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Abstract— This paper revisits the problem of assessing robust

stability of linear uncertain systems. It focus on systems with a

single uncertain real parameter, in which case finite dimensional

necessary and sufficient conditions for robust stability can be

constructed in the form of LMIs (Linear Matrix Inequalities).

Among other things, we revisit and propose alternative LMI

tests for a problem of computing the structured singular value

with (D, G)-scalings and show that an existing condition for the

existence of an affine parameter-dependent Lyapunov function

which is known to be sufficient is also necessary in the case of

a single uncertainty.

I. INTRODUCTION

This paper is mostly concerned with the problem of as-

sessing asymptotic stability of uncertain linear time-invariant

systems whose uncertainty is a single real scalar parameter

ẋ(t) = A(r)x(t), r ∈ R, |r| ≤ 1. (1)

The dependence of A in r is assumed to be polynomial. It

is known that uncertain linear systems of the form (1) are

asymptotically stable if and only if there exists a polynomial

parameter-dependent Lyapunov function V (x, r) = x∗P (r)x

where P (r) is a polynomial matrix of high enough degree

in r satisfying the Lyapunov inequalities

A∗(r)P (r) + P (r)A(r) ≺ 0, P (r) ≻ 0, (2)

for all r ∈ R, |r| ≤ 1 (see, for instance [1], [2]). This

is indeed the case even if more than one uncertainty is

considered [3].

In the case of a single real uncertainty, explicit bounds

on the maximum required degree of P (r) are available [1],

[2]. These bounds depend on the size and some other

structural properties of the matrix A (see Section III for

more details). Furthermore, a variation of a result from µ-

analysis [4] makes it possible to construct finite dimensional

LMI (Linear Matrix Inequality) conditions that are both

necessary and sufficient for verifying the existence of such

polynomial parameter-dependent Lyapunov functions. A first

contribution of this paper is to revisit these results, providing

a set of alternative LMI conditions which are also necessary

and sufficient.
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Earlier results on robust stability focused mostly on suf-

ficient robust stability conditions. For instance, the well-

known concept of quadratic stability [5], in which P (r) = P

is assumed to be parameter independent. The works [6],

[7] introduced tests for the case when P (r) is affine (see

also [8]). All such results hold for the more general case of

many uncertainties, and have the nice feature that they can

be often modified to provide LMI conditions for control and

filtering design problems [9], [10], [11], [12], a fact that has

not yet proved possible in the case of higher order parameter-

dependent polynomial Lyapunov function conditions, not

even in the case of a single real uncertainty. A second

contribution of this paper is to revisit such conditions in the

light of our alternative set of LMI conditions. In particular,

we prove that the sufficient conditions for the existence of

an affine parameter-dependent Lyapunov function of [6] is

both necessary and sufficient in the case of a single real

uncertainty.

A. Notation

The following notation will be used throughout the paper.

The scalar j =
√
−1. For a matrix X ∈ C

n×n: X , X∗ are the

complex-conjugate and complex-conjugate transpose of the

matrix X respectively and X−1, X⊥ are full rank matrices

such that XX−1 = I and XX⊥ = 0. He{X} is short-hand

notation for X +X∗. Finally HC
n (AC

n) denotes the set of

Hermitian (anti-symmetric) matrices of dimension n.

II. STRUCTURED SINGULAR VALUE AND (D,G)

SCALING

For some matrix structure ∆ the structured singular value

of a square matrix M ∈ C
p×p denoted µ∆(M) is defined as

µ∆(M) :=

(

inf
∆∈∆

{‖∆‖ : det(I − ∆M) = 0}
)−1

.

In case there exists no ∆ ∈ ∆ which makes (I − ∆M)

singular then µ∆(M) = 0. For more details see, for

instance [13], [14].

In general the structured singular value cannot be com-

puted in polynomial time [15]. A common practice is the

introduction of scalings or multipliers through duality the-

ory that can provide computable upper bounds for µ∆ in
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polynomial time. For instance, define the sets

D := {D : D ∈ HC
p, D ≻ 0}, (3)

G := {G : G ∈ AC
p}. (4)

A pair of multiplier matrices (D,G) ∈ D × G is called

a (D,G) scaling. Now let the matrix M ∈ C
p+q×p+q be

partitioned as

M =

[

M11 M12

M21 M22

]

(5)

and consider the matrix inequality

[

M11 M12

I 0

]∗ [

D G∗

G −D

] [

M11 M12

I 0

]

+

[

M21 M22

0 I

]∗ [

I 0

0 −I

] [

M21 M22

0 I

]

≺ 0. (6)

In the particular class of a single real scalar and a single

complex block uncertainty, i.e.

∆ := {diag(rIp,∆) : r ∈ R, ∆ ∈ C
q×q}, (7)

the work [4] established the following result.

Lemma 1: Let the matrix M ∈ C
p+q×p+q be partitioned

as in (5) and the uncertainty structure ∆ as in (7) be given.

µ∆(M) ≤ 1 if and only if there exists (D,G) ∈ D × G

satisfying the LMI (6).

This is a remarkable result, since the use of (D,G) scal-

ings is only sufficient for other uncertainty structures [14] not

much more complicated then (7) such as, for instance, any

combination of two real or complex scalar uncertainties [14],

[16], [4].

A. (D,G) Scalings Revisited

The condition to be verified in Lemma 1 is a pair of LMIs.

In this section we provide an alternative pair of LMIs that can

be used as an alternative necessary and sufficient condition

for µ∆(M) to be less or equal than one. The key is the

following two technical lemmas.

Lemma 2: Let (D,G) ∈ D × G. Then

[

D G∗

G −D

]

�
[

−G

−D

]

[

rI I
]

+

[

rI

I

]

[

G −D
]

,

for all r ∈ R, |r| ≤ 1.

Proof: Note that

|r| ≤ 1 ⇐⇒
[

1 r

r 1

]

� 0.

Hence, because D � 0,

[

D rD

rD D

]

=

[

1 r

r 1

]

⊗ D � 0.

Therefore

[

D G∗

G −D

]

�
[

D G∗

G −D

]

−
[

D rD

rD D

]

,

=

[

−G

−D

]

[

rI I
]

+

[

rI

I

]

[

G −D
]

,

which concludes the proof.

The following is related to a slight generalization of inequal-

ities of the form (6) which we will use extensively.

Lemma 3: Let the matrices Σ ∈ HC
k and M,N ∈

C
p×k be given with k > p. The following statements are

equivalent.

(i) ξ∗ Σ ξ < 0, for all nonzero vectors ξ ∈ R
k which

satisfy (N − r M) ξ = 0 for some |r| ≤ 1.

(ii) There exist matrices (D,G) ∈ D × G such that

[

M

N

]∗ [

D G∗

G −D

] [

M

N

]

+ Σ ≺ 0. (8)

(iii) There exist matrix X ∈ C
k×p such that

X (N ± M) + (N ± M)∗ X∗ + Σ ≺ 0. (9)

Proof: That (ii) ⇔ (i) has been shown in [1, Lemma

4.2].

(iii) ⇒ (i): Construct the convex combination of (9)

X (N + r M) + (N + r M)∗ X∗ + Σ ≺ 0,

which holds for all |r| ≤ 1. Define a nonzero vector ξ ∈ C
k

such that (N − r M)ξ = 0. Multiply the above inequality by

ξ on the right and by ξ∗ on the left to obtain (i).

(ii) ⇒ (iii): Suppose (ii) is feasible, then use Lemma 2 to

conclude that

He

{

[

M

N

]∗ [

−G

−D

]

[

rI I
]

[

M

N

]

}

+ Σ ≺ 0, (10)

is feasible for all |r| ≤ 1. Now define

X = −M∗G − N∗D.

Since (10) is feasible for all |r| ≤ 1, then it is feasible for

the endpoints r0 = −1 and r1 = 1, thus producing (9).

The above lemma is a version of the result of [17]. In [17],

which establishes alternative LMI conditions for the KYP

(Kalman-Yakubovich-Popov) Lemma, the “uncertainty” is a

frequency variable on the imaginary axis. The relation be-

tween Lemma 3 and [17] is the same that exists between [4]

and the finite frequency KYP Lemma in [18].

The following corollary relates Lemma 3 to stability

analysis via µ-analysis, that is Lemma 1.

Corollary 1: Let the matrix M ∈ C
p+q×p+q be parti-

tioned as in (5) and the uncertainty structure ∆ as in (7)
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be given. µ∆(M) ≤ 1 if and only if there exists X ∈ C
2p×p

such that the LMI

He
{

X
[

I ± M11 ±M12

]}

+

[

M21 M22

0 I

]∗ [

I 0

0 I

] [

M21 M22

0 I

]

≺ 0, (11)

is satisfied.

Proof: Follows from Lemma 3 applied with M =
[

M11 M12

]

, N =
[

I 0
]

and

Σ =

[

M21 M22

0 I

]∗ [

I 0

0 −I

] [

M21 M22

0 I

]

.

III. ROBUST STABILITY

As mentioned previously in the introduction, testing robust

stability of the uncertain system (1) amounts to finding

computable conditions for the existence of a polynomial

parameter-dependent Lyapunov matrix X(r) of high enough

degree that satisfy the Lyapunov inequalities (2). The prob-

lem now will be to convert such inequalities to a form that

is amenable to the results of the previous section. We will

start by discussing the affine case. For that assume that A(r)

depends affinely on r, that is

A(r) = A0 + rA1. (12)

Unfortunately it is known, by virtue of a counter-example

given in [19], that one may have to consider P (r) of degree

higher then one in order to prove stability of the affine

uncertain system. The works [1], [2] provide upper bounds

on the degree of P (r) of the form

degree(P (r)) ≤ min
{

2nρ − ρ2 + ρ, n (n + 1) − 2
}

where ρ = rank(A1) and n is the dimension of A. We

investigate in the next sections two cases: quadratic stability,

i.e. P (r) = P parameter independent and P (r) affine before

we consider the most general case of A(r) and P (r) of

arbitrary degree.

A. Quadratic stability

It is convenient to define the following matrices

B1 = A0 + A1, B2 = A0 − A1. (13)

The uncertain system (1) with the affine matrix (12) is

quadratically stable, i.e. there exists a parameter-independent

Lyapunov matrix P (r) = P satisfying the parameter-

dependent Lyapunov inequalities (2) if and only if (see [5],

[9])

B∗
i P + P Bi ≺ 0, P ≻ 0, i = {1, 2}.

We will now obtain this result as a particular case of

Lemma 3. First note that in the case P (r) = P that the

inequality (2) can be rearranged as

[

A(r)

I

]∗ [

0 P

P 0

] [

A(r)

I

]

≺ 0, X ≻ 0. (14)

Using the methods of [20], the first inequality above is

equivalent to the inequality

ξ∗
[

0 P

P 0

]

ξ < 0,
[

I −A(r)
]

ξ = 0, ξ 6= 0, (15)

which should hold for all vectors ξ ∈ C
2n and |r| ≤ 1. This

inequality is in the form of statement (i) in Lemma 3 with

M =
[

0 A1

]

, N =
[

I −A0

]

, Σ =

[

0 P

P 0

]

. (16)

Application of Lemma 3 then provides the equivalence with

the existence a matrix X such that

X
[

I −Bi

]

+
[

I −Bi

]∗
X∗ + Σ ≺ 0, i = {1, 2},

where Σ is as in (16). Furthermore, defining the partition

X =
[

−Y ∗ −Z∗
]∗

gives the following LMI for quadratic

stability,

[

−Y − Y ∗ Y Bi − Z∗ + X

B∗
i Y ∗ − Z + X Z∗B∗

i + BiZ

]

≺ 0, i = {1, 2},

(17)

which should hold for some Y , Z and P ≻ 0. It has been

shown in [6] that (17) is completely equivalent to (14).

Indeed, multiplication of (17) by
[

B∗
i I

]

on the left and

by its conjugate transpose on the right for i = {1, 2}
produces (14). Conversely, the choice Z = Z∗ = P and

Y = ǫI for a sufficiently small ǫ > 0 produce feasible

inequalities (17).

B. Affine parameter-dependent Lyapunov functions

Following our previous discussions, the parameter-

dependent Lyapunov inequality (2) can be rewritten as the

condition

ξ∗
[

0 P (r)

P (r) 0

]

ξ < 0,
[

I −A(r)
]

ξ = 0, (18)

with P (r) ≻ 0 for all vectors ξ ∈ C
2n and |r| ≤ 1.

The parameter independent case when P (r) = P has been

discussed in the previous section. In this section we focus on

the affine parameter-dependent Lyapunov function, that is

P (r) = P0 + rP1. (19)

We seek to establish the following result.

Theorem 1: Let A(r) and P (r) be affine in r ∈ R as

in (12) and (19), respectively. There exists P (r) ≻ 0 such

that A∗(r)P (r) + P (r)A(r) ≺ 0 for all |r| ≤ 1 if and only
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if there exist matrices Y,Z ∈ C
n×n and P1, P2 ∈ HC

n such

that
[

−Y − Y ∗ Pi − Z∗ + Y Bi

Pi − Z − B∗
i G∗ B∗

i Z∗ + ZBi

]

≺ 0, Pi ≻ 0 (20)

for all i = {0, 1} where B1, B2 are as in (13).

One can verify that P and Pr are related to the variables

P1 and P2 through

P =
1

2
(P1 + P2), Pr =

1

2
(P1 − P2).

Sufficiency of the above LMI condition has long been

established, for instance in [6], [20]. It amounts to producing

convex combinations of (20) so as to conclude that P (r) ≻ 0

and
[

−Y − Y ∗ P (r) − Z∗ + GA(r)

P (r) − Z − A(r)∗Y ∗ A(r)∗Z∗ + ZA(r)

]

≺ 0. (21)

from where (2) is produced after multiplication by
[

A(r)∗ I
]

on the left and by its conjugate transpose on

the right.

A proof that the above condition is also necessary will be

developed in Section IV.

C. The General Case

Back to the case when A(r) and P (r) are polynomials

of arbitrary degree, one will find in the literature several

ways of recasting the parameter-dependent LMI (2) as a finite

dimensional LMI. For instance, see [1], [2]. Most of these

results transform the original polynomial problem into some

form of affine dependence of higher dimensional system.

This practice is customary also when many uncertainties are

involved, as for instance in [21].

For example, an interesting result is that of [2, Theorem 1].

Let N be an even integer and partition the polynomial matrix

A(r) = A0 + rA1 + · · · + rNAN

of degree N into its odd and even components

A(r) = Ae(r
2) + rAo(r

2)

with

Ae(r
2) = A0 + r2A2 + · · · + rNAN ,

Ao(r
2) = A1 + r2A3 + · · · + rN−2AN−1.

If N is odd a similar partitioning is possible (see [2] for

details). Then robust stability of A(r) for all |r| ≤ 1 is

equivalent to robust stability of the polynomial matrix

Ã(ρ) =

[

Ae(ρ) ρAo(ρ)

Ao(ρ) Ae(ρ)

]

, ρ =
r + 1

2

of degree N/2. By applying this idea recursively to Ã(ρ)

one will eventually find an equivalent system which is now

affine in r. For example, if N = 2k then after k iterations. By

the same token, the resulting equivalent affine system matrix

will have dimension 2kn. The present Theorem 1 provides

the necessary and sufficient conditions for the existence of

an affine parameter-dependent Lyapunov function of degree

N for the original system. If a higher order polynomial

dependence is needed in the Lyapunov function then the

system matrices can be appropriately augmented so as to

accomplish that. Again, see [2] for details.

The conclusion is that Theorem 1, now shown to be a

necessary and sufficient condition could be used to provide

alternative LMI tests for robust stability of uncertain linear

systems polynomial in a single real uncertain parameter. In-

deed, the LMIs in [1], [2] are all based on (D,G) scalings, an

alternative version of which has been discussed in Section II-

A is at the heart of Theorem 1. We are currently investigating

whether these alternative conditions can bring computational

advantage to this kind of robust stability analysis and whether

they would represent advantage in the problem of controller

design.

IV. NECESSITY OF THE LMI CONDITIONS IN THEOREM 1

In order to prove necessity of Theorem 1 we follow

methods similar to the ones in [22]. Though the basic ideas

are similar, the technical results are quite different. Indeed,

the manipulations in [22] have as an essential assumption the

fact that a certain matrix (jωI − A) needs to be invertible,

which makes sense in the context of the KYP Lemma. In the

context of the present paper one can verify that this matrix is

not invertible, so that the results of [22] do not readily apply.

The necessary changes are described in the remainder of this

section. Some passages are only sketched and the interested

reader is referred to [22] for more details. We start with the

following lemma.

Lemma 4: Let A(r) ∈ R
n be affine in r ∈ R as in (12)

and Ω(r) ∈ HC
k, Ω(r) = Ω0 + rΩ1. Define

H =











A0 0 −A1

I 0 0

0 I 0

0 0 I











, Σ =

[

Σ0 −Σ1/2

−Σ1/2 0

]

. (22)

The following statements are equivalent.

(i) ξ∗ Ω(r) ξ < 0, for all nonzero vectors ξ ∈ R
k which

satisfy
[

I −A(r)
]

ξ = 0.

(ii) v∗H∗ ΩHv < 0, for all nonzero vectors v ∈ R
2k

which satisfy
[

rI I
]

H v = 0.
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Proof: Let us first investigate the structure of the null

space of the matrix
[

rI I
]

H . Note that

([

rI I
]

H
)

⊥
=

[

rA0 I −rA1

rI 0 I

]

⊥

=





I

−rA0 − r2A1

−rI



 .

Now multiply the above on the left by H to obtain

H
([

rI I
]

H
)

⊥
=











A0 + rA1

I

−rA0 − r2A1

−rI











=











I 0

0 I

−rI 0

0 −rI











[

A0 + rA1

I

]

.

Finally noting that

[

I

−rI

]∗

Ω

[

I

−rI

]

= Ω(r) (23)

establishes the equivalence between (i) and (ii).

Feasibility of the inequality in statement (i) where Ω(r)

depends affinely on r for all |r| ≤ 1 can then be verified by

checking feasibility of the augmented inequality in statement

(ii) with H given by (22). In the context of Theorem 1, just

define

Ω(r) =

[

0 P (r)

P (r) 0

]

. (24)

with P (r) affine. The consequence is that verifying state-

ment (ii) for all |r| ≤ 1 can be done with Lemma 3. For that

just define

Σ = H∗ΩH.

and

M =

[

−A0 0 A1

−I 0 0

]

, N =

[

0 I 0

0 0 I

]

.

Then item (ii) in Lemma 3 provides an LMI test for the

statements in Lemma 4 in the form of the existence of scaling

matrices D,G ∈ D × G such that

[

M

N

]∗ [

D G

G∗ −D

] [

M

N

]

+ H∗ΩH ≺ 0. (25)

Note that
[

M

N

]∗ [

D G

G∗ −D

] [

M

N

]

=

[

−M

N

]∗ [

D G∗

G −D

] [

−M

N

]

,

= H∗

[

D G∗

G −D

]

H,

so that (25) can be rewritten as

H∗

([

D G∗

G −D

]

+ Ω

)

H ≺ 0. (26)

As in [22], the particular structure of the LMI (26) can be

explored by the Elimination Lemma.

Lemma 5 (Elimination Lemma): Let matrices Q ∈ HC
n,

B ∈ C
k×n such that rank(B) < n, and C ∈ C

m×n such that

rank(C) < n be given. Then the following statements are

equivalent.

(i) The two conditions hold

B∗
⊥QB⊥ ≺ 0, and C∗

⊥QC⊥ ≺ 0. (27)

(ii) There exist a matrix X ∈ C
m×k such that

C∗XB + B∗X ∗C + Q ≺ 0. (28)

Proof: See [9], [23].

Application of the above lemma on the inequality (26)

produces the following result.

Lemma 6: Let matrices H ∈ C
4n×3n and Ω ∈ HC

2n be

given as in (22). The following are equivalent statements.

(i) v∗H∗ ΩHv < 0, for all nonzero vectors v ∈ R
2k

which satisfy
[

rI I
]

H v = 0 for some |r| ≤ 1.

(ii) There exist matrices (D,G) ∈ D × G, and

K ∈ C
2n×n such that

[

D G∗

G −D

]

+ He

{[

K

0

]

[

I −A0 0 A1

]

}

+ Ω ≺ 0.

(29)
Proof: Equivalence of item (i) with feasibility of the

inequality (26) follows from the previous discussion. Note

that D ∈ D implies that

0 ≻ −D,

=
[

0 I
]

([

D G∗

G −D

]

+ Ω

) [

0

I

]

, (30)

since the (2, 2)-block of Ω is zero. With feasibility of

inequalities (26) and (30), apply the Elimination Lemma

(Lemma 5) with

B⊥ =

[

0

I

]

, C⊥ = H.

This proves the equivalence of item (i) with the existence of

a matrix variable K ∈ C
2n×n such that

He

{[

I

0

]

K
[

I −A0 0 A1

]

}

+

[

D G∗

G −D

]

+ Ω ≺ 0,

where we have used the fact that

(H∗)⊥ =
[

I −A0 0 A1

]

,

to obtain the final result.

In the above lemma, an extra multiplier variable K has

been introduced, similarly as in the extended LMI conditions

derived for robustness analysis [10], [20]. The inequality (29)
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remains an LMI in the optimization variables D,G and K,

however, on a space of larger dimension and with more

optimization variables. Note that Lemma 6 holds for any

matrix H such that (H∗)⊥ exists provided that Ω(r) is affine,

see [22].

We can now use Lemma 3 to factor the (D,G)-scalings

appearing in (29) as follows.

Ω + He

{[

K

0

]

[

I −A0 0 A1

]

}

+

([

−G

−D

]

[

rI I
]

+

[

rI

I

]

[

G −D
]

)

≺ 0,

Multiply the above inequality on the left hand side by
[

I −rI
]

and on the right hand side by the transpose,

0 ≻
[

I

−rI

]∗ (

He

{[

−G

−D

]

[

rI I
]

+

[

K

0

]

[

I −A0 0 A1

]

}

+ Ω

) [

I

−rI

]

,

which reduces to

0 ≻ He
{

K
[

I −A(r)
]}

+

[

I

−rI

]∗

Ω

[

I

−rI

]

.

This can be rewritten as

He
{

K
[

I −A(r)
]}

+ Ω(r) ≺ 0.

Now choose

K =

[

−Y

−Z

]

(31)

to show that (21) is feasible for all |r| ≤ 1. In particular, (21)

holds for r = −1 and r = 1 to prove that the pair of

inequalities (20) are feasible, thus completing this proof.
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matrices,” International Journal of Control, vol. 74, no. 8, pp. 845–

856, 2001.

[9] S. P. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix

Inequalities in System and Control Theory. Philadelphia, PA: SIAM,

1994.

[10] M. C. de Oliveira, J. Bernussou, and J. C. Geromel, “A new discrete-

time robust stability condition,” System & Control Letters, vol. 37,

no. 4, pp. 261–265, 1999.

[11] M. C. de Oliveira, J. C. Geromel, and J. Bernussou, “Extended H2

and H∞ norm characterizations and controller parametrizations for

discrete-time systems,” International Journal of Control, vol. 75, no. 9,

pp. 666–679, 2002.

[12] J. Geromel, M. de Oliveira, and J. Bernussou, “Robust filtering

of discrete-time linear systems with parameter dependent Lyapunov

functions,” SIAM Journal on Control and Optimization, vol. 41, pp.

700–711, 3 2002.

[13] K. Zhou and J. C. Doyle, Essentials of Robust Control. Prentice-Hall,

Upper Saddle River, New Jersey, USA, 1998.

[14] A. Packard and J. C. Doyle, “The complex structured singular value,”

Automatica, vol. 29, no. 1, pp. 71–109, 1993.
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