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Abstract— This paper addresses a sensor scheduling problem
for a class of networked sensor systems whose sensors are
spatially distributed and measurements are influenced by state
dependent noise. Sensor scheduling is required to achieve power
saving since each sensor operates with a battery power source.
The scheduling problem is formulated as a model predictive
control problem with single sensor measurement per time. It is
assumed that all sensors have state dependent noise and have
the same characteristics, which follows from the properties of
networked sensor systems. We propose a fast and optimal sensor
scheduling algorithm for a class of networked sensor systems.
Computation time of the proposed algorithm is proportional to
the number of sensors and does not depend on the prediction
horizon. In addition, we provide a fast sensor scheduling
algorithm for a general class of systems by using a linear
approximation of the sensor model.

I. INTRODUCTION

A networked sensor system is a collection of spatially

distributed sensors that are networked. Applications of net-

worked sensor systems include habitat monitoring, animal

tracking, forest-fire detection, precision farming, and disaster

relief applications [11], [13]. In recent years, networked

sensor systems have been implemented in control systems

such as robot control systems [2], [8] and target tracking

systems [14]. Sensors in a networked sensor system are

usually connected wirelessly, and each sensor operates with

a battery power source. It is therefore desired for each sensor

to prolong the battery life, or equivalently, to achieve power

saving [7]. For power saving, the wireless communication of

sensors should be restricted, since it takes much power. One

of approaches to solve the problem is to select available sen-

sors dynamically. This process is called sensor scheduling.

One of major problems on sensor scheduling is to reduce

computation time, since the number of possible sensor se-

quences increases exponentially with the number of the sen-

sors. In particular, a predictive control method [3], a branch

and bound method [5], and a sub-optimal method based on

relaxed dynamic programming [1] have been proposed for

sensor scheduling. In addition, a sensor scheduling strategy

for continuous-time systems has been provided in [9]. These

approaches assume that sensors have different characteristics,

that is, each sensor observes a different measurement or the

covariance matrices for the sensor model are different from

each other.

Unfortunately, the existing approaches can not be applied

to sensor scheduling for networked sensor systems for the

following two reasons. First, a networked sensor system
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usually consists of a few types of sensors [13]. In other

words, many sensors in a sensor network have the same

characteristics, while the existing approaches assume that

sensors have different characteristics as mentioned before.

Thus the existing approaches can not provide a reasonable

solution for the sensor scheduling problems for networked

sensor systems. Second, sensors in a networked sensor sys-

tem are spatially distributed. Each measurement noise may

depend on the position of a target relative to the position

of the sensor. In particular, measurements taken by cameras

or radar sensors are influenced by state dependent noise [4],

[10], [12]. The existing works do not provide any optimal

sensor scheduling algorithm for systems with state dependent

noise.

This paper addresses a sensor scheduling problem for a

class of systems whose measurements are influenced by state

dependent noise. It is assumed that all the sensors have the

same characteristic, which follows from the properties of

networked sensor systems. The sensor scheduling problem

is formulated as a model predictive control problem with

single sensor measurement per time. A fast and optimal sen-

sor scheduling algorithm which minimizes a quadratic cost

function at each time is proposed. The proposed algorithm

is optimal for a class of networked sensor systems. The

computation time of the proposed algorithm is proportional

to the number of the sensors and does not depend on the

prediction horizon. In addition, we provide a fast sensor

scheduling algorithm for a general class of systems by using

a linear approximation of the sensor model.

We use the following notation. For a matrix A ∈ R
m×n,

cs(A) stands for

[

A11 A21 · · · Am1 A12 A22 · · · Amn

]⊤
,

where Ajℓ is the (j, ℓ)-th element of A. For matrices A and

B, A ⊗ B means their Kronecker product. The Kronecker

delta is denoted by δℓm. The expectation operator is denoted

by E[·].

II. SENSOR SCHEDULING PROBLEM

A. System description

This paper considers a class of networked sensor systems

as illustrated in Fig. 1. The system has N sensors, and the

sensors are labeled from 1 to N . It is assumed that only one

sensor is available at each time to achieve power saving.

Let us now describe details of the system model.

The controlled object is represented as a discrete-time

linear time-invariant system

xp(k + 1) = Apxp(k) + Bpu(k) + w(k), (1)

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

TuA14.6

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 459



Controller

Sensor 1

Sensor 2

Sensor N

Controlled
Object

Fig. 1. A block diagram of a networked sensor system.

where xp(k) ∈ R
np is the state vector, u(k) ∈ R

r the control

input, and w(k) the process noise. The noise w(k) is white,

Gaussian and zero mean with a covariance matrix W . The

time index k is sometimes omitted to simplify notation. The

initial state xp(0) is a random variable whose expectation

value and covariance matrix are known constants.

The controller is given by

xc(k + 1) = Acxc(k) + B1cyi(k)(k) + B2cu(k), (2)

u(k) = Ccxc(k) + Dcyi(k)(k), (3)

where xc(k) ∈ R
nc is the state of the controller, yi(k)(k) ∈

R
p the measurement taken by sensor i(k), and i(k) the label

of the sensor selected at time k. Note that the goal of this

paper is to develop a fast and optimal sensor scheduling

algorithm for a given controller, not to design the controller.

The sensor model is of the form:

yi(k) = Cxp(k) +

q
∑

ℓ=1

diℓ(x(k))viℓ(k), (4)

where x is defined by

x(k) =
[

x⊤
p (k) x⊤

c (k)
]⊤

, (5)

and vi(k) = [vi1(k), . . . , viq(k)]⊤ is white, Gaussian and

zero mean with a covariance matrix V . It is assumed that

vi(k), w(k) and xp(0) are mutually independent. Clearly

diℓ(x(k)) is independent of vi(k). The matrices C and V

are independent of sensor selection, which implies that all

the sensors have the same characteristics. Note that a state-

dependent sensor scheduling algorithm is required, since

yi(k) is influenced by state dependent noise. The matrix

function diℓ(x) is a function of x not of only xp. This helps

to develop a camera model as shown in Example 2.

We will show several sensors whose mathematical models

can be written by (4).

Example 1: Consider radar sensors that measure the posi-

tion of a target in the (x, y) plane. Standard models of radar

sensors are given by

yi =

[

x

y

]

+

[

cos θi − sin θi

sin θi cos θi

] [

1 0
0 ri

]

vi (6)

[12], or

yi =

[

x

y

]

+ a(ri)

[

cos θi − sin θi

sin θi cos θi

] [

1 0
0 b

]

vi (7)

[4], where yi is the measurement, θi the angle between the

x axis and the vector joining sensor i to the target, ri the

Sensor i

Fig. 2. Definitions of θi and ri.

distance from sensor i to the target, a(ri) a function such

that a2(ri) is a quadratic function of ri, b a constant, and vi

a white, Gaussian and zero mean noise (see Fig. 2). It is clear

that (6) and (7) are described by (4). In addition, networked

sensor systems consisting of radar sensors whose models are

described by (6) or (7) satisfy the following two: (1) All the

sensors have the same characteristics, (2) The measurement

noise depends on the state of the system.

Example 2: Let a camera and a target be set at (px, py)
and (x, y), respectively. The optical axis of the camera is

directed parallel to the x axis. The target is projected onto

the image plane at Ȳ := Y + v̄ due to quantization errors or

calibration errors [10], where

Y =
f

x − px

(y − py) (8)

and v̄ is the white and Gaussian noise (see the left of Fig. 3).

The target position y is estimated from Ȳ by

ȳ = py +
x − px

f
Ȳ , (9)

or

ȳ = py +
xc − px

f
Ȳ , (10)

when (2) is used as an observer, where ȳ is an estimate of

y, f the focal length of the camera, and xc an estimate of

x from the observer. Equation (9) is not valid when x is

unknown, but (10) is always available. Replacing x with xc

in (8) and substituting it into (10), we have the camera model

of the form

ȳ = y +
xc − px

f
v̄. (11)

We here use two cameras to obtain two dimensional

information, since it is difficult to get the depth information

in the camera system. Let cameras ℓ and m be set at

Optical axis

Camera

Image plane
Camera

Camera

Fig. 3. Left: The pinhole camera model. Right: Camera location.
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(pℓx, pℓy) and (pmx, pmy), respectively, as illustrated in

the right of Fig. 3. The optical axes of cameras ℓ and m

are parallel to the y axis and the x axis, respectively. The

combination of cameras ℓ and m is labeled by i. Then the

camera model is represented by

yi =

[

x

y

]

+
1

f

[

yc − pℓy 0
0 xc − pmx

]

v, (12)

where (xc, yc) is an estimate of (x, y). Equation (12) is

represented by (4), since diℓ is a function of x.

Example 3: The model (4) includes a class of sensors with

stochastic parametric uncertainties [6]. For example, a sensor

model of the form

yi(k) = (C + ∆Ci)xp(k) (13)

is considered in [6], where

∆Ci =

p
∑

j=1

C̄ijvij(k), (14)

and vij is a white, Gaussian and zero mean noise with

E[vij(k)viℓ(τ)] = δjℓδkτ . Equation (13) can be represented

by (4).

B. Sensor scheduling problem

The closed loop system described by (1)–(4) is of the

form:

x(k + 1) = Ax(k) + B

q
∑

ℓ=1

diℓ(x)viℓ(k) +

[

w(k)
0

]

,

(15)

where

A =

[

Ap + BpDcC BpCc

B1cC + B2cDcC Ac + B2cCc

]

, (16)

B =

[

BpDc

B1c + B2cDc

]

. (17)

We also define n := np + nc and x0 := E[x(0)].
This paper considers the following problem.

Problem 1: Let a positive integer T and positive definite

symmetric matrices Qp ∈ R
np×np , R ∈ R

r×r and Π ∈
R

np×np be given. A cost function is defined by

J = E
[

T
∑

k=0

{

x⊤

p (k)Qpxp(k) + u⊤(k)Ru(k)
}

+ x⊤

p (T + 1)Πxp(T + 1)
]

. (18)

Find

{i∗(0), · · · , i∗(T )} = arg min
i(0),··· ,i(T )

J(T ) (19)

for (15).

It is assumed in this paper that model predictive control is

implemented. Problem 1 is solved at each time. Thus a fast

algorithm for solving Problem 1 is desired. One of the most

primitive methods to solve Problem 1 is as follows: Calculate

values of the cost function for all possible sensor sequences

from time 0 to T and compare these values. This is called the

exhaustive search method in this paper. Clearly the number

of comparisons is NT+1 for the exhaustive search method.

Thus the exhaustive search method is not suitable for model

predictive control from the point of view of computation time

as will shown in Examples 4 and 5.

Note that E[x(k)] is required to derive the optimal sensor

scheduling at each time. Therefore we have to estimate

E[xp(k)]. We use (2) as an observer for estimation in

numerical examples presented in this paper.

III. FAST AND OPTIMAL SENSOR SCHEDULING

This section proposes a fast and optimal sensor scheduling

algorithm. It is assumed throughout this section that there

exist constant matrices Sℓ ∈ R
p×n and siℓ ∈ R

p such that

diℓ(x)d⊤

im(x) = (Sℓx + siℓ)(Smx + sim)⊤ (20)

for all i ∈ {1, 2, · · · , N} and ℓ,m ∈ {1, 2, · · · , q}. The

assumption (20) implies the following two:

1) The variance of the measurement noise can be repre-

sented by a quadratic function of x.

2) The coefficient matrices Sℓ in (20) are independent of

the sensor selection.

The sensor models (12) and (13) satisfy (20). Note that (20)

does not imply that

diℓ = Sℓx + siℓ. (21)

For example, the radar model (7) with a ≡ 1 and b = 1
satisfies (20) but not (21).

We first derive a time evolution equation for

X(k) := E[x(k)x⊤(k)]. (22)

Lemma 1: It is assumed that (20) holds. When sensors

i(0), i(1), · · · , i(k) are selected,

X(k + 1) =AX(k)A⊤

+

q
∑

ℓ=1

q
∑

m=1

VℓmBSℓX(k)S⊤

mB⊤

+ Ψi(k, x0) (23)

holds, where Vℓm is the (ℓ,m)-th element of V , and

Ψi(k) =

q
∑

ℓ=1

q
∑

m=1

VℓmB(SℓA
kx0s

⊤

im

+ siℓ(SmAkx0)
⊤ + siℓs

⊤

im)B⊤ +

[

W 0

0 0

]

.

Proof: The solution of (15) is given by

x(k) = Akx(0) +
k−1
∑

m=0

Ak−1−mfi(m)(m,x),

where

fi(m)(m, x) = B

q
∑

ℓ=1

diℓ(x)viℓ(m) +

[

w(m)
0

]

.
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It is straightforward to verify that

X(k) =E
[

Akx(0)x⊤(0)(Ak)⊤

+

k−1
∑

j=0

fi(j, x)x⊤(0)(Ak)⊤

+
k−1
∑

j=0

Akx(0)f⊤

i (j,x)

+
k−1
∑

j=0

k−1
∑

m=0

fi(j,x)fi(m, x)⊤
]

. (24)

The second and the third terms of (24) vanish since x(0),
w(k) and vi(k) are mutually independent. We obtain (23)

from (20) and E[x(k)] = Akx0.

In Lemma 1, Ψi is affine in x0. An affine function of

x0 for the cost function at each time is denoted by Φi as

derived in the following lemma.

Lemma 2: If (20) is satisfied, then

E
[

x⊤

p (k)Qpxp(k) + u⊤(k)Ru(k)
]

= tr[QX(k)] + tr[Φi(k)] (25)

holds, where

Q =

[

Qp 0

0 0

]

+

[

C⊤D⊤
c

C⊤
c

]

R
[

DcC Cc

]

+

q
∑

ℓ=1

q
∑

m=1

VℓmS⊤

mD⊤

c RDcSℓ,

Φi(k) =D⊤

c RDc

q
∑

ℓ=1

q
∑

m=1

Vℓm{SℓA
kx0s

⊤

im

+ siℓ(SmAkx0)
⊤ + siℓs

⊤

im}. (26)

Proof: Substituting (2), (3), and (4) into (18) yields

(25), since x(k) and vi(k) are mutually independent.

The following theorem plays an important role to derive

a fast and optimal sensor scheduling algorithm.

Theorem 1: If (20) holds, i∗(k) in (19) is obtained from

i∗(k) = arg min
i(k)

tr[P (k)Ψi(k)] + tr[Φi(k)], (27)

where

P (T + 1) =

[

Π 0

0 0

]

, (28)

P (k) =Q + A⊤P (k + 1)A

+

q
∑

ℓ=1

q
∑

m=1

VℓmS⊤

mB⊤P (k + 1)BSℓ. (29)

Proof: We first define

J̄(m) =E
[

T
∑

k=m

(

x⊤

p (k)Qpxp(k) + u⊤(k)Ru(k)
)

+ x⊤

p (T + 1)Πxp(T + 1)
]

(30)

for m ∈ {0, 1, · · · , T}. By using the principle of mathemat-

ical induction, we will prove that

J̄(m) =tr[P (m)X(m) + P (m)Ψi(m)]

+ tr[Φi(m) + h(i(m + 1), . . . , i(T ))] (31)

holds, where h(i(m + 1), . . . , i(T )) is a function which is

independent of sensor selection at time m.

It is straightforward from (23) and (25) to obtain

J̄(T ) =tr[P (T )X(T ) + P (T )Ψi(T )] + tr[Φi(T )].

Therefore (31) holds for m = T .

If (31) holds for m = ℓ, we have

J̄(ℓ − 1) =tr[P (ℓ − 1)X(ℓ − 1)

+ P (ℓ − 1)Ψi(ℓ − 1) + P (ℓ)Ψi(ℓ)]

+ tr[Φi(ℓ − 1) + Φi(ℓ)

+ h(i(ℓ + 1), . . . , i(T ))]. (32)

The third term of (32) does not depend on i(ℓ − 1), since

P (ℓ) is independent of the sensor scheduling for all k. Hence

(31) holds for m = ℓ − 1.

We have (27) form the principle of optimality.

We are now ready to provide a fast sensor scheduling

algorithm by using Theorem 1. The optimal sensor selection

i∗(0) is computed at each time as follows. Note that P (0)
is a solution of Riccati equation (29) with the initial value

of (28), and it can be computed in advance, since (29) is

independent of sensor selection. In (27), Ψi(0) and Φi(0) are

calculated when x0 is given. Consequently i∗(0) is found by

comparing possible N values. Computation time of deriving

i∗(0) is proportional to N and is independent of T , while

the number of all possible sensor sequences from time 0 to

T is NT+1. Thus the proposed algorithm is fast even for

large-scale networked sensor systems.

It is straightforward to obtain the following two corollaries

of Theorem 1.

Corollary 1: If (20) is satisfied, there exist convex poly-

hedra S1, . . ., SN which partition R
n such that

i∗(0), for x0 ∈ Si∗(0). (33)

Corollary 2: Suppose that (20) holds, and all the eigen-

values of A and

H = A⊤ ⊗ A⊤ +

q
∑

ℓ=1

q
∑

m=1

Vℓm(S⊤

mB⊤) ⊗ (S⊤

ℓ B⊤)

lie within the unit circle. Then there exists P∞ such that

P∞ = Q + A⊤P∞A

+

q
∑

ℓ=1

q
∑

m=1

VℓmS⊤

mB⊤P∞BSℓ. (34)

Moreover, (27) holds for the infinite-time quadratic cost

function of the form

J∞ = lim
T→∞

1

T
J(T ), (35)

when P (k) in (27) is replaced with P∞.
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Proof: The column expansion of (29) has the form:

cs(P (k)) = Hcs(P (k + 1)) + cs(Q). (36)

Since H is stable, there exists P∞ satisfying (34).

It is straightforward to verify that

tr[P∞(X(k + 1) − X(k))] = λi(k) − Ĵ(k) (37)

holds from (23), (25), and (34), where

λi(k) = tr[P∞Ψi(k)] + tr[Φi(k)].

Furthermore we have

J∞ = lim
T→∞

tr[P∞(X(0) − X(T ))]

T
+

T
∑

k=0

λi(k)

T

(38)

from (25) and (37). The first term of (38) converges to 0,

since A and H are stable. There exists a positive number

m such that |λi(k)| < m satisfies for all k ∈ [0, 1, · · · ) and

i ∈ {1, 2, · · · , N}. Thus the second term of (38) converge

for an arbitrarily given sensor sequence. Hence the corollary

can be proven from

min
i(0),i(1),···

J∞ = lim
T→∞

min
i(0),··· ,i(T )

T
∑

k=0

λi(k)

T
. (39)

Example 4: Consider a vehicle that travels on the two-

dimensional plane. The position of the vehicle is denoted by

(x, y). The state equation of the vehicle in continuous time

is given by

˙̄xp =









0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0









x̄p +









0 0
0 0
1 0
0 1









ū + w̄, (40)

where x̄p := [x y ẋ ẏ]⊤ ∈ R
4 and ū ∈ R

2. The covariance

matrix of w̄ is set to 0.001I . The state equation (40) is

discretized with a sampling period 0.1. An observer (2) and

a controller (3) are implemented such that the poles of (1)

are set to 0.91 ± 0.055j, 0.92 ± 0.030j, 0.86 ± 0.091j and

0.86 ± 0.091j, where j denotes the imaginary unit.

Four cameras are set at (0.3,−0.3), (−0.3, 0.3), (0.3, 1)
and (1, 0.3) as illustrated in Fig. 4. The optical axes of

cameras 1 and 3 are parallel to the y axis, and 2 and 4

are parallel to the x axis. The labels 1, 2, 3 and 4 are

attached to camera combinations of (1, 2), (2, 3), (3, 4)
and (4, 1), respectively. The sensor model (12) is used for

i ∈ {1, 2, · · · , 4}, ℓ ∈ {1, 3} and m ∈ {2, 4}.

Parameters are set to

V = 1.0 × 10−8I, f = 0.01,

Qp = I, R = I, Π = I, T = 4.

The left of Fig. 4 shows sample paths of the vehicle for

xp(0) =
[

0.61 0.61 0.01 0.01
]⊤

,

xc(0) =
[

0.6 0.6 0 0
]⊤

,

1

0

0.5

1

0 0.5

1 and 2

Camera 1

Camera 2

Camera 3

Camera 4

1 and 2

3 and 4

1 and 4

1 and 4

1

0

0.5

1

0 0.5

Camera 1

Camera 2

Camera 3

Camera 4

Fig. 4. Left: Sample paths of the vehicle. The symbol • represents points
where the selected cameras are changed. The numbers under the sample
paths mean the indexes of the selected cameras. The symbol ◦ stands for
the initial positions of the vehicle. Right: The convex polyhedra S1, S2, S3,
and S4 in Example 4.

and

xp(0) =
[

0.81 0.31 0.01 0.01
]⊤

,

xc(0) =
[

0.8 0.3 0 0
]⊤

.

The sensor scheduling was performed for E[xp(k)] = xc(k).
The proposed algorithm and exhaustive search method give

the same sensor scheduling and the same sample path when

the noise sequences are same and the exhaustive search

method uses Lemmas 1 and 2 to calculate the values of the

cost function.

The proposed method and the exhaustive search method

require, respectively, 4 comparisons and 1024 comparisons

to derive i∗(0) at each time, where recall that the numbers

of comparisons are equal to N and NT+1, respectively. The

proposed method takes 0.84 [msec.] at each time on aver-

age, while the exhaustive search method takes 310 [msec.].

Computation time is less than the sampling time for the

proposed method, but not for the exhaustive search method.

The programs ran in MATLAB 7.1 on a PentiumD 3.2 GHz

PC with 2 GB of RAM.

The right of Fig. 4 illustrates the convex polyhedra S1, S2,

S3, and S4 in (33). Each switched line for two cameras that

faces each other is the equidistant line. This is reasonable,

since the dynamics are decoupled.

IV. FAST SENSOR SCHEDULING BASED ON A LINEAR

APPROXIMATION

We proposed the fast and optimal sensor scheduling algo-

rithm in the previous section when (20) holds. The sensor

models (12) and (13) satisfies (20), but it does not hold for

(6) or (7). This section is devoted to the general model and

provides a fast sensor scheduling algorithm based on a linear

approximation even when (20) is not true.

The following corollary can be proven in a similar way to

Theorem 1.

Corollary 3: Suppose that there exist constant matrices

Siℓ ∈ R
p×n and siℓ ∈ R

p such that

diℓ(x)d⊤

im(x) = siℓs
⊤

im + Siℓ(x − x0)s
⊤

im

+ siℓ(x − x0)
⊤S⊤

im (41)
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holds for all i ∈ {1, 2, · · · , N} and ℓ, m ∈ {1, 2, · · · , q}.

Then (27) in Theorem 1 is also true when Φi, Ψi, and P

are replaced with

Φi(k) =D⊤

c RDc

q
∑

ℓ=1

q
∑

m=1

Vℓm{Siℓ(A
k − I)x0s

⊤

im

+ siℓ(Sim(Ak − I)x0)
⊤ + siℓs

⊤

im}, (42)

Ψi(k) =

q
∑

ℓ=1

q
∑

m=1

VℓmB{Siℓ(A
kx0 − I)s⊤

im

+ siℓ(Sim(Ak − I)x0)
⊤ + siℓs

⊤

im}B⊤

+

[

W 0

0 0

]

, (43)

P (k) =Q + A⊤P (k + 1)A. (44)

Let us now propose a fast sensor scheduling for general

systems. Suppose that diℓ(x) is differentiable. Then we

obtain (41) with

siℓ =diℓ(x0), (45)

Siℓ =
∂diℓ

∂x

⊤

∣

∣

∣

∣

∣

x=x0

(46)

from a linear approximation of diℓ(x)d⊤

im(x) around x0.

Corollary 3 gives a suboptimal solution i∗(0). Repeating

from definitions of (45) and (46) to obtaining i∗(0), we have

a fast sensor scheduling.

Example 5: Consider the vehicle shown in Example 4

again. Forty nine radar sensors are set at

(0, 0), (0, 0.25), · · · , (0, 1.5), (0.25, 0), · · · , (1.5, 1.5).

The sensor model is given by (6). The covariance matrix of

v is given by diag(0.002, 0.01). The other parameters are

the same as Example 4. Fig. 5 shows a sample path of the

vehicle for

xp(0) =
[

1.21 1.21 0.01 0.01
]⊤

,

xc(0) =
[

1.2 1.2 0 0
]⊤

.

The sensor scheduling was performed for E[xp(0)] = xc(0).
The numbers of comparisons for the proposed method and

the exhaustive search method to derive i∗(0) are 49 and more

than 2.8× 108, respectively, where recall that they are equal

to N and NT+1, respectively. The proposed method takes

18 [msec.] to get i∗(0) on average, though the exhaustive

search method can not be used due to lack of memory where

Monte Carlo method is implemented in the exhaustive search

method to compute the values of the cost function. The

proposed method is useful for large-scale networked sensor

systems.

V. CONCLUSION

In this paper, a sensor scheduling problem for the class

of systems whose measurements are influenced by state

dependent noise was addressed. It is assumed that all sensors

have state dependent noise and have the same characteristics,

which follows from the properties of networked sensor

0 0.5 1
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50

0
0 0.5 1 1.5

Fig. 5. Left: Solid line; a sample path of the vehicle. ˜; the positions of
the radar sensors. ◦; the initial position. Right: The sensor scheduling.

systems. The sensor scheduling problem was formulated

as a model predictive control problem with single sensor

measurement per time. We proposed a fast and optimal

sensor scheduling algorithm for a class of networked sensor

systems. Computation time of the proposed algorithm is

proportional to the number of sensors and does not depend on

the prediction horizon. In addition, a fast sensor scheduling

algorithm for a general class of systems was provided by

using a linear approximation of the sensor model. The nu-

merical examples showed that the proposed method provide

reasonable solutions and is useful for large-scale networked

sensor systems.
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