

λ2
i

) 1
2
=

(∫ T

0

∫

Ω

|w(t, x)|2 dxdt

) 1
2

(18)

Note that since the operator T is Hilbert-Schmidt the sum in
(18) is finite. The Hilbert-Schmidt norm is also induced by
the operator inner product defined by (21). By interpreting
each elements of the subspace S defined in (8) as a Hilbert-
Schmidt operator as we did for w(t,x), we see that S is the
subspace of Hilbert-Schmidt operators of rank n, i.e.,

S = {s =
∑n

j=1
ϑj fj(t)⊗ χj(x) : fj(t) ∈ L2(T ),

χj(x) ∈ L2(Ω), ϑj ∈ R} (19)

In addition, the distance minimization (7) is then the minimal
distance from T to Hilbert-Schmidt operators of rank n. In
other terms, we have

µ = min
s∈S

‖T − s‖HS (20)

The space of Hilbert-Schmidt operators is in fact a Hilbert
space with the inner product [25], denoted (·, ·), if A and
B are two Hilbert-Schmidt operators defined on L2(Ω),

(A,B) := tr(B?A) (21)

where tr denotes the trace, which in this case is given
by the sum of the eigenvalues of the operator B?A which
is necessarily finite [25]. Note that the inner product (21)
induces the Hilbert-Schmidt norm ‖A‖HS =

(
tr(A?A)

) 1
2 . In

the case where A and B are integral operators with kernels
A(t,x) and B(t,x), respectively, the inner product can be
realized concretely by

(A,B) =
∫ T

0

∫

Ω

A(t,x)B(t,x)dxdt (22)
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The solution to the distance minimization (20) is simply
given by the orthogonal projection of T onto S . To compute
the latter, note that the eigenvectors of (TT ?)

1
2 and (T ?T )

1
2

form orthonormal bases (by completing them if necessary)
for L2(T ) and L2(Ω), respectively. In terms of the eigen-
vectors νj and ψj the subspace S can be written as

S = Span{νj ⊗ ψj , j = 1, 2, · · · , n} (23)

Since the shortest distance minimization (20) is posed in a
Hilbert space, by the principle of orthogonality it is solved
by the orthogonal projection PS acting from C2 onto S . The
latter can be computed by first determining the orthogonal
projection Pν onto Span{νj , j = 1, 2, · · · , n}, and the
orthogonal projection Pψ onto Span{ψj , j = 1, 2, · · · , n}.
These projections have finite rank and since the νj’s and ψj’s
are orthogonal vectors in L2(T ) and L2(Ω), respectively, it
can be easily verified that Pν and Pψ are given by

(Pνf)(t) =
n∑

j=1

(∫ T

0

f(t)νj(t)dt
)

νj(t)

(PψG)(x) =
n∑

j=1

(∫

Ω

G(x)ψj(x)dx
)

ψj(x) (24)

The overall orthogonal projection PS can be computed as

PS = Pν ⊗ Pψ (25)

That is, if W ∈ C2 has spectral decomposition
∑

i=1 ηiui ⊗
vj , where ui ∈ L2(T ), vi ∈ L2(Ω), then

PSW =
∑

i=1

ηiPS(ui ⊗ vi) =
n∑

j=1

θjνj ⊗ ψj , ∃ θj (26)

where the last finite sum is obtained thanks to orthogonality,
i.e., only the ui’s and vi’s that live in the span of νj’s
and ψj’s, respectively, are retained. For the orthogonality
property we only need verify that

x⊗ y − (Pν ⊗ Pψ)(x⊗ y)⊥u⊗ v,

x ∈ L2(T ), y ∈ L2(Ω), u⊗ v ∈ S
Computing the inner product, we get

< x− Pνx, u >1< y − Pψ, v >2= 0

because Pν is the orthogonal projection of L2(T ) onto
Span{νj , j = 1, 2, · · · , n}, and Pψ the orthogonal pro-
jection of L2(Ω) onto Span{ψj , j = 1, 2, · · · , n}. The
minimizing operator so ∈ S in (20) is then given by

s0 := PST =
n∑

i=1

λiνi ⊗ ψi (27)

µ = ‖T − PST‖HS =
( ∞∑

i=n+1

λ2
i

) 1
2

(28)

And as n ↑ ∞, ‖T − PST‖HS ↘ 0. Therefore, the
minimizing function so(t,x) in (7) corresponds to the kernel
of so, which is given by

so(t,x) =
n∑

i=1

λiνi(t)ψi(x) (29)

Now note that αi(t) = λiνi(t), φ(x) = ψ(x), we see
that so(t,x) solves the optimization problem (1) since it
minimizes the cost function J(φn) and αi(t), φi(x) satisfy
constraints (2) and (3), respectively. Moreover, (16) and (17)
imply that φi(x) is related to αi(t) by

φi(x) =
1
λi

∫ T

0

w(t,x)αi(t)dt (30)

In the next section, we show that balanced truncation is in
some sense similar to POD, in that, it is also optimal in the
sense of distance minimization in the Hilbert-Schmidt norm,
albeit in different operator spaces. The techniques developed
for POD will help us in the context of showing the optimality
of balanced truncation as well.

IV. OPTIMALITY OF BALANCED TRUNCATION

Balanced truncation is a simple and popular model re-
duction technique, which can be described as follows [23],
[15]: Suppose we have a stable linear time invariant (LTI)
system described by the following n-dimensional state space
equation

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) (31)

where x(t) is the n × 1-state vector of the system, u(t)
is an m × 1-input vector, and y(t) is an p × 1-output or
measurement vector. A, B, and C are constant matrices of
appropriate dimensions.
The underlying idea of balanced truncation is to take into
account both the input and output signals of the system when
deciding which states to truncate with appropriate scaling.
The latter is performed by transforming the controllability
and observability gramians, denoted Wc and Wo respectively,
so that they are equal and diagonal. Computing a state bal-
ancing transformation M is achieved by first calculating the
matrix [15], Wco = WcWo, and determining its eigenmodes
Wco = MΛM−1.

ż(t) = Ãz(t) + B̃u(t), y(t) = C̃z(t) (32)
Ã := M−1AM, B̃ := M−1B, C̃ := CM (33)

The transformation M is chosen such that the controllability
and observability gramians for the transformed system satisfy
[15]

W̃c = W̃o = M−1WcM
−1T = MT WoM =: Σ (34)

where Σ is a diagonal matrix that satisfies Σ2 = Λ, and
the diagonal elements of Σ, σi’s, are known as the Hankel
singular vales of the system, i.e.,

Σ = diag{σ1, σ2, · · · , σn} (35)

where σi’s are arranged in non-increasing order σ1 ≥
σ2 ≥ · · · ≥ σn ≥ 0. In balanced truncation only states
corresponding to large Hankel singular values are retained.
Small Hankel singular values correspond to states which
are deemed weakly controllable and weakly observable, and
therefore deleted from the state-space model. For instance,
if the first nr states are retained then the resulting transfor-
mation is given by Mr = PrM , where Pr is the orthogonal
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projection of rank r. The reduced order model is obtained
by letting xr = PrMx as follows

ẋr(t) = Arxr(t) + Bru(t), yr(t) = Crxr(t) (36)
Ar := PrM

−1AMPr; Br := PrM
−1B, Cr := CMPr

Balanced truncation is optimal in a precise sense when
starting from a balanced realization. To see this define
a causal bounded input-output operator G acting on the
standard space L2(−∞, ∞) of absolutely square integrable
functions defined on (−∞, ∞), into L2(−∞, ∞) described
by the convolution [15]

(Gu)(t) :=
∫ t

−∞
CeA(t−τ)Bu(τ)dτ (37)

Now, define the Hankel operator of G by

ΓG : L2(−∞, 0] 7−→ L2[0, ∞), ΓG := P+G|L2(−∞, 0]

where G
∣∣
L2(−∞, 0]

denotes the restriction of G to
L2(−∞, 0], and P+ is the orthogonal projection acting
from L2(−∞, ∞) into L2[0, ∞), i.e., P+ is the truncation
operator

P+f(t) =
{

f(t) if t ≥ 0
0 if t < 0 , f(t) ∈ L2(−∞, ∞) (38)

Then, the Hankel operator ΓG can be written as

ΓGu(t) =
∫ 0

−∞
CeA(t−τ)Bu(τ)dτ, for t ≥ 0 (39)

The Hankel operator ΓG maps past inputs to future outputs.
Expression (38) shows that the Hankel operator ΓG is an
integral operator mapping L2(−∞, 0] into L2[0, ∞), with
kernel the impulse response k(t, τ) defined by

k(t, τ) := CeA(t−τ)B, τ < 0, t ≥ 0 (40)

Balanced truncation is commonly thought to be a model
reduction technique that is not optimal in any sense [23].
We show that this is not the case, and in fact balanced
truncation is indeed optimal in the sense of the Hilbert-
Schmidt norm. The techniques we use are reminiscent of
the previous section and guarantee for the optimum to be
a Hankel operator. This contrasts, for example, with the
minimization in various norms addressed in [24], [26]. To
see this note that the Hankel operator ΓG has finite rank
k ≤ n [15], and therefore belongs to the Hilbert-Schmidt
class of operators acting from L2(−∞, 0] into L2[0, ∞).
Let its spectral factorization be given by

ΓG =
n∑

i=1

σiχi ⊗ ζi, χi ∈ L2(−∞, 0], ζi ∈ L2[0, ∞) (41)

where σi are the Hankel singular values of the system G
ordered in decreasing order, i.e., σ1 ≥ σ2 ≥ · · · ≥ σn−1 ≥
σn, and {χi}n

1 and {ζi}n
1 are orthonormal sets in L2(−∞, 0]

and L2[0, ∞), respectively. Next, consider the optimal
distance minimization

µnr := min
nr<k

‖ΓG − ΓGr‖HS (42)

where ΓGr
is an operator acting from L2(−∞, 0] into

L2[0, ∞) of rank nr < n. An application of identities (27)
and (28) to the minimization (42) yields the unique optimum
(since the distance minimization is posed in a Hilbert space)

ΓGr =
nr∑

i=1

σiχi ⊗ ζi (43)

and the shortest distance

µnr =

∥∥∥∥∥
n∑

i=nr+1

σiχi ⊗ ζi

∥∥∥∥∥
HS

=
( n∑

nr+1

σ2
i

) 1
2

(44)

The operator ΓGr is not necessarily a Hankel operator,
however, we will show that starting from a specific balanced
realization for the original system, the minimizing operator
can be chosen to be a Hankel operator corresponding to the
reduced order model. To do so let ΓG = UG

(
Γ?

GΓG

) 1
2 be

a polar decomposition of ΓG, applying (14) and (15) to ΓG

the vectors χi and ζi satisfy

ΓG χi = UG(Γ?
GΓG)

1
2 χi = σiζi, i = 1, · · · , n (45)

Γ?
G ζi = U?

G(ΓGΓ?
G)

1
2 ζi = σiχi, i = 1, · · · , n (46)

That is, χi and ζi form a Schmidt pair for ΓG. In terms of
the Schmidt pair (41) implies that the Hankel operator ΓG

can be expressed as

(ΓGu)(t) =
n∑

i=1

ζi(t)σi

∫ 0

−∞
χi(τ)u(τ)dτ (47)

We propose the following realization for the impulse re-
sponse k(t, τ) given in (40), for i, j = 1, 2, · · · , n,

Ã = (aij) :=
(σj

σi

) 1
2
∫ 0

−∞
ζ?
i (τ)ζ̇j(τ)dτ

B̃ := (
√

σ1χ1(0),
√

σ2χ2(0), · · · ,
√

σnχn(0))T

C̃ := (
√

σ1ζ1(0),
√

σ2ζ2(0), · · · ,
√

σnζn(0)) (48)

The corresponding semi-group can be computed as

eÃt =
(σj

σi

) 1
2
∫ 0

−∞
ζ?
i (τ)ζj(t− τ)dτ (49)

since

lim
t−→0

1
t

∫ 0

−∞
ζ?
i (τ)ζj(τ − t)dτ =

∫ 0

−∞
ζ?
i (τ)ζ̇j(τ)dτ (50)

Define the controllability and observability operators denoted
Ψc and Ψo, respectively by [15]

Ψc : L2(−∞, 0] 7−→ Rn, Ψcu :=
∫ ∞

0

eÃτ B̃u(τ)dτ

Ψo : Rn 7−→ L2[0, ∞), Ψox0 := C̃eÃtx0, t ≥ 0

Note that [15] ΓG = ΨoΨc, and using the realization (48),
we have

(ΨoΨcu)(t) =
n∑

i=1

σiζi

∫ 0

−∞
χ?

i (τ)u(τ)dτ = (ΓGu)(t)
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and the observability gramian is given by

Ψ?
oΨo =

∫ ∞

0

eÃ?tC̃?C̃eÃtdt (51)

=
(∫ ∞

0

n∑

i=1

n∑

j=1

√
σi
√

σjζ
?
i (t)ζj(t)dt

)

= (σiδij) = Σ = diag(σ1, σ2, · · · , σn) (52)

where δij the usual Kronecker delta.
Similarly the controllability gramian ΨcΨ?

c = Σ, and the
realization (Ã, B̃, C̃) is therefore balanced. By the same
token as POD using a similar expression as (25), define
the Hankel operator corresponding to the nr-th order model
ΓGnr

as

(ΓGnr
u)(t) =

nr∑

i=1

ζi(t)σi

∫ 0

−∞
χi(τ)u(τ)dτ (53)

=
∫ 0

−∞
C̃Pr(Pre

Ã(t−τ)Pr)PrB̃dτ (54)

The last equality follows by (48), (49) and the fact that
P 2

r = Pr (since Pr is a projection). Putting C̃r := C̃Pr,
B̃r := PrB̃ correspond to truncating C̃ and and B̃, respec-
tively, and (50) implies that Pre

Ã(t−τ)Pr = ePrÃPr(t−τ),
and Ãr := PrÃPr correspond to truncating the state space
model (Ã, B̃, C̃) to nr states, and the Hankel operator has
rank nr. Moreover,

µnr = ‖ΓG − ΓGnr
‖HS = (

n∑

i=nr+1

σ2
i )

1
2 (55)

By uniqueness of the minimizer in (42), expressions (53) and
(55) imply that we must have Γr ≡ ΓGnr

.
In terms of kernel approximation, balanced truncation is a
particular case of POD in the sense that the kernel we want
to approximate is the impulse response of the system k(t, τ)
defined in (42). The optimization index µnr can then be
written as in POD

µ2
nr

= min
{∫ ∞

0

∫ 0

−∞

∣∣∣k(t, τ)−
nr∑

i=1

fi(t)gi(τ)
∣∣∣
2

dτdt :

fi ∈ L2[0, ∞); gi ∈ L2(−∞, 0]
}

(56)

=
∫ ∞

0

∫ 0

−∞

∣∣∣k(t, τ)− C̃re
Ãr(t−τ)B̃r

∣∣∣
2

dτdt (57)

Expressions (45) and (57) show that balanced truncation is
optimal in the sense of optimal approximation in the Hilbert-
Schmidt norm of the Hankel operator ΓG, and optimal in
the sense of the ‖ · ‖2-norm of kernels corresponding to
impulse responses of linear time-invariant systems defined
over [0, ∞) × (−∞, 0]. The linear time-invariant system
framework allows the exact computations of the optimal
lower order model approximation. This contrasts with POD
which uses simulation data and particular open-loop inputs
to generate snapshots.

V. GEOMETRIC INTERPRETATION

The eigenvalues λi’s of (T ?T )
1
2 (or singular values of

T ) defined in (12), and the Hankel singular values σi’s
of ΓG have a geometric interpretation in terms of the
computation of the n-widths of compact operators T and ΓG

that are defined on Hilbert spaces L2(T ) and L2(−∞, 0],
respectively. In this section, we discuss the role of POD and
balanced truncation in optimizing different n-widths defined
in [22] (and references therein.)
We start by defining the Kolmogorov n-width of T

(
L2(Ω)

)
into L2(h) as the optimization [22]

dn

(
T

(
L2(Ω)

)
; L2(h)

)
= inf

Xn

sup
‖f‖2≤1, f∈L2(Ω)

inf
g∈Xn

‖Tf − g‖2 (58)

where Xn is an n-dimensional subspace of L2(h).

The Kolmogorov n-width measures the extent to which
the space L2(h) can be approximated by n-dimensional
subspaces of T

(
L2(Ω)

)
, it is a measure of the “massivity”

of T
(
L2(Ω)

)
. It represents the minimum representation

error of T
(
L2(Ω)

)
by the n-dimensional subspace Xn of

L2(h). In other words, the Kolmogorov n-width quantifies
the representation error due to innacurate representattion of
the set T

(
L2(Ω)

)
: It represents the loss of information in

the information processing stage. The n-width in the sense
of Gel’fand, is defined as

dn
(
T

(
L2(Ω)

)
; L2(h)

)
:= inf

Ln
sup

‖f‖2≤1, f∈Ln

‖Tf‖2 (59)

where the infimum is taken over all subspaces Ln of
T

(
L2(Ω)

)
of codimension at most n. If

dn
(
T

(
L2(Ω)

)
; L2(h)

)
= sup{‖f‖2 : f ∈ T

(
L2(Ω)

)∩Ln}
where Ln is a subspace of codimension at most n, then
Ln is an optimal subspace for dn

(
T

(
L2(Ω)

)
; L2(h)

)
. A

subspace Ln is of codimension n if there exist n continuous
linear functionals {fi}n

i=1 on L2(h) for which

Ln = {g : g ∈ L2(h), fi(g) = 0, i = 1, 2, . . . , n} (60)

The Gel’fand n-width characterizes the experimental com-
plexity of the information collecting stage using simulation
or identification. It is related to the inherent error due to
lack of data and inaccurate measurements. The inverse of the
Gel’fand n-width gives the least number of measurements
needed to reduce the modelling uncertainty to a predeter-
mined value. The linear n-width is defined is defined by

δn

(
T

(
L2(Ω)

)
; L2(h)

)
:= inf

Pn

sup
‖φ‖2≤1, φ∈L2(Ω)

‖Tφ− Pnφ‖2

where Pn is any continuous linear operator from L2(Ω) into
L2(h) of rank at most n. Similar definitions for the Hankel
operator range ΓG

(
L2[0, −∞)

)
hold. The basic results of

this section are the following theorems which tell us that
the different n-widths can be computed, and provide us with
explicit optimal subspaces and operators [22].
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Theorem 1: Let the operator T be defined as above,
and let {λi}, {αi}, {ψi} be defined as above. Then
dn

(
T

(
L2(Ω)

)
; L2(h)

)
= dn

(
T

(
L2(Ω)

)
; L2(h)

)
=

δn

(
T

(
L2(Ω)

)
; L2(h)

)
= λn+1, n = 0, 1, 2, · · · .

Furthermore, the temporal coefficients {αi} and POD basis
{ψi} are optimal for the n-widths in the following sense

i) the subspace spanned by the coefficients {αi},
Xn = Span{α1, · · · , αn}, is optimal for
dn

(
T

(
L2(Ω)

)
; L2(h)

)
.

ii) the subspace Ln =
{

φ ∈ L2(Ω), < φ, ψi >1= 0, i =

1, 2, · · · , n
}

is optimal for dn
(
T

(
L2(Ω)

)
; L2(h)

)
.

iii) the linear operator Pnφ =
∑n

i=1 < φ, ψi >1 ψi is
optimal for δn

(
T

(
L2(Ω)

)
; L2(h)

)
.

A similar Theorem holds for the Hankel operator ΓG and is
stated next.

Theorem 2: Let the operator ΓG be defined
as above, and let {σi}, {χi}, {ζi} be defined
as above. Then dn

(
T

(
L2(−∞, 0]

)
; L2[0, ∞)

)
= dn

(
T

(
L2(−∞, 0]

)
; L2[0, ∞)

)
=

δn

(
T

(
L2(−∞, 0]

)
; L2[0, ∞)

)
= λn+1, n = 0, 1, 2, · · · .

Furthermore, the temporal coefficients {χi} and POD basis
{ζi} are optimal for the n-widths in the following sense

i) the subspace spanned by the vectors {ζi},
Xn = Span{ζ1, · · · , ζn}, is optimal for
dn

(
ΓG

(
L2(−∞, 0]

)
; L2[0, ∞)

)
.

ii) the subspace Ln =
{

χ ∈ L2(−∞, 0],
∫ 0

−∞ χ(τ)χi(τ)

dτ = 0, i = 1, 2, · · · , n
}

is optimal for
dn

(
ΓG

(
L2(−∞, 0]

)
; L2[0, ∞)

)
.

iii) the linear operator Qnφ =
∑n

i=1

∫ 0

−∞ φ(τ)χi(τ)dτχi

is optimal for δn

(
ΓG

(
L2(−∞, 0]

)
; L2[0, ∞)

)
.

VI. CONCLUSION

In this paper, tools borrowed from the theory of opera-
tors were used to show that POD and balanced truncation
are optimal in a precise sense. Optimality is quantified in
terms of shortest distance minimizations, or optimal approx-
imations by finite or lower rank Hilbert-Schmidt (integral)
operators in Hilbert-Schmidt norms. The difference in the
two model reduction techniques lies in the fact, that the
optimizations occur in different integral operators defined on
different L2 spaces. However, both optimal approximations
are posed in Hilbert operator spaces, i.e., the spaces of
Hilbert-Schmidt operators, where the geometry is “nice”
and the principle of orthogonality holds for both, allowing
for the optimal approximations to be computed explicitly.
Geometric interpretation of POD and balanced truncation in
terms of optimizing the Kolmogorov, Gel’fand and linear n-
widths is discussed. These n-widths quantify the inherent and
representation errors generated in the information collecting
and processing stages in simulation or identification.
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