
 
 

 

  

Abstract— A new fault detection and prognostics (FDP) 
framework is introduced for uncertain nonlinear discrete time 
system by using a discrete-time nonlinear estimator which 
consists of an online approximator. A fault is detected by 
monitoring the deviation of the system output with that of the 
estimator output. Prior to the occurrence of the fault, this 
online approximator learns the system uncertainty.  In the 
event of a fault, the online approximator learns both the system 
uncertainty and the fault dynamics. A stable parameter update 
law in discrete-time is developed to tune the parameters of the 
online approximator. This update law is also used to determine 
time to failure (TTF) for prognostics. Finally a fourth order 
translational oscillator with rotating actuator (TORA) system is 
used to demonstrate the fault detection while a mass damper 
system is used for demonstrating the prognostics scheme. 

I. INTRODUCTION 

Quantitative fault detection and prognostics (FDP) 
methodology has gained popularity in the past two decades 
due to analytical performance guarantees. In this quantitative 
based approach, a mathematical model of the nonlinear 
system is developed and its output along with output of the 
nonlinear system is utilized to generate residuals [1].  A fault 
is detected if the residual exceeds a predetermined threshold. 
Since all physical systems are nonlinear, recent work on 
fault detection [2] is focused around nonlinear systems [2] 
expressed in continuous-time due to ease of analysis.  
Various online approximator (OLA) schemes predominantly 
in continuous-time have been introduced in the literature [2] 
for characterizing the fault dynamics. It is understood that a 
system after a fault could still be functional whereas after a 
failure, it is not operational [3].  In other words, fault 
detection is a first step in the failure detection. 

However, to the best of our knowledge, there are no 
reported FDP schemes for discrete-time systems even 
though the FDP schemes have to be implemented on 
embedded systems that require discrete-time development.  
Lack of such FDP schemes in discrete-time could be 
attributed to difficulty in verifying analytically their 
performance since the first difference of the Lyapunov 
candidate is not linear with respect to the states in the case of 
discrete-time in contrast with the case of continuous-time. 
Recently, a fault detection scheme for nonlinear discrete 
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time systems with actuator faults was developed [4] with the 
requirement of persistency of excitation (PE) condition.  

On the other hand, in our previous work [5], a new fault 
detection scheme for nonlinear discrete time systems with 
nonlinear state or process faults was developed by using 
online approximators. Also, the stability was mathematically 
analyzed.  However, in [5], and [2], the system uncertainty 
was assumed to be upper bounded and the detection 
threshold was derived based on this upper bound, which is a 
stringent assumption. In contrary, in this paper this 
assumption has been relaxed wherein an online 
approximator in discrete-time (OLAD) is utilized to 
approximate the system uncertainty and a suitable threshold 
is derived to detect the presence of a fault. Subsequently 
upon detecting the fault, the OLAD learns both the fault 
dynamics and the system uncertainty.  

Stable adaptive parameter update law is developed to tune 
the parameters of the OLAD schemes online. Relaxing the 
prior bound on the system uncertainty complicates the 
performance guarantee whereas it is addressed.  After a fault 
is detected, the time to failure (TTF) needs to be assessed for 
prognostics. In determining the TTF, previous work [6] 
assumed a specific degradation model of the system, which 
is found to be quite limited to the system or material type 
under consideration. In another technique, a deterministic 
polynomial and probabilistic methods are developed for 
prognosis [7] by assuming that only certain parameters 
affect the fault whereas the fault dynamics are not 
approximated online making the prediction inaccurate. 
Under a mild assumption, the TTF is determined by 
projecting the parameters of the OLAD to their respective 
maximum limit. The limiting value of a system parameter 
can be obtained from the system designer [7].   

The contributions of this paper involve detecting and 
learning unknown state or process faults occurring in an 
uncertain nonlinear discrete time systems while 
approximating the system uncertainty and the fault 
dynamics. Additionally, we determine the TTF after the 
occurrence of the fault using analytical tools. Thus, the 
development of the fault detection and prognostic 
framework is unified in this paper. Next in Section II, the 
system under consideration is discussed.   

II. PROBLEM STATEMENT 
Consider an uncertain nonlinear discrete time system 

described by  

0( 1) ( ) ( ( ), ( )) ( , ( ), ( )) ( ( ), ( ))x k A x k x k u k k x k u k g x k u kϕ η+ = + + + (1) 
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where nx ∈ℜ is the state vector, mu ∈ℜ  is the input vector, 

: n m nϕ ℜ × ℜ → ℜ , : n m nη +ℜ × ℜ × ℜ → ℜ ,  : n m ng ℜ ×ℜ → ℜ  

are smooth vector fields whereas 0
n nA ×∈ ℜ is a known 

matrix. The known nominal dynamics of the system is given 
by  

0( 1) ( ) ( ( ), ( ))x k A x k x k u kϕ+ = +     
The nonlinear function ( , ( ), ( ))k x k u kη represents the system 
uncertainties whereas ( )( ( ), ( )) ( ( ), ( ))g x k u k k T f x k u kΠ= −  is the 
unknown fault function with ( ( ), ( ))f x k u k  representing the 
nonlinear state or process fault dynamics.  The nonlinear 
fault is modeled in terms of the measurable states and inputs.  
The diagonal matrices n n×

Π ℜ∈  denote the time profile of 
the state or process faults, which are given by [2] 

1 2( ) ( ( ), ( ), ...., ( ))nk T diag k T k T k TΠ = Ω Ω Ω− − − −  
where  

i- ( )( )
0  if    

1 -  ,  if  i k T

k T
k T

k Te κ −Ω
<

− =
≥

⎧
⎨
⎩

          i=1, 2… n 

where i 0κ >  is a unknown constant, which represent the 

rate at which the fault in the state ix evolves. For small 

values of iκ , this term describes incipient fault whereas for 
large values they represent abrupt faults. Also, T denotes the 
unknown time of occurrence of state or process faults.  It is 
assumed that the initial system states are available i.e. 

0(0)x x= .  Next the following assumption, which is 
standard in the literature, is introduced. 
Assumption 1: The states, which are measurable, and the 
input vectors are bounded prior to and after the fault 
occurrence [2].   

In the next section, we present the fault detection scheme 
and in the subsequent sections, the TTF prediction 
(prognostics) will be introduced.  

III. FAULT DETECTION FRAMEWORK 
To monitor and detect faults in the system discussed in the 

previous section, consider the following nonlinear estimator  
0ˆ ˆ ˆ( 1) ( ) ( ( ) ( )) ( ( ), ( ))x k A x k K x k x k x k u kϕ+ = + − +                                                    

                           ˆˆ( , ( ), ( ); ( ))k x k u k kη θ+              (2) 

where ˆ nx ∈ ℜ is the estimated state vector, 
ˆ : pn m nsη +ℜ × ℜ × ℜ × ℜ → ℜ is the OLAD used to learn the 

system uncertainty and the fault dynamics, K  is a design 
matrix and ˆ spθ ∈ ℜ is the vector of adjustable parameters for 
approximating the system uncertainty.  Note after detecting a 
fault, the OLAD is augmented with additional parameters 
i.e. ˆ lθ ∈ ℜ , where s fl p p= +  in order to approximate both 

the system uncertainty and the fault dynamics.  This 
intuitively means that the same OLAD with the newly 
defined size could be used in learning both the system 

uncertainty and the fault dynamics instead of using two 
OLADs. However, to understand the fault characteristics, 
one could always use the knowledge of the learned system 
uncertainty prior to the fault in order to obtain the fault 
dynamics.  For clarity, we reiterate that prior to the 
occurrence of the fault, the size of the OLAD parameter 
vector is ˆ spθ ∈ ℜ . Hence (1) and (2) reduces to  

0( 1) ( ) ( ( ), ( )) ( , ( ), ( ))x k A x k x k u k k x k u kϕ η+ = + +                  (3) 
and 

0ˆ ˆ ˆ( 1) ( ) ( ( ) ( )) ( ( ), ( ))x k A x k K x k x k x k u kϕ+ = + − +    
ˆˆ( , ( ), ( ); ( ))k x k u k kη θ+              (4) 

Next define the state estimation error as ˆe x x= − , hence 
from (3) and (4), we get  

ˆˆ( , ( ), ( )) ( , ( ), ( ); ( ))( 1) ( ) k x k u k k x k u k ke k Ae k η η θ−+ = +           

where K is selected such that the matrix 0A A K= −  has all 
its eigen values within the unit disc. Hence by rewriting the 
above equation, we get  

* ˆˆ ˆ( 1) ( ) ( , ( ), ( ); ( )) ( , ( ), ( ); ( )) ( )e k Ae k k x k u k k k x k u k k v kη θ η θ+ = + − + (5) 

where *ˆ( ) ( , ( ), ( )) ( , ( ), ( ); ( ))v k k x k u k k x k u k kη η θ= −  is the 

approximation error, and *
θ is the optimal chosen value of θ̂  

such that the 2L norm between ( , ( ), ( ))k x k u kη  and 
ˆˆ( , ( ), ( ); ( ))k x k u k kη θ  for all (x, u) in some domain Uχ × is 

minimized. The optimal value is used for mathematical 
analysis only.  Using the smoothness assumption on η̂ , (5) 
could be written as 

* *
)

ˆˆ( , , ; ) ˆ ˆ( , ,
ˆ

( 1) ( ) ( ) ,k x u
w x u ve k Ae k

η θ
θ θ θ θ

θ
+

∂
+ = − +

∂
+        (6) 

where 
* * *ˆ ˆ) ( , , ; ) ( , , ; )

ˆˆ( , , ; )ˆ ˆ ˆ( , ,
ˆ

, ( )k x u k x u
k x u

w x u η η
η θ

θ θ θ θ θ θ
θ

= − −
∂

−
∂

 

intuitively represents the higher order terms of the Taylor 
series expansion. For approximator with linear in parameter 
(LIP) assumption w  is identically zero. For nonlinearly 
parameterized approximator, it can be shown that 

0w → as *
θ̂ θ→ .  Equation (6) is further manipulated to 

get  
( 1) ( ) TZe k Ae k θ δ+ = + +%                                    (7)                        

where *
)ˆ( , , ,v w x u θ θδ +=  , ˆˆ( , , , )

ˆ

T
k x u

Z
η θ

θ

∂

∂
= ⎡ ⎤

⎢ ⎥⎣ ⎦
, and 

* ˆθ θ θ−=% is the parameter estimation error. Next the 
following parameter update law is proposed for tuning the 
OLAD 

[ ( )]ˆ ˆ ˆ( 1) ( )  D ( )T
e kk k Z I ZZ kθ θ α γ α θ+ = + − −                (8) 

where 0α > is the learning rate or adaptation gain, 
0 <  1 γ < is a design parameter and Z  is a sp n×  matrix 
and [.]D is the deadzone operator defined next.  

Remark 1: A fault is detected only if the norm of the 
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residual ( )e k is greater than a predetermined threshold in 
order to improve the sensitivity of the detection scheme to 
the fault. The threshold or dead zone for the residual is 
selected based on equation (7) and it is given as 

{ 0,  if ( )
[ ( )]

( ), if ( )

e k
D e k

e k e k

ε

ε

≤
=

>
. 

whereε is the fault detection threshold and is derived in the 
next section.    

After the fault occurs, the system equation in (1) is 
modified as   

0( 1) ( ) ( ( ), ( )) ( , ( ), ( ))x k A x k x k u k h k x k u kϕ+ = + +  
where ( , ( ), ( )) ( , ( ), ( )) ( ( ), ( ))h k x k u k k x k u k g x k u kη= +  with the size 

of the OLAD parameter vector in (2) as ˆ lθ ∈ ℜ  and may not 
necessary be prior to the fault. Now the state estimation error 
would be given as  

ˆˆ( , ( ), ( )) ( , ( ), ( ); ( ))( 1) ( ) h k x k u k k x k u k ke k Ae k η θ−+ = +  
by performing mathematical manipulations similar to (5) and 
(6).   The residual is obtained as 

 ( 1) ( )
T
fe k Ae k Z θ ω+ += + %                                                 (9) 

where
ˆˆ( , ( ), ( ); ( ))

ˆ

T

f
k x k u k k

Z
η θ

θ

∂
=

∂
⎡ ⎤
⎢ ⎥⎣ ⎦

is a l n×  matrix, 

, 1
*

)ˆ( , , , ,f k x u θ θδ υω + += , 
* *

)ˆ ˆˆ ˆ( , , , ( , , ; ) ( , , ; ),f k x u k x u k x uθ θ η θ η θ= −   

*
ˆˆ( , ( ), ( ); ( ))

ˆ
ˆ( )

k x k u k kη θ

θ
θ θ

∂

∂
− −  

and 1
*ˆ( , ( ), ( )) ( , ( ), ( ); ( ))h k x k u k k x k u k kη θυ = −  is the 

approximation error. Additionally, note that the update law 
in (8) will again be used for tuning the parameters of the 
modified OLAD. Since we modify the OLAD after the 
detection of a fault, thus we don’t need to apply the 
deadzone operator in the update law in (8).  But it is obvious 
that the size would be larger i.e. ˆ lθ ∈ ℜ . Hence as discussed 
earlier, the modified OLAD would learn both the system 
uncertainty and the fault dynamics after the detection of the 
fault.  

The update law in (8) guarantees bounded stability of the 
OLAD scheme as would be shown in the next section.  It is 
also very important to note that the update law given in (8) is 
different from controller design [8], whereas to the best of 
the knowledge this law is not used for estimation.  
Additionally, the update law complicates the stability proof 
for fault detection. Hence a guaranteed performance for 
controller design might not guarantee a stable performance 
for fault detection. Next, the performance of the fault 
detection scheme is examined mathematically.   

IV. ANALYTICAL RESULTS 
Consider the system in (1) with uncertainties and prior to 

fault occurrence, the system is given by  

( 1) ( ) ( ( ), ( )) ( , ( ), ( ))x k Ax k x k u k k x k u kϕ η+ = + +                   
The following theorem is proposed to show the stability of 
the OLAD scheme and the parameter update law in (8) prior 
to the occurrence of the fault.  It is emphasized that the PE 
condition is relaxed in deriving the stability. 
Theorem 1: (PE condition not required) let the initial 
conditions for the OLAD be bounded in a region spD ℜ⊂ . 
Consider the parameter update law (8), the state estimation 
error ( )e k and the parameter estimation error ( )kθ% are 
uniformly ultimately bounded (UUB).                           
Proof: let the Lyapunov function be  

( ) ( ) ( ) ( )T TV k k k ke e θ θ= + % %  
The first difference of the Lyapunov function is given by 

1

1 1( ) ( ) ( ) ( )
T T

V

k k k kV e e e e
Δ

+ + −Δ =144424443
2

( 1) ( 1) ( ) ( )
T T

V

k k k kθ θ θ θ

Δ

+ + + −% % % %
14444244443    

Next we substitute the error equation (7) in 1VΔ , and by 

taking  T
Z θΨ = %  , we get                     

( ) ( )1 ( ) . ( ) ( ) ( )
TT

Ae k Ae k k kV e eδ δ= +Ψ+ +Ψ+ −Δ  
Next we expand the above equation to get 

1 ( ) ( ) 2 ( ) 2 ( )
T T T T T TT

V e k A Ae k e k A e k Aδ=Δ + Ψ Ψ + + Ψ  

( ) ( )2
TT T

k ke eδ δ δ −+ + Ψ                     (10) 
Next we substitute the parameter update law (8) in 2VΔ , we 
get                     

( ){ *
2 ( ) ( ) (  ( ) )

TT TI I ZZ I k Z e k I ZZV γ α θ α γ α θ= − − − − − ×Δ %  

( )*
( ) ( ) (  ( ) )

TT T
I I ZZ I k Z e k I ZZγ α θ α γ α θ− − − − −%

}( ) ( )
T

k kθ θ− % %  

Next, we apply the results of Cauchy-Schwartz inequality 
(

1 2 1 2 1 1 2 2
( ) ( ) 2( )T TTa a a a a a a a+ + ≤ + ), we get 

2

2 2(1 ) ( ) ( )T T
V I ZZ k kγ α θ θ≤Δ − − % %  

      * *
(  ( ) ) (  ( ) )2 .T T T

Z e k I ZZ Z e k I ZZα γ α θ α γ α θ− − − −+                           

       ( ) ( )T k kθ θ− % %                             (11) 
Next 1 2V V VΔ Δ Δ= + , combine (10) and (11), apply the  
Cauchy-Schwartz equality on the 3rd, 4th and 6th terms in 
equation (10) to get 

( ) ( )3 ( ) ( ) 3 3
T T TTT

k kV e k A Ae k e eδ δ −Δ ≤ + Ψ Ψ +  
2

*
(  ( ) )

2(1 ) ( ) ( )

2

T T

T T
Z e k I ZZ

I ZZ k k

α γ α θ

γ α θ θ

− −

+ − −

+

% %

   

*
( ) ( )(  ( ) ). T T
k kZ e k I ZZ θ θα γ α θ− − − % %   

Finally, we take the norm to get  
2 2

max

22
max(1 3 4 ( ))V A Z e kαΔ ≤ − − −  

( )2 2

max

2 2
( )1 2 (1 ) 3T
kI ZZ Z θγ α β− − − − +− %  
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where
22

max

222
3 4 TI ZZωβ γ α θ= + − . Therefore, 

0VΔ ≤ provided the following conditions hold 

2 2

max

2
max

( )
(1 3 4 )

e k
A Zα

β

− −
≥  

(or) 

( )2 2

max max

2
( )

1 2(1 (1 ) 3)
k

Z Z
θ

γ α

β
≥

− − − −

%  

and 2
1 / 4Zα < ,  0 <  1 γ <  ,  maxZ Z≤ , max 1 / 3A ≤ .                     

This completes the proof. 
                                          
Remark 2: The principal advantage of such Lyapunov 
theory based approach is that the threshold ( ε ) is derived in 
the process of proving stability and thus it guarantees robust 
ness of the fault detection when compared to other schemes 
[4], where the threshold is chosen analytically or by 
assuming fixed bound on system uncertainties [2]. Hence we 
have chosen the threshold as 

2 2

max

2
max(1 3 4 )A Z

β

α
ε λ

− −

=                  (12) 

where 0λ > is the fault sensitivity design parameter. From 

Remark 1, we see that a fault is detected only if ( )e k ε> .   
The following theorem shows the boundness of the state 

estimation error (residual) and the parameters of the OLAD, 
after the occurrence of the fault, while relaxing the PE 
condition.   
Theorem 2 (PE condition not required) let the initial values 
of the augmented parameters of the OLAD be bounded in a 
region lB ⊂ ℜ . In the presence of bounded uncertainties as 
shown in Theorem 1, consider the following parameter 
update law (8) for the augmented parameter, then the 
residual and the parameter estimation errors, ( )ke  
and ( )kθ% respectively are uniformly ultimately bounded 
(UUB).  
Proof: One could always see that the proof of this theorem is 
very similar to Theorem 1. However the parameter vector 
size would now be ˆ lθ ∈ ℜ . 
 
Remark 3: For stability, the adaptation gain has to satisfy 

2
1 / 4Zα <   for Theorems 1 and 2 which is different for 

control.  From an initial glance, these conditions appear to 
be strong whereas most commonly used parameterized 
online approximators satisfy the above conditions [2, 8].  

The next section elaborates on the development of the 
prognostics scheme.  

V. PROGNOSTIC SCHEME 
The prognostics scheme is developed by using the behavior 
of the parameter trajectories before and after the occurrence 
of the fault. The following assumption holds in deriving the 
time to failure.   

Assumption 2: The parameter ˆ( )kθ  is an estimate of the 
actual system parameter.  

Remark 4: This assumption is satisfied when a system 
can be expressed as linear in the unknown parameters (LIP). 
For example in a mass damper system or civil infrastructure 
such as a bridge, the mass, damping and spring constants can 
be expressed as unknown parameters. Hence in the event of 
a fault, we assume that system parameters change and tend 
to reach their limits defined by the designer. When any one 
of the parameters exceeds its limit, it is considered unsafe to 
operate.  TTF will be defined as the time that the first 
parameter reaches its limit. Here the TTF analysis can be 
done with lower limits as well. 

In order to estimate the system parameter in real-time, we 
use the parameter update law given in (8) and solve it 
iteratively by fixing all other quantities and projecting the 
TTF under the current state estimation error.  Next we 
present the following theorem.  

Theorem 3 (Time to failure): Assume that the parameter 
update law can be treated time invariant during the time 
interval k and k+1 and consider system (1) can be expressed 
as LIP, the TTF for the ith system parameter could be 
iteratively determined by solving 

0

1

1

max

0

log(1 )

log

T

T

Tf

n

ij j
j

n

ij j
j

i i

i

i

e

e

k k
I zz

I zz

I zz

z

z

γ α

γ α α

γ α α

θ

θ

=

=
= +

− −

− −

− −

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟
⎛ ⎞⎜ ⎟

⎜ ⎜ ⎟ ⎟
⎝ ⎝ ⎠ ⎠

∑

∑
    (13)   

where fi
k is the TTF, 0i

k is the time instant when the 

prediction starts (starts at dk  and incremented with time), 

maxiθ is the maximum value of the system parameter, and 

0iθ is the value of the system parameter at the time instant 

0i
k .  
Remark 4: The mathematical equation (13) is derived for the 
i’th system parameter. In general for a given system, the time 
to failure would be ), 1, 2, ........min(ft fi

i lk k == , where l the 

number of system parameters. This also implies that for a 
fault that is occurring in the system, the TTF is obtained as 
the time that the first parameter reaches its limit.   
Proof:  In general for any system satisfying Assumption 2, 
the maximum value of the system parameter in the event of a 
fault is determined via physical limitation. Hence we 
take

max

ˆ ( )fi ikiθ θ= . Note that the equation (13) holds only in 

the time interval [ ],
d fk k k∈  when the state estimation error 

and other terms are held constant at each k . Thus the values 
of Z and e  are known and would be held fixed for the kth 
time instant. Under the assumption, the parameter update 
law shown in (8) could be written as  

1ˆ ˆ( ) ( ) ( )  
T

I ZZ em I I m Zαθ γ θ α−+ = − +  
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where we use m as the time index to simplify the 
understanding of the theorem, and the above defined 
equation could be written as  

.( 1) ( ) .Ax m x m B u+ = +            (14) 

where ˆ( 1) ( 1)x m mθ+ = + , ( )T
I ZZ IA I αγ −−=  is a diagonal 

matrix, ˆ( ) ( )x m mθ= , and B α= , and  u eZ= . Since the 
above defined A matrix is diagonal, (14) could be written as  

( 1) ( )i ii i i ix m x m b ua+ +=                          (15) 

where 1
T

ii I ZZa αγ −−= , ib α= ,and 
1

n

ij j
j

iu z e
=

= ∑  with the 

elements of input being constant between the time instant k 
and k+1.  
Solving (15) to determine TTF using [10], we get 

0

0

( ) ( )

0
1

( ) ( )
m

m m m

i
j m

j
i ii i ii imx m x ua b a

=

− −

+
= + ∑                              (16)           

Since at a given instance k , iu is time-invariant in (16), thus 
we get  

0 0

0

( ) ( )

0
1

( ) ( )
m

m m m m

j m
i ii i i i iimx m x b ua a −

=

−

+
= + ∑  

Now using results of geometric series, the above equation 
become  

0( )
0

0( ) ( )
1

1

m m ii

ii

m m

i ii i i imx m x b ua
a

a

−
−

= +
−

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

After performing some simple mathematical manipulation, 
one obtains  

0

0

1

1

[ ( )( ) ]

[ ( )( ) ]

m m i ii i i
ii

i ii i im

x m b u

x b u

a
a

a

− −

−

−

−
=  

Since 0 1iia< < , take absolute value and logarithm on both 
sides and apply absolute value to get 

0

0

log

log( )

( )(1 )

( )(1 )

ii

i ii i i

i ii i i

a

a
m m

a

x m b u

x m b u
=

− −

− −
+

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Next we take fi
m k= , and 00 i

m k= . Additionally, we have  

max
( ) ( )i i f ii

x m x k θ= = ,
0 0 0

( ) ( )i i ii
kx m x θ= = , and we know that 

1
T

ii I ZZa αγ −−= , ib α= ,and 
1

n

ij j
j

iu z e
=

= ∑ . Thus, we get 

equation (13). This completes the proof.  
Remark 5: In other words, TTF is obtained by treating the 
estimation error and system matrix to be time invariant 
which may not necessarily true in practice whereas this is a 
first step. This assumption will be relaxed in the future.  
Similarly, one can use the state estimator to determine TTF 
by using the same idea provided states can be related to the 
physical quantities. 

To iteratively determine the time to failure ( ftk ), we 
propose the following algorithm. 

 
Figure 1: Procedure to iteratively update the time to 

failure. 
The next section details the simulation results.  

VI. SIMULATION RESULTS 
The modified discrete time state space model of a fourth 

order translational oscillator with rotating actuator (TORA) 
system is given by [9] 

0( 1) ( ) ( ( ), ( )) ( , ( ), ( )) ( ( ), ( ))x k A x k x k u k k x k u k g x k u kϕ η+ = + + +       (17) 

where the states are given by [ ]
1 2 3 4

( ) ( ), ( ), ( ), ( )
T

x k x k x k x k x k= , 

0A I= , the nominal dynamics of the system are given by 

( )

( ) ( )

( )

( )( )

2

1 2 1 3

2 2

1 2 1 3

2

4

( )

1
. ( ) cos( ( )).( . ( ) sin( ( )) ( ))

( )

1
cos( ( )) ( ).( . ( ) sin( ( )) ( ))

s

s

s

s

s

s

x k

m M u mL x k mL x k x k k x k
d

x k

mL x k I mL mL x k x k k x k
d

t

t

t

t

ϕ

+ − −

− + + −

=                        

with 22 2 2
1cos ( ( ))( )( ) x kd I mL m M m L= + + − , and 

input ( ) 0.5 * sin( )su k kt= . The system uncertainty is given 

by 3[0, 0, 0, 0.2 sin(0.01 ( ))]( , ( ), ( ))
T

x kk x k u kη = , and the induced fault is 

taken as ( )
2

- ( ) 34( ( ), ( )) 1 -0, 0, 0, (0.1  ( )))(k T T
g x k u k e kxκ −

= ⎡ ⎤⎣ ⎦ .  
Now to monitor the system in (17) and to detect the fault 

that occurs in the system, we propose the following 
nonlinear estimator, which is obtained from (2). The 
nonlinear estimator uses an OLAD scheme given by  

Yes 

No 
 

If ft fk k= (actual 

time to failure)  
 

Calculate 0 )(
i

kz , 0 )(
i

ke and 0
ˆ )(

i
kθ at the 

0

th

i
k instant 

Fault detected, 0 di
k k=   (time of 

fault detection) 

Calculate time to failure using (13) 

Calculate min( )ft if
k k=  

System failed 

0 0 1
i i

k k +=
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0

ˆˆˆ ˆ ˆ( 1) ( ) ( ( ) ( )) ( ( ), ( )) ( , ( ), ( ); ( ))x k A x k K x k x k x k u k k x k u k kϕ η θ+ = + − ++   
                                             (18) 
where the estimated states are 

[ ]
1 2 3 4

ˆ( ) ˆ ˆ ˆ ˆ( ), ( ), ( ), ( )
T

x k x k x k x k x k= , 0.25K I=  with I is an 

identity matrix, [ ]4
ˆ ˆˆ ˆ( , ( ), ( ); ( )) ( ( ); ( ))0, 0 0,,

T
k x k u k k x k kη θ η θ= is 

OLAD. Initially we assume that only the system uncertainty 
is present in the system in (17). Hence, the OLAD 

4
ˆˆ ( ( ); ( ))x k kη θ is used for approximating the system 

uncertainty. In this simulation, we assume that the system 
uncertainty and the fault affects the system state 4 ( )x k , and 
the values of the system parameter used for this simulation 
are 2, 10, 1, 0.5,sm M Lk= = = = 2I = , and 0.01st = .  

Under fault free condition, the system in (17) is subjected 
only to the uncertainty as given above. Initially the OLAD 
used is a feed forward network with 6 sigmoid activation 
functions.  The OLAD is tuned using the update law in (8). 
The tuning parameters of the update law in (8) are chosen as 

0.01α =  and 0.01γ = . The initial value of the parameters ( θ̂ ) 
of the OLAD are chosen to be zero. Next we assume that a 
fault is seeded at 25 secT = and its growth rate is taken 
as 4 0.1κ = . Upon detecting the fault, we modify the size of 
the OLAD, thus we have a feed forward network with 16 
sigmoid activation functions. To tune the OLAD parameters 
online, we use again the update law in (8), and the tuning 
parameters are chosen as 0.01α =  and 0.1γ = .  
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Figure 2: Combined dynamics (uncertainty + fault) response 
compared with the OLAD response. 

Figure 2 shows the evolution of the system uncertainty 
and the unknown fault, and is compared with the OLAD 
response. From the figure, the learning of the combined 
dynamics (system uncertainty and unknown fault) by the 
OLAD is satisfactory. Thus the proposed fault detection 
scheme is able to detect an unknown fault in the presence of 
system uncertainty. Additionally, the scheme is also able to 
learn the combined dynamics.  
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Figure 3: Comparison between the estimated and the actual 
system parameter, and also shown the safe threshold. 

Since the system in (17) cannot satisfy the LIP, the 
prognostics scheme cannot be directly applied. However, we 

use another example, a mass damper system (system details 
omitted due to page constraints, however please refer to [5] 
for more details).  Next we use the algorithm proposed in 
Theorem 3 to predict the TTF of a mass damper system with 
a spring stiffness fault.  The increasing spring constant due 
to the fault is shown in Fig. 3, where we use an upper 
threshold 

maxiθ to determine the TTF after the occurrence of 

the fault. Fig. 4 shows the TTF upon detection of the fault to 
the actual time of failure. Here TTF reaches zero to indicate 
that the upper threshold was reached.  
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Figure 4: Prediction of the time to failure after the 
occurrence of the fault. 

VI. CONCLUSIONS 
In this paper, the development of the fault detection and 

the prognostics scheme was combined. The scheme is 
developed by considering a bound on system uncertainty. 
Additionally the time to failure was also derived. However 
the scheme was developed with an assumption that all the 
states are measurable. As part of future work, the 
requirement of all state measurability will be relaxed.  
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