
Choosing the Cost Vector of the Linear Programming Approach to

Approximate Dynamic Programming

Daniela Pucci de Farias

Department of Mechanical Engineering

MIT

pucci@mit.edu

Théophane Weber

Operations Research Center

MIT

theo w@mit.edu

Abstract— We consider the linear programming approach
to approximate dynamic programming. In the general case
of linear combination of features, we prove the existence
of a solution which can be used to generate a policy with
performance proportional to the strength of the architecture.
In the special case of features defined on a partition of the state
space, we give a simpler method to find the solution, as well as
a stronger performance bound.

I. INTRODUCTION

The linear programming approach to approximate dy-

namic programming was introduced to tackle the curse

of dimensionality in Markov Decision Processes (MDP),

combining the formulation of dynamic programming (DP) as

a linear program (see [11]), with ideas from value function

approximation. Initially introduced by [12], formulation and

results have been improved by various work, including

[3,4,5,6,13,14]. In the general case, the solution of the ap-

proximate linear program (ALP) depends on the cost vector

used, a result which contrasts sharply with the case of linear

programming for exact dynamic programming. Therefore,

an important question to address is how to choose the cost

vector which will be used to generate a solution, and hence,

a policy.

In this paper, we first prove the existence of cost vectors

for which solutions have a performance loss proportionally

bounded by the distance between the optimal cost-to-go

function and the space spanned by the approximating archi-

tecture, for a norm that scales gracefully with the size of the

state-space. These cost vectors are solutions of a family of

fixed-point equations, and we show numerical experiments

where we find the fixed point using a simple stochastic

approximation algorithm.

These results hold without any specific structural assumption

concerning the Markov Decision Process or the approximat-

ing space, making the methods very general. In the special

case of features defined on a partition of the state space

(generalization of indicator functions), it can be seen that the

solution of the linear program does not depend on the cost

vector used. Then, one can directly obtain an approximation

to the cost-to-go which is the best lower bound possible

attainable in the approximating architecture, in a ”pointwise”

meaning, and this allows to write a stronger performance

bound for the corresponding policy.

II. ALP AND STATE-RELEVANCE WEIGHTS

A. The approximate linear program

Let {S, U, g, P} be a finite decision Markov Decision

Process with state space S = {1, 2, ..n} and action space

Ux for each x ∈ S. Transition probabilities Pa(x, y) for

x, y ∈ S and a ∈ U(x) denote the probability of transiting

from x to y if action a is chosen, while ga(x) denotes the

cost of taking action a when in state x.

We consider stationary, randomized policies and each

policy u is identified with a function from the state-space

to the set of distributions on the action spaces. If we let

∆(A) be the set of probability distributions (simplex) over

the elements of the finite set A, then a policy u can be written

u : x → u(x) = [u(x, a1), .., u(x, a|Ux|)] ∈ ∆(Ux)

The set of all randomized policies is ∆(U), which is

compact and convex. For any policy u, we denote gu(x) =∑
a∈U(x)

u(x, a)g(x, a) the cost of the randomized action u(x)

in state x.
The objective of the controller is to minimize the α-

discounted cost

J∗(x0) = min
u∈∆(U)

E[

∞∑

t=0

αtgu(xt)|x0] = (I − αPu)−1gu.

The above quantity is denoted J (x0) and called the optimal

value function (or cost-to-go function). We also denote T
be the traditional dynamic programming operator: for any

J ∈ R
|S|, TJ is also in R

|S| and defined by:

(TJ)(x) = min
a∈U(x)

(TaJ)(x)

where

(TaJ)(x) =
(
ga(x) +

∑

y

Pa(x, y)J(y)
)

The optimal value function J∗ verifies the Bellman equation

TJ∗ = J∗.

One approach to solve this equation is to solve the following

linear program, for a positive cost vector c:

max
J

c′J

such that

TJ ≥ J (1)

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

TuA02.6

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 67

Since TJ ≥ J ⇔ ∀x, a, (TaJ)(x) ≥ J(x), the seemingly

nonlinear constraint TJ ≥ J can be easily converted into a

family of linear constraints as follows:

∀x ∈ S, a ∈ U(x), ga(x) +
∑

y

Pa(x, y)J(y) ≥ J(x) (2)

which is linear in J . As long as the cost vector c is positive

and the state-space finite, the unique solution to equation (1)

is the optimal cost vector J∗.

The purpose of approximate dynamic programming is to

fit J∗ with an approximation architecture. Most commonly

used are linear architectures, which approximate the value

function J∗ by a linear combination of “features” φi, i =
1, . . . , r. Each feature φi is an arbitrary (possibly nonlinear)

mapping from S to R. The approximation consists in fitting

linear parameters ri ∈ R, so that J∗(x) is “close” to the

approximation
∑

i riφi(x) (or, in compact form, Φ(x)r,

where Φ(x) = [φ1(x)|φ2(x)| φ3(x)| . . . |φr(x)]). In this

context, it is natural to consider the so-called approximate

LP:

max
r∈Rr

c′Φr

such that

TΦr ≥ Φr (3)

As in (2), the nonlinear constraint TΦr ≥ Φr can be

rewritten into a family of linear constraints indexed by a

state x and action a:

ga(x) + α
∑

i

(∑

y∈S

Pa(x, y)φi(y)
)
ri ≥

∑

i

φi(x)ri

The ALP has far fewer variables than the LP formulation.

However, it has a very large number of constraints, and large-

scale optimization methods have to be devised to solve the

problem (see [5], [13]). Also, in general, the solution r (and

the corresponding approximation Φr) will depend on the

choice of the nonnegative vector c. Since c is non negative

and can be rescaled without changing the solution of the

ALP, c can be considered to be a distribution over the state-

space, and will be called vector of “state relevance weights”.

B. Known performance bounds

Approximate LP offers two advantages as an approximate

dynamic programming method: First, it always returns an

approximation to the optimal cost-to-go function in finite

time (polynomial if using constraint sampling) , and has

therefore no convergence issues; second, the approximation

returned by the ALP is ”close” to the optimal cost-to-go

function, in a sense detailed by the following definition and

theorem.

Definition 1 (Lyapunov combination): A feature vector

v ∈ R
m is called Lyapunov with rate βv if :

∀x, Φ(x)v ≥ 0

α max
u∈U(x)

∑

y∈S

Pu(x, y)Φ(y)v ≤ βvΦ(x)v

Note that the unit vector e = (1, 1, 1, . . . , 1) ∈ R
n

is always a Lyapunov function with rate α. Also for

any positive vector c ∈ R
n and vector J ∈ R

n, denote

‖J‖1,c =
∑

x c(x)|J(x)| (weighted L1 norm).

Theorem 1 (Theorem 4.2 in [3]): Let r(c) be any optimal

solution of the approximate linear program with the state

relevance weight c, and let v be any Lyapunov combination

with rate βv . Then:

‖J∗ − Φr(c)‖1,c ≤
2cT Φv

1 − βΦv
min
r∈Rm

‖J∗ − Φr‖∞,1/Φv (4)

The theorem above states that ALP provides a good ap-

proximation to the optimal cost J∗. Intuitively, if J∗ is

well approximated by some point of the approximation

architecture, then it will be decently approximated by the

solution Φr of the LP. It is therefore natural to consider as

a candidate policy the greedy policy with respect to Φr, i.e.

the policy which, for any state x, chooses for u(x) the action

a which minimizes:

ga(x) +
∑

i,y

Pa(x, y)φi(y)ri

In the rest of the paper, we denote u(J) the policy which is

greedy with some approximation J of the cost-to-go J∗.

The question that naturally arises then is whether a policy

greedy with respect to Φr will perform well. Indeed, in

MDP theory J∗ is both the performance of the optimal

policy and the cost-to-go function used to compute that

optimal policy. However, we only know Φr approximates

well J∗, without particular knowledge of the performance of

the policy induced by Φr. This question is partially answered

by the following bound:

Theorem 2 (Theorem 3.1 in [3]): Let J ∈ R
n such that

TJ ≥ J , uJ be the policy greedy with respect to J , and let

ν be a distribution. Then,

‖Ju(J) − J∗‖1,ν ≤
1

1 − α
‖J − J∗‖1,µν,u(J)

(5)

where µν,u(J) := (1−α)νT (I −αPu(J))
−1 is a distribution

over the state space.

For α close to 1, µν,u(J) is close to the steady-state distri-

bution πu(J) of Pu(J).

The caveat is that a norm mismatch prevents us from

concluding anything about the performance of the policy

which is greedy with respect to the cost-to-go approximation

returned by the ALP. More precisely, if we solve the ALP

with state relevance weights c, and use policy u(Φr), the

performance bound (5) becomes

‖Ju(Φr) − J∗‖1,ν ≤
1

1 − α
‖Φr(c) − J∗‖1,µν,u(Φr)

(6)

but the right hand side of this equation is a 1-norm with

weights vector µν,u(Φr), unlike equation 4 where the left

hand side has weight vector c. We will see that with a special

choice of state-relevance weight and using exploration in a

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA02.6

68

fashion similar to [4], the norm mismatch disappears, result-

ing in the first general performance bound for approximate

LP. The appropriate cost vectors will be solutions of a family

of fixed point equations we detail next.

III. PERFORMANCE BOUNDS FOR APPROXIMATE LP

A. Operators on the space of state-relevance weights

If one could ensure that for some c, its ALP solution r had

a corresponding µν,u(Φr) vector equal to c, then we would be

able to obtain a performance bound. Indeed, in this case, the

left hand side of equation 6 would be equal (multiplicative

constant aside) to the left hand side of equation 4. We

would then obtain that the performance loss is bounded by

the strength of the approximation architecture. However, for

almost all c > 0 the solution to the ALP is one of finitely

many extreme points of the feasible polyhedron R = {r ∈
R

r|TΦr ≥ Φr}, and therefore the corresponding µν,u(Φr)

vector is one of finitely many vectors. If one of these vectors

is image of itself by the mapping c −→ r(c) −→ µν,u(Φr(c)),

then we can obtain a performance bound. However, this is

not true in general, and in order to conclude, we need to

incorporate exploration as follows.

The first level of exploration is to include some level of

randomization on the cost vector c, in order to allow the

ALP to return vectors which are almost solutions, but not

necessarily extreme points.

Let r1, r2, . . . , rk be the extreme points of P. We denote

Ri = {c ∈ ∆(S)|cT Φri ≥ cT Φrj , for all j}.
Intuitively, Ri is the set of state-relevance weights which

return ri as solution to the ALP.

Definition 2 (smoothed r function): For a given µ > 0,

the smoothed r function with noise µ is defined as

rµ(c) =
∑

1≤i≤k

P (c + µ̂ ∈ Ri).ri

where µ̂ is a gaussian vector with i.i.d. components of

variance µ. µ is called noise of the smoothed function r.

Proposition 1: For any µ > 0, rµ(c) is a well-defined,

smooth (C∞) function.

Then, we include exploration in the policies:

Definition 3 (δ -greedy policy): For a given positive num-

ber δ, the δ-greedy policy with respect to J is the policy

which in state x chooses action a with probability propor-

tional to

exp




−ga(x) −

∑
y

Pa(x → y).J(y)

δ





The policy will be denoted uδ(J), and δ is called temperature

of the δ-greedy policy.

Similarly as proposition 1, we have:

Proposition 2: For any δ > 0, the δ -greedy policy

uδ(Φr) is well defined and smooth (as a function of r).

Combining propositions (1) and (2), we can now state the

following :

Proposition 3: The composed function:

f : (µ, δ, c) → (1 − α)νT (I − αPuδ(Φrµ(c)))
−1

is smooth. Furthermore, for any fixed µ, δ > 0, its restriction

c → fµ,δ(c) is a smooth mapping of ∆(S) (i.e. a smooth

function from ∆(S) to ∆(S)).
The second part of the proposition is essential since it will

allow us to use Brouwer’s theorem to assert the existence of

a fixed point.

B. Fixed point and Performance bound

For fixed α > 0, ν ∈ R
n, µ > 0, δ > 0 We define the

smooth mapping

Wµ,δ :

∆(S) × R → ∆(S) × R

(c, r) → (fµ,δ(c), rδ(c))

By Brouwer’s fixed point theorem, it has at least one fixed

point (cµ,δ, rµ,δ), temporarily denoted (c̄, r̄) for notational

simplicity. We are now able to write a performance bound

for the δ-greedy policy with respect to Φr.

Theorem 3 (Performance bound with exploration): The

δ-greedy policy ū with respect to Φr̄ has the following

performance bound:

‖J∗ − Jū‖1,ν ≤
c̄T Φv

(1 − α)(1 − βΦv)
min ‖Φr − J∗‖∞, 1

Φv

+O(µ) + O(δ) (7)

where the O functions are independent of r.
Assuming the unit vector e belongs to the span of the

feature space, we obtain as a corollary:

‖J∗ − Jū‖1,ν ≤
2

(1 − α)2
min ‖Φr − J∗‖∞ + O(µ) + O(δ)

(8)

Using exploration was essential to be able to relate the

performance bound to the approximation bound, resulting in

performance loss bound for all possible values of the noise

and temperature µ, δ > 0. The dependency on the noise and

temperature values seems to vanish as these quantities go to

zero, and therefore, one may wonder if it is possible to find

a feature weights vector r and cost vector c such that the

performance bound holds without noise, without necessarily

having a fixed point. It turns out this is possible, as follows:

Theorem 4 (General Performance Bound): There exists a

state relevance weights vector c, and a feature weights vector

r optimal for the ALP with cost c, such that the greedy policy

u with respect to Φr has the following performance bound:

‖J∗ − Ju‖1,ν ≤ 2
cT Φv

(1 − α)(1 − βΦv)
min ‖Φr − J∗‖∞, 1

Φv

(9)

An important feature of theorem 4 is that it holds without

any specific assumptions, neither on the structure of the

Markov Decision Process, nor on the approximation architec-

ture (the assumption of the existence of a Lyapunov function

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA02.6

69

can be relaxed and the theorem extended to the formulation

of ALP with cost-shaping function, as seen in [6]). Note also

that the feature vector r mentioned in (9) is not any solution

to the ALP with cost vector c, and for some situations, r
will not be an extreme point of R, and the cost vector c will

belong to a interior of the feasible polyhedron R. Pratically,

that implies that one should solve the fixed point problem

for small values of µ, δ, and use limit values of r as µ and

δ go to zero.

Also, while it is easy to simulate a δ- greedy policy with

respect to Φr, one may object that computing the expected

value of the solution vector with respect to a perturbed cost

vector is too computationally cumbersome: solving LPs takes

time, and one certainly does not want to solve the many

variations of the same LP necessary to get a good estimate of

rµ(c). It turns out one can also smooth the function c → r(c)
by using a barrier (interior point) method without taking the

barrier parameter all the way to zero. It is therefore possible

to compute rµ(c) by solving only one LP. The exposition

being more technical but intuitively the same, we opted to

present results with the randomized cost function.

C. Features defined on a partition of the space

While many approximate DP methods may encounter

convergence issues when faced with general MDPs or ar-

chitecture spaces, most methods have good guarantees for

convergence and quality of the solution when the features

are indicator functions (see [7]). It is therefore interesting to

see how does ALP perform in a slight generalization of this

special case.

We assume now that the state space is partitioned into

subspaces denoted Si, i = 1 . . . r, where
⋃

Si
i=1...r

= S, and

Si

⋂
Sj = ∅, for all i 6= j. Assume there are r non

negative features φi, i = 1 . . . r, such that φi(x) > 0 only

if x ∈ Si. Note that the non negative assumption is done

without loss of generality: if features are defined over a

partition of the state-space, but are not constrained in sign,

then every feature φi can be separated into two features

φ+
i (x) = sup(0, φi(x)) (with corresponding set S+

i =
Si

⋂
{x ∈ S|φi(x) ≥ 0}) and φ−

i (x) = sup(0,−φi(x)) (set

S−
i = Si

⋂
{x ∈ S|φi(x) < 0}). This features typically

arise when discretizing a continuous state-space, or when

performing state aggregation.

Under that specific assumption, the feasible polyhedron R
takes a particular structure, similar to the one of the feasible

polyhedron for the exact linear program {J ∈ R
n|TJ ≥ J}:

more precisely, the solution of the LP is always the same as

long as the cost vector is positive.

Proposition 4: There exists an extreme point r∗ such that

for all c > 0, r is the unique solution to the ALP with cost

vector c. Equivalently, the pointwise maximum of all r ∈ R
is a feasible point r∗.

Combining proposition (4) and theorem (4), we can then

prove the following:

Fig. 1. Eight-dimensional queueing network

Proposition 5: The policy u obtained by using ALP with

features defined on a partition of the state-space satisfies:

‖J∗ − Ju‖∞, 1
Φv

≤
2

(1 − βΦv)2
min ‖Φr − J∗‖∞, 1

Φv
(10)

For instance, if the φi are indicator functions of a partition

of the state-space, the performance bound becomes:

‖J∗ − Ju‖∞ ≤
2

(1 − α)2
min ‖Φr − J∗‖∞ (11)

A notable feature of the above is the use of weighted

infinite norms, and more importantly, that one does not need

to worry about the existence of a fixed point, or convergence

to the said fixed point. To our knowledge, such assumptions

are required by most, if not all, approximate DP bounds. In

the case of ALP defined on a partition of the state-space,

we need to solve only one LP, and the policy associated

to the solution immediately satisfies a performance bound.

However, our bound scales roughly as 1
(1−α)2 , which means

in the limit α → 1 the bound becomes trivial unless more

features are added. This is in contrast with the powerful

bound of [7], the only approximate DP bound we know of

which scales as 1
1−α and therefore is useful for all values

of α (for a longer discussion about how each side of the

equations should scale, see [7]).

IV. NUMERICAL EXPERIMENTS

In this section we show some numerical experiments

aiming at finding the desired vectors of state relevance

weights, for a high dimensional example with very large

number of states. Consider the queueing control problem

of figure 1, with arrival rates indicated by δi, i = 1 . . . 8,

service rates by µi, i = 1 . . . 8. The cost function is the

sum of customers in system, discount factor is α = 0.995,

the features are all polynomials of degree less than 2 (total

number of features: 46). The initial vector of state relevance

weight is geometric, c(x) = (1 − ξ)8ξ|x|, and so is the

initial distribution ν(x) = (1 − ν)8ν|x|, and the sampling

distribution (equal to ν). We then generate a sequence of

cost vectors ck as follows:

◦ c0 = ν
◦ ck+1 = (1 − h).ck + hfµ,δ(c), for k ≥ 1

For this particular experiment, h was set to 0.8, ν was

set to 0.9, ξ to various values, the noise and temperature

levels µ and δ were set to zero, and the distribution µ was

generated by monte-carlo simulation. Also, it is impossible

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA02.6

70

0 2 4 6 8 10 12 14 16 18
0

50

100

150

200

Iterations (k)

||
c

T k
+

1
 Φ

 −
 c

T k
 Φ

||

0 2 4 6 8 10 12 14
100

150

200

250

300

350

Iterations (k)

A
v
e

ra
g

e
 C

o
s
t

Fig. 2. Convergence to a fixed point and corresponding performance

to store the vectors ck (since they have very high dimension),

but it is equivalent to store the vectors cT
k Φ ∈ R

r, which was

done for all numerical implementations of the algorithm. The

example shows the importance of an appropriate choice of

c, and validates the insight that the performance of the ALP

policy is related to whether c is a fixed point of f or not.

Indeed, the average number of customers in systems showed

to be highly dependent on the cost vector used (there was

difference of more than 50% between the best choice of c
and the initial c0). Moreover, while this simple algorithm

has no convergence guarantees, the norm of the difference

between ck and ck+1 does go down to small values, and

as the norm difference goes down, so does the average

number of customers in system: Corresponding policies have

a performance of under 150 customers in queue on average.

By comparison, the best ALP performance for the same

problem (obtained by search on the parameters) goes down

to 134; heuristics get systematically worse results (LBFS

obtains 153, FIFO 163, LONGEST 168, see [3]).

V. PROOFS OF RESULTS IN SECTION 3.1 AND 3.2

We first note that rµ(c) is well defined, since for all

c ∈ R
n and µ > 0,

∑
P (c + µ̂ ∈ Ri) = 1 and therefore,

rµ(c) =
∑

1≤i≤k

P (c + µ̂ ∈ Ri)ri is a convex combination of

extreme points of R, and therefore belongs to R.

Proposition 1 is a consequence of the following lemma: let f
be a piecewise constant function from R

n to a compact set C,

and g be a non-negative, smooth (C∞) function from Rn to

R. Then, the function defined by: f(x) →
∫

Rn

f(x+y)g(y)dy

is smooth. We then choose for f the function which assigns

to a cost vector c any solution of the ALP with cost c,

and choose for g the density of a gaussian random vector

with i.i.d. components. Proposition 2 comes directly from

the definition of the uδ(J) policy, which for every state

is a convex combination of actions, each coefficient of the

convex combination being a smooth function of J . Finally,

proposition 3 is derived from propositions 1 and 2, and from

the fact that Pu −→ νT (I − αPu)−1 is a smooth function

of Pu (when Pu is a stochastic matrix). The existence of

fixed points for all values of α < 1, µ > 0 and δ > 0, and

distributions ν is an application of Brouwer’s fixed point

theorem to proposition 3. Before we can prove our main

theorem, we first need some properties of δ-greedy policies.

Recall that a δ-greedy policy uδ(J) with respect to J ∈ R
|S|

chooses decision a in state x with probability

uδ(J)(a, x) =
exp[−(ga(x) + αPa(x)J)/δ]∑

a′∈U(x) exp[−(ga′(x) + αPa′(x)J)/δ]
.

(12)

Lemma 1: Assume that A = {a1, . . . , aq} ⊂ U(x) is the

set of minimizers of ga(x) + αPa(x)J. Then,

lim
δ↓0

uδ(J)(a, x) = u0(J)(a, x) =

{
1/q if a ∈ A
0 otherwise

The meaning of this lemma is that a δ-greedy policy is

essentially the same as a greedy-policy if the noise level δ is

very small. Our next lemma, from [3], states a similar result,

but with a better control on the difference between δ-greedy

and greedy:

Lemma 2: Let J be a vector in R
n, and let u0(J) be

a greedy policy with respect to J , and uδ(J) be the δ-

greedy policy with respect to J . Define the δ-greedy bellman

operator T δJ = guδ(J) + αPuδ(J)J .

Then, ∥∥TJ − T δJ
∥∥
∞

≤
δm

e
(13)

where m is the maximum number of actions available in a

state, and e is the base of the natural logarithm.

Note that the bound in the previous lemma does not

depend on J . We prove two intermediate lemmas before

finally proving theorem (3).

Lemma 3: For a given feasible vector of features weights

r, the δ-greedy policy with respect to Φr has the following

performance bound:

‖J∗ − Juδ‖1,ν ≤
1

1 − α
‖J∗ − Φr‖1,µ(uδ(Φr)) + O(δ)

and the O function is independent of r.
Proof: Since TΦr ≥ Φr, we have by monotonicity of

the bellman operator Φr ≤ J∗. By optimality of J∗, we also

have: J∗ ≤ Juδ

‖J∗ − Juδ‖1,ν = νT (Juδ − J∗)

≤ νT (Juδ − Φr)

≤ νT (I − αPuδ)−1(T δΦr − TΦr)

+ νT (I − αPuδ)−1(TΦr − Φr)

≤ νT (I − αPuδ)−1e
∥∥T δΦr − TΦr

∥∥
∞

+ νT (I − αPuδ)−1(TΦr − Φr)

≤
1

1 − α

δ

me

+ νT (I − αPuδ)−1(TΦr − Φr)

≤ O(δ) +
1

1 − α
‖J∗ − Φr‖1,µ

ν,uδ

Lemma 4: For any cost vector c

‖J∗ − Φrµ(c)‖1,c ≤ 2
cT Φv

(1 − βΦv)
min ‖Φr − J∗‖∞, 1

Φv
+O(µ)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA02.6

71

and the O function is independent of c.
Proof: For any realization µ̂(ω) of µ̂ such that c+µ̂(ω)

belongs to Ri, we have (theorem 4.2 in [3])

(c+µ̂(ω))T (J∗−Φri) ≤ 2
(c + µ̂(ω))T Φv

(1 − βΦv)
min ‖Φr − J∗‖∞, 1

Φv

Therefore:

cT (J∗ − Φri) ≤ 2
cT Φv

(1 − βΦv)
.min ‖Φr − J∗‖∞, 1

Φv

+ O(µ)

where O is independent from c.
By summing:

‖J∗ − Φrµc‖1,c =
∑

i

P (c + µ̂ ∈ Ri)c
T (J∗ − Φri)

≤ 2
cT Φv

(1 − βΦv)
min ‖Φr − J∗‖∞, 1

Φv

+ O(µ)

Theorem 3 follows from immediately lemmas 5 and 6.

VI. PROOFS OF THE RESULTS IN SECTION 3.3

We now proceed to the proofs of the bounds and results in

the special case of nonnegative features defined on a partition

of the state-space. Recall the state-space is partitioned as

S =
⋃

Si
i=1...r

, and we have Si

⋂
Sj = ∅, for all i 6= j. There

are r nonnegative features φi, i = 1 . . . d, each defined on

a partition: φi(x) > 0 only if x ∈ Si. For any vector of

feature weights r ∈ R
d, denote ri its ith component. All

results in section 3.3 stem from the following lemma, which

is equivalent to proposition 4:

Lemma 5: Define the pointwise maximum r∗ of R as

follows:

∀i ∈ 1 . . . d, r∗i = max
r∈P

ri

Then r∗ is feasible

Proof: Let us evaluate TΦr∗ in some point x:

TΦr∗(x) = TaΦr∗(x) for some action a

= ga(x) + α
∑

y

Pa(x, y)Φ(y)r∗

Since Φ(y) ≥ 0 and r∗ ≥ r for any feasible r , this

implies:

TΦr∗(x) ≥ ga(x) + α
∑

y

Pa(x, y)Φ(y)r, for any feasible r

≥ Φ(x)r, for any feasible r

Let’s denote i(x) the index of the set Si such that x ∈ Si.

For any x, and for any r, we have Φ(x)r = φi(x)(x)ri(x).

Let us then consider the feasible r̄ which achieves maximum

ri, i.e.: r̄i(x) = r∗i . We conclude:

TΦr∗(x) ≥ Φ(x)r̄ = φi(x)r̄i(x) = φi(x)r
∗
i = Φ(x)r∗

The approach we took to prove the previous lemma was

to define a priori r∗ and prove it is feasible. One other way

is to prove that for any system of features, the pointwise

maximum of Φr over the entire polyhedron R is always

feasible (for the exact LP for DP), but only with partitioned

features this pointwise maximum can be represented as Φr∗

for some particular r∗.

Proposition 4 and lemma 7 are easily seen to be equivalent,

and imply proposition 5.

VII. CONCLUSIONS

Many approximate dynamic programming methods with

cost-to-go function approximation either fail to provide guar-

antees on convergence or fail to ensure high quality of the

resulting policy in the case of a general feature space. We

prove here that, with a careful choice of the state-relevance

weights vector, the solution of the ALP is always bounded,

and has good performance guarantee. Future work includes

looking into generalizations of the ”pointed polyhedron”

result obtained for features defined on a partition of the state-

space, strengthening of the bound, and development of an

algorithm to find the fixed point for the general theorem.

Preliminary results with homotopy-based methods are very

encouraging.

REFERENCES

[1] Dimitris Bertsimas and John N. Tsitsiklis, Introduction to Linear

Optimization, Athena Scientific, 1997.
[2] Dimitri Bertsekas and John N. Tsitsiklis, Neuro-Dynamic Program-

ming, Athena Scientific, 1996.
[3] Daniela P. de Farias and Ben Van Roy, The Linear Programming Ap-

proach to Approximate Dynamic Programming, Operations Research,
Vol. 51, No. 6, 2003.

[4] Daniela P. de Farias and Ben Van Roy, On the Existence of Fixed Points

for Approximate Value Iteration and Temporal-Difference Learning,
Journal of Optimization Theory and Applications, Vol. 105, No. 3,
June, 2000.

[5] Daniela P. de Farias and Ben Van Roy, On Constraint Sampling

for the Linear Programming Approach to Approximate Dynamic

Programming, Mathematics of Operations Research, August, Vol.29,
No.3, August 2004.

[6] Daniela P. de Farias and Ben Van Roy, A Cost-Shaping Linear

Program for Average-Cost Approximate Dynamic Programming with

Performance Guarantees, Mathematics of Operations Research, Vol.
31, No. 3, pp. 597-620, 2006.

[7] Ben Van Roy, Performance Loss Bounds for Approximate Value

Iteration with State Aggregation, Mathematics of Operations Research,
Vol. 31, No. 2, pp. 234-244, 2006.

[8] Alan S. Manne, Linear Programming and Sequential Decisions, Man-
agement Science, Vol.6, 1960.

[9] Paul J. Schweitzer and Abraham Seidmann, Generalized Polynomial

Approximations in Markovian Decision Processes, Math. Anal. App.,
Vol.110, No.2, 1985.

[10] Milos Hauskrecht and Branislav Kveton, Linear Program Approxi-

mations for Factored Continuous-State Markov Decision Processes,
Advances in Neural Information Processing Systems, 2004.

[11] Csaba Szepesvari and Remi Munos, Finite Time Bounds for Sampling

Based Fitted Value Iteration, International Conference on Machine
Learning, 2005.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA02.6

72

