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Abstract— This paper studies connectivity maintenance of
robotic networks that communicate at discrete times and move
in continuous space. We propose a distributed algorithm that
allows the robots to decide whether a desired collective motion
breaks connectivity. Our algorithm works under imperfect
information caused by delays in communication and the robots’
mobility. We analyze the correctness of our algorithm by
formulating it as a game against a hypothetical adversary who
chooses system states consistent with observed information. The
technical approach combines tools from algebraic graph theory,
linear algebra, nonsmooth analysis, and systems and control.

I. INTRODUCTION

Network connectivity is a critical issue in cooperative

robotics. In many applications, connectivity is needed in

order to guarantee the successful completion of a desired

coordination task. Examples include rendezvous at a point

and distributed sensor fusion. In sensor fusion, distributed

agreement protocols have convergence rates which depend on

the degree of connectivity of the underlying communication

network. Since connectivity is a global property, it is difficult

to maintain it in a distributed manner. The objective of this

paper is to develop a distributed approach to preserving

network connectivity that allows for flexibility of individual

robot motions and, at the same time, does not impose a heavy

communication burden on the network operation.

Literature review: We classify previous work on connec-

tivity of robotic networks into two main categories. The first

deals with how to design the network motion to maximize

some desired measure of connectivity under a given set of

position constraints. In [1], convex optimization is used to

solve this problem in the presence of convex constraints on

the strength of inter-agent links. A solution with nonconvex

constraints is presented in [9]. [5] provides a distributed

algorithm when the strength of each link is a convex function

of inter-robot distance. Potential fields are used in [19] to

maximize algebraic connectivity. The second category deals

with a measure of the connectivity of the interaction graph,

a connectivity threshold, and some coordination task. In

this category, algorithms are designed so that the robots’

motions achieve the task subject to the value of the measure

of connectivity never crossing the threshold. A solution to

such a problem is proposed in [18]. This solution allows

for a general range of agent motions, but is not distributed.

A distributed solution that makes agents with second-order

dynamics maintain a fixed set of edges appears in [12]. [13]

presents a distributed solution which allow for varying set

of edges to be preserved. Connectivity problems have been
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studied also in the context of formation control. In [16],

connectivity-preserving motions between pairs of formations

are generated. Control laws based on the Laplacian matrix

of the interconnection graph are designed in [8] to solve

formation control problems while preserving connectivity.

Statement of contributions: In this paper, our approach

considers a measure of the connectivity of the interaction

graph based on its Laplacian matrix. The Laplacian matrix

of a graph is an analog to the Laplacian operator over the

graph: its second smallest eigenvalue, λ2, determines many

connectivity properties of the graph. Given a pre-specified

(arbitrary) lower threshold on λ2, and a proposed instanta-

neous direction of physical motion, we set out to solve the

following problem: how can the robots cooperatively decide

which proposed motions can be taken without causing the

measure of connectivity λ2 to cross below the threshold? We

propose a coordination algorithm which solves this problem

under imperfect information caused by delays in communica-

tion and the robots’ mobility, and has the added advantage of

allowing for nonconvex mappings from inter-robot distance

to edge weights. We provide correctness guarantees for the

algorithm and simulate it with the underlying algorithms of

random motion and trajectory following.

Notation: Throughout the paper, R, R≥0, and R>0 denote

the sets of real, non-negative real, and positive real numbers,

respectively. F(S) is the collection of finite subsets of a set

S. When providing pseudo-code, we use a← b to mean “a is

assigned a value of b.” R
m×n is the set of m× n matrices,

and Sym(n) is the set of symmetric n × n matrices. The

Frobenius inner product of A,B ∈ R
m×n is

A •B =
m

∑

i=1

n
∑

j=1

Ai,jBi,j .

For convenience, we introduce the “vectorization” vec :
R

n×n 7→ R
n2

of a matrix defined by vec(M)in+j = Mi,j .

Note that (vec(A))T vec(B) = A • B. Finally, we denote

1 = (1, . . . , 1)T ∈ R
n and 0 = (0, . . . , 0)T ∈ R

n.

II. PRELIMINARIES

This section presents preliminary notions on algebraic

graph theory, proximity graphs, and nonsmooth analysis.

A. The graph Laplacian and its spectrum

We deal with undirected graphs. An undirected graph

G = (V, E) consists of a vertex set V and an edge set

E ⊂ V × V of unordered pairs of vertexes, i.e., (i, j) ∈ E
implies that (j, i) ∈ E . A weighted graph is a graph where

each edge (i, j) ∈ E has an associated weight wi,j ∈ R≥0.

For a weighted graph G = (V, E), the (weighted) adjacency
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A(G) ∈ Sym(n) and the Laplacian L(G) ∈ Sym(n) are

given by

A(G)i,j = wi,j , L(G)i,j =

{

∑

k 6=i wi,k i = j,

−wi,j i 6= j.

When the specific graph is clear from the context, we simply

use A and L. We denote by Λ : Sym(n) → Sym(n) the

linear map that transforms an adjacency matrix A onto the

Laplacian L:

Λ(A) = diag(A1)−A = L.

Properties of the Laplacian matrix include [6]: the vector

1 ∈ R
n is an eigenvector with eigenvalue 0; L(G) is positive

semidefinite; and dim(ker(L(G))) is equal to the number

of connected components of G. An undirected graph is

connected if and only if the second smallest eigenvalue of

its Laplacian is greater than zero. Adding weight to an edge

of a graph does not decrease any of the eigenvalues of its

Laplacian [17].

B. Proximity graphs and proximity functions

We use proximity graphs as an abstraction of network

connectivity among spatially distributed robots. A proximity

graph is an association of a set of positions with a weighted

graph. Let P = (p1, . . . , pn) ∈ (Rd)n be a vector of n robot

positions, with each robot in R
d. Let G(n) be the set of

weighted graphs whose vertex set is {{1, . . . , n}}. Then, we

have the following definition [7], [4].

Definition 2.1: A proximity graph G : (Rd)n → G(n)
associates to P ∈ (Rd)n a graph with vertex set {1, . . . , n},
edge set EG(P), where EG : (Rd)n → {1, . . . , n} ×
{1, . . . , n}, and weights wi,j ∈ R>0 for all (i, j) ∈ EG(x).
A proximity graph must satisfy that G(pσ(1), . . . , pσ(n)) is

isomorphic to G(p1, . . . , pn) for any n-permutation σ and

(p1, . . . , pn) ∈ (Rd)n. •
For a given proximity graph, we often use the associated

proximity function (Rd)n → Sym(n) that maps a tuple

P ∈ (Rd)n to the adjacency matrix A(G(P)) ∈ Sym(n). We

are particularly interested in a class of proximity functions

defined by f(p1, . . . , pn)i,j = gwgt(‖pi − pj‖), with gwgt :
R≥0 → R. For this paper we consider the added restrictions

that gwgt is C2 and monotonically decreasing.

C. Elements of nonsmooth analysis

It is possible to define a notion of gradient for locally

Lipschitz functions [3]. Let f : R
d → R be locally Lipschitz

at x ∈ R
d. For any v ∈ R

d, the generalized directional

derivative of f at x in the direction v, denoted f◦(x; v), is

f◦(x; v) = lim sup
y→x,t↓0

f(y + tv)− f(y)

t
.

The generalized directional derivative has the property of

always being well-defined, whereas the one-sided directional

derivative might not exist in some cases. The generalized

gradient of f at x ∈ X , denoted ∂f(x), is the subset

∂f(x) = {ξ ∈ X | f◦(x; v) ≥ ξT v for all v in X}.

If f is C1 at x, then ∂f(x) = {∇f(x)}.

D. Nonsmooth analysis of algebraic connectivity

Here we specify our scalar measure of network connec-

tivity. Denote the (not necessarily distinct) eigenvalues of

M ∈ Sym(n) by λ1(M) ≤ λ2(M) ≤ · · · ≤ λn(M). We

denote by fλi
: Sym(n) → R the function that maps M to

λi(M). Given a proximity function f : (Rd)n → Sym(n),

fi−conn = fλi
◦ Λ ◦ f : (Rd)n → R. (1)

We refer to f2−conn as the algebraic connectivity function.

Next, we analyze the smoothness properties of the func-

tions fi−conn, for i ∈ {1, . . . , n}. We are particularly inter-

ested in f2−conn.

Lemma 2.2: For i ∈ {1, . . . , n},

• the function fλi
is globally Lipschitz with constant 1.

• for a locally Lipschitz proximity function f , the con-

nectivity function fi−conn is also locally Lipschitz. •
The following result [10] specifies the gradient of fλi

.

Theorem 2.3: For i ∈ {1, . . . , n}, the generalized direc-

tional derivative (in the direction X ∈ Sym(n)) and the

generalized gradient of fλi
at M ∈ Sym(n) are given by

f◦
λi

(M ;X) = max
{v∈Sn |Mv=λiv}

vvT •X,

∂fλi
(M) = co{v∈Sn |Mv=λiv}{vvT }. •

The next result is a consequence of (1) and the nonsmooth

chain rule [3, Theorem 2.3.10].

Theorem 2.4: Given a continuously differentiable proxim-

ity function, f : (Rd)n → Sym(n), we have at P ∈ (Rd)n,

and L = Λ(f(P)),

∂fi−conn(P) ⊆ (vec(∂fλi
(L)))T (∇vec(L)). •

III. PROBLEM FORMULATION

Here, we describe our robotic network model and state the

problem we address. Each robot has fully actuated first-order

dynamics, and operates under a continuous-time control law.

At discrete time intervals, each robot communicates with its

neighbors over some proximity graph and re-computes an

internal state which is used by its control law. The reader is

referred to [2], [11] for a more detailed presentation.

The problem we address here is that of deciding when a

proposed motion can be made while maintaining connectivity

of the robotic network. Each robot should be able to solve

the following problem.

Problem 3.1: Consider robot i with a desired motion spec-

ified by the input ui. Given bounded sets, {Uj}j∈{1,...,n}\{i},

such that each agent’s control input, uj must belong to Uj , a

time interval [t0, t0 + δT ], and [λ−, λ+] ⊂ R>0, SPECTRAL

CONNECTIVITY DECISION PROBLEM consists of providing

a procedure which, for each network configuration P , returns

a value, fsafe ∈ R having fsafe ≥ 0 only if the following hold

for all t ∈ [t0, t0 + δT ] and all uj ∈ Uj , j ∈ {1, . . . , n} \ i,

• f2−conn(P(t)) 6∈ [λ−, λ+], or

• f◦
2−conn(P(t);[0, . . . , uT

i , . . . ,0]T ) ≥ 0.

where P(t) is the network evolution starting from P under

control {ui}
n
i=1. •

We assume that, initially, the algebraic connectivity λ2

is larger than λ+. During the network evolution, λ2 might
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decrease below λ+. Our algorithm should guarantee that in

such case, λ2 never crosses below λ−.

One can regard the solution to this problem as a building

block towards the solution of more complex problems in-

volving connectivity. For instance, given a specific strategy

which achieves a coordination task, one could envision the

synthesis of a procedure that modifies the directions of

motion specified by the strategy as little as possible while

preserving network connectivity. For space reasons, we do

not deal with this problem here, and instead refer to [15].

IV. EIGENVALUE GAMES

In this section we introduce the main components of our

solution to the problem 3.1. In Section IV-A, we reformu-

late SPECTRAL CONNECTIVITY DECISION PROBLEM as a

game, termed GRAPH PICKING GAME, which can be played

with out-of-date information on the state of the network and

in Section IV-B we study the properties of its solutions. In

Section IV-C we present a distributed procedure that allows

network agents to decide whether an intended motion wins

GRAPH PICKING GAME. A final component of our solution

is a distributed information dissemination algorithm.

A. GRAPH PICKING GAME

We are interested in characterizing the rates of change of

Laplacian matrices arising from instantaneous robot motions

which solve SPECTRAL CONNECTIVITY DECISION PROB-

LEM. To do this, we reformulate this problem as a game and

study the properties of its solutions.

Definition 4.1: (MATRIX FORM OF THE SPECTRAL CON-

NECTIVITY DECISION PROBLEM): Given bounds on each

edge weight of a graph G, Ai,j ≤ wi,j ≤ Bi,j , (i, j) ∈ E,

find the set of matrices X in {M ∈ Sym(n) |M1 = 0}
such that for each G having fλ2

(L(G)) ∈ [λ−, λ+], one has

f◦
λ2

(L(G);M) ≥ 0 for M ∈ X . •
First, let us introduce notation used to discuss bounded

intervals on the space of graph Laplacian matrices. Let

LAP±(n) = {M ∈ Sym(n) |M1 = 0},

LAP(n) = {M ∈ LAP±(n) |Mi,j ≤ 0 for all i 6= j}.

Lemma 4.2: The directional derivative of any function

whose range is LAP(n) lies in LAP±(n). •
Consider the following partial order in LAP±(n). For A,B ∈
LAP±(n), we write A <LAP B iff Ai,j > Bi,j for all i 6= j ∈
{1, . . . n}. Likewise, A ≤LAP B if and only if Ai,j ≥ Bi,j

for all i 6= j ∈ {1, . . . n}. For A ≤LAP B, we define

[A,B]LAP = {L ∈ LAP±(n) |A ≤LAP L ≤LAP B}.

Note that A,B ∈ LAP(n) and L ∈ [A,B]LAP imply L ∈
LAP(n). The following result provides more properties of

the matrices in the interval [A,B]LAP.

Lemma 4.3: Let A,B ∈ LAP(n), L ∈ [A,B]LAP. Then,

(i) fλ2
(L) ∈ [fλ2

(A), fλ2
(B)]

(ii) vvT • L ∈ [vvT •A, vvT •B] for v ∈ R
n.

We can now express the MATRIX FORM OF THE SPEC-

TRAL CONNECTIVITY DECISION PROBLEM in Defini-

tion 4.1 as a game played against a graph-picking opponent.

Definition 4.4 (GRAPH PICKING GAME): Given A,B ∈
LAP(n) with A ≤LAP B, we pick Y ∈ LAP±(n). Our

opponent then selects L ∈ [A,B]LAP. We win if either of

the following conditions hold

• fλ2
(L) 6∈ [λ−, λ+], or

• f◦
λ2

(L;Y ) ≥ 0. •
Our objective is to characterize the choices Y that ensure

that GRAPH PICKING GAME is won. Any instantaneous

rate of change of the Laplacian belongs to LAP±(n) by

Lemma 4.2.

B. Bounds on matrices which win GRAPH PICKING GAME

A direction that a robot can take in physical space induces

an instantaneous rate of change of the Laplacian matrix of

the underlying communication graph of the network. Given

out-of-date information on the state of the network, each

robot can produce bounds on the actual Laplacian of the

graph. In this section we answer the following question:

given lower and upper bounds A,B ∈ LAP(n) on the

Laplacian matrix of the communication graph and a range

of possible instantaneous rates of change of the Laplacian

matrix due to a proposed physical motion, can we guarantee

that the proposed motion will not decrease the second

smallest eigenvalue of the graph Laplacian? We do this by

answering the related question: given the information listed

above, and a range of “unsafe” eigenvalues, [λ−, λ+], can we

guarantee the proposed motion will not decrease the second

smallest eigenvalue of the Laplacian matrix whenever the

said eigenvalue is outside of the range [λ−, λ+]?
More formally, we bound the union of all possible gradi-

ents of fλ2
evaluated at L ∈ [A,B]LAP. Let L ∈ [A,B]LAP

such that fλ2
(L) ∈ [λ−, λ+]. Note that for each w ∈ R

n

such that L • (wwT ) = fλ2
(L) (i.e., wwT ∈ ∂fλ2

(L)), we

must have A•(wwT ) ≤ λ+ as a consequence of Lemma 4.3.

We now proceed to bound the set of w ∈ R
n which

satisfy A•(wwT ) ≤ λ+ and thus have wwT ∈ ∂fλ2
(L). Let

{u1, . . . , um} be the m eigenvectors of A corresponding to

eigenvalues λj ≤ λ+ and let {um+1, . . . , un} be the n−m

eigenvectors of A corresponding to eigenvalues λj > λ+.

Given m̃ ≥ m, define

ǫA(m̃) =

√

λ+ − λ2(A)

λm̃+1(A)− λ2(A)
,

uspan-A(m̃) = span{u1, . . . , um̃},

UA(m̃) = {w ∈ S
n | there exists u ∈ S

n ∩ uspan-A(m̃)

such that w ∈ B(u, ǫA(m̃))}.

We pick UA(m̃) to contain the w satisfying wwT ∈
∂fλ2

(L) for m̃ ≥ m. We show that this inclusion holds next.

Proposition 4.5: Let A,B ∈ LAP(n), L ∈ [A,B]LAP,

fλ2
(L) ≤ λ+, w ∈ S

n, m̃ ≥ m. If w 6∈ UA(m̃), then

wwT 6∈ ∂fλ2
(L). •

The bound induced by UA(m̃) works for any m̃ ≥ m. Our

idea is to check for all such m̃, in the hope of finding one

which verifies that our proposed motion is allowable.

The following result is a consequence of Theorem 2.4.

Corollary 4.6: Any instantaneous change in robot posi-

tions, {ui}i∈{1,...,n} which induces an instantaneous rate
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of change of the Laplacian, Y ∈ LAP±(n), satisfying

Y • (uuT ) ≥ 0 for all u ∈ UA(m̃) for some m̃ ≥ m satisfies

f◦
2−conn(P; {ui}i∈{1,...,n}) ≥ 0. •

Given some m̃ ≥ m, we can conclude from Proposi-

tion 4.5 that any M satisfying M • (wwT ) ≥ 0 for all

w ∈ UA(m̃) wins GRAPH PICKING GAME on A,B, λ−, λ+.

To determine whether a given M satisfies this property, it is

sufficient to find the vector u ∈ uspan-A(m̃) which minimizes

M • (uuT ) or equivalently uT Mu (and then tack a fudge

factor based on ǫA(m̃) onto this minimum).

Let d be the dimension of uspan-A(m̃). Let Mu(m̃) ∈
R

n×m̃ be a matrix whose column vectors are an orthonormal

basis of uspan-A(m̃). Any vector in uspan-A(m̃) ∩ S
n can be

expressed as Mu(m̃)x for some x ∈ S
m̃ and any x ∈ S

m̃

satisfies Mu(m̃)x ∈ uspan-A(m̃) ∩ S
n.

Proposition 4.7: Finding the vector u ∈ uspan-A(m̃) ∩ S
n

which minimizes M • (uuT ) is equivalent to finding the

vector x ∈ S
d which minimizes xT MT

u(m̃)MMu(m̃)x. This

corresonds to the smallest eigenvalue of MT
u(m̃)MMu(m̃). •

The next results provides a sufficient criterion to check if

a matrix is a winning solution to GRAPH PICKING GAME.

Proposition 4.8: (1 − ǫA(m̃)2)M • (uuT ) +
ǫA(m̃)2min(min(eigs(M)), 0) ≥ 0 for all u ∈ uspan-A(m̃)
only if M • (wwT ) ≥ 0 for all w ∈ UA(m̃).

C. DIRECTION CHECKING ALGORITHM

We introduce DIRECTION CHECKING ALGORITHM in

Table I. Given A,B ∈ LAP(n), and a lower bound, X ∈
LAP±(n) of the candidate instantaneous rate of change of the

Laplacian matrix, Y ∈ LAP±(n), Y ≥LAP X , the algorithm

returns a value Scheck ≥ 0 if it can verify that any Y ≥LAP X

wins GRAPH PICKING GAME on A and B, and returns

Scheck < 0 otherwise.

The following result shows that DIRECTION CHECKING

ALGORITHM is successful in determining if we win GRAPH

PICKING GAME.

Theorem 4.9: DIRECTION CHECKING ALGORITHM re-

turns Scheck ≥ 0 only when each Y having Y ≥LAP X

satisfies Y •M ≥ 0 for M ∈ ∂fλ2
(L) with L ∈ [A,B]LAP.•

D. Information dissemination of robot positions

In order to execute DIRECTION CHECKING ALGORITHM,

robots first need information about the past states of the

network to come up with reasonable bounds on the Laplacian

matrix. Before specifying the protocol to disseminate infor-

mation about each node throughout the network, we first

address what it means for each node to hold information

which is consistent with the real world.

Definition 4.10 (Consistency of stored network information):

Let Ptruth ∈ R
n×n be the actual position of the robots at

time tcurr, and let vmax be a bound on the maximum

velocity of each individual robot. A tuple, (P, T,D),
P ∈ R

d×n, T ∈ R
n,D ∈ R

n×n, is called CONSISTENT with

Ptruth at time tcurr if the following hold:

(i) For i ∈ {1, . . . , n}, Pi ∈ B(Ptruthi, (tcurr − Ti)vmax).
(ii) For i, j ∈ {1, . . . , n}×{1, . . . , n}, ‖Ptruthi−Ptruthj‖ ∈

[Di,j − vmax(tcurr − Ti + tcurr − Tj),Di,j + vmax(tcurr −
Ti + tcurr − Tj)]. •

Name: DIRECTION CHECKING ALGORITHM

Goal: Let Y be the (unknown) instantaneous rate of
change of the Laplacian matrix of the commu-
nication graph of a robotic network. Given X
(known) such that Y −X is known to be positive
semidefinite, determine whether Y can be proved
to win GRAPH PICKING GAME on A and B and
eigenvalue bounds λ− and λ+

Inputs: • Matrices A, B ∈ LAP(n)
• Eigenvalue bounds λ− ≤ λ+ ∈ R

• Lower bound, X ∈ LAP±(n), on candidate
direction in matrix space, Y ∈ LAP±(n)

Outputs: Scheck ∈ R. Scheck ≥ 0 means each Y ≥LAP X
wins GRAPH PICKING GAME on A, B and
[λ−, λ+]

1: Let λ+ ← min(λ+, λ2(B))
2: Let λ− ← max(λ−, λ2(A))
3: if λ− > λ+ then
4: return 0
5: end if
6: Let λmin ← min(eigs(X))
7: Let mmin ← min{m |λm ∈ eigs(A), λm > λ+}
8: Initialize Scheck ← −1.
9: for all m̃ ∈ {mmin − 1, . . . , n} do

10: if m̃ < n then

11: Let ǫA(m̃)←

r

λ+−λ2(A)

λm̃+1(A)−λ2(A)
and uspan-A(m̃)←

span(uj , j ∈ {1, . . . , m})
12: else
13: Let ǫA(m̃)← 0
14: end if
15: Let d← dim(uspan-A(m̃))
16: Let Mu(m̃) ∈ Rn×m̃ whose columns are orthogonal basis

of uspan-A(m̃)
17: Let S ← (1 − ǫA(m)2) min(eigs(MT

u(m̃)
XMu(m̃))) +

ǫA(m̃)2 min(λmin, 0) /*Does current m̃ verify X is
safe?*/

18: Let Scheck ← max(S, Scheck) /*Does any m̃ checked so
far verify X is safe?*/

19: end for
20: return Scheck /*Does any m̃ verify X is safe?*/

TABLE I

DIRECTION CHECKING ALGORITHM.

In other words, a set of information is CONSISTENT with

an actual state of the world, 1) if the position of each robot,

i, is within the range it could have reached by traveling with

speed vmax starting from Pi for time tcurr − Ti and 2) Di,j

stores the distance between Pi and Pj .

We achieve the problem of providing each robot with

consistent information via ALL-TO-ALL BROADCAST AL-

GORITHM: a randomized algorithm in which, for each i, j ∈
{1, . . . , n} there is some finite probability i will receive

an update on j’s position at any given round. A formal

description of the algorithm can be found in [15]. A simple

description follows.

Under ALL-TO-ALL BROADCAST ALGORITHM, robots

store a position estimate and a timestamp for each other

robot. At each round, each robot transmits to its neighbors:

• Its own position, its UID, and the current time as a

timestamp.

• The position, UID and timestamp of a randomly se-

lected robot.

For each timestamp and position it receives, it compares the

timestamp with the stored one for the associated UID. If the
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time is more recent, it replaces its entry for that UID. The

timestamp allows us to bound the current position of any

robot, given the robot’s maximum velocity and the current

time. Because this algorithm is randomized, we discuss its

expected performance.

Theorem 4.11: For any robot j the following holds: the

expectation, for a randomly selected robot, i ∈ {1, . . . , n} of

tcurr−T
[i]
j never exceeds (n2 +1)δT . Likewise, the expected

maximum, over all i ∈ {1, . . . , n} of tcurr−T
[i]
j never exceeds

n(n2 + 1)δT . •
Additionally the information stored by the network is con-

sistent with the actual robot positions in the sense of Defi-

nition 4.10, as we state next.

Theorem 4.12: Assume each robot moves with velocity at

most vmax. At all times, each robot holds values of T,P,D

which are CONSISTENT, in the sense of Definition 4.10, with

the state of the network at time tcurr. •

V. MOTION TEST ALGORITHM

Here we synthesize a motion coordination algorithm that

solves the SPECTRAL CONNECTIVITY DECISION PROB-

LEM. With the information provided by the ALL-TO-ALL

BROADCAST ALGORITHM, the network can compute lower

A ∈ LAP(n) and upper B ∈ LAP(n) bounds on the

Laplacian matrix of the communication graph. An explicit

algorithm that does this is proposed in [15]. Combining these

ingredients with the DIRECTION CHECKING ALGORITHM

to verify winning solutions to GRAPH PICKING GAME, we

synthesize the MOTION TEST ALGORITHM presented in

Table II. The next result shows that this algorithm returns

a value of fsafe ≥ 0 only if the instantaneous change in

the Laplacian due to motion in direction v wins GRAPH

PICKING GAME.

Theorem 5.1: Assuming that each robot moves with ve-

locity at most vmax, MOTION TEST ALGORITHM solves

SPECTRAL CONNECTIVITY DECISION PROBLEM. •
The next result shows that solutions to SPECTRAL CON-

NECTIVITY DECISION PROBLEM keep the algebraic connec-

tivity of the robotic network above the desired threshold.

Corollary 5.2: If each robot runs an algorithm which

solves SPECTRAL CONNECTIVITY DECISION PROBLEM,

and never takes an “unsafe” motion, then λ2 never drops

below λ−. •

A. Analysis under perfect information

We wish to show that MOTION TEST ALGORITHM ex-

hibits reasonable behavior as δT becomes small. To do so,

we compare it to an idealized variant of MOTION TEST AL-

GORITHM under which each robot has perfect information.

We let IDEALIZED MOTION TEST ALGORITHM be the

algorithm defined by executing MOTION TEST ALGORITHM

in continuous time, with δT = 0, and with perfect informa-

tion about the state of the network available to each robot.

We expound on how this is an idealized variant of MOTION

TEST ALGORITHM in the following result.

The next result shows that, as δT approaches zero, the

behavior of MOTION TEST ALGORITHM approaches that of

IDEALIZED MOTION TEST ALGORITHM.

Name: MOTION TEST ALGORITHM

Goal: Solve SPECTRAL CONNECTIVITY DECISION

PROBLEM.
Inputs: • Current time tcurr ∈ R

• Maximum velocity of any robot, vmax

• Maximum time between communication rounds,
δT
• Proposed direction of motion, v
• Eigenvalue bounds λ− ≤ λ+ ∈ R

Persistent • T ∈ Rn, last recorded time information

data: • P ∈ Rd×n, last recorded position information

• D ∈ Rn×n, inter-robot distances
• A, B ∈ LAP(n)
• id ∈ {1, . . . , n}, identifier of current robot

Outputs: • fsafe ∈ R such that fsafe ≥ 0 if, for any time
t ∈ [tcurr, tcurr + δT ], the instantaneous change in
the Laplacian matrix due to motion in the direction
v wins GRAPH PICKING GAME at time t

1: Initialize Xupper ← 0

2: Initialize Xlower ← 0

3: for all i ∈ {1, . . . , n} do
4: Xlowerid,i ← −minp∈B(Pi,vmax(t−Ti+δT )) g′wgt(p,Pid; v,0)

/*Compute bounds on direction matrix*/
5: Xupperid,i

← −maxp∈B(Pi,vmax(t−Ti+δT )) g′wgt(p,Pid; v,0)
6: Xupperid,id

← Xupperid,id
−Xupperid,i

7: Xlowerid,id ← Xlowerid,id −Xlowerid,i

8: end for
9: λ− ← max(λ−, λ2(A))

10: λ+ ← min(λ+, λ2(B))
11: if λ− ≥ λ+ then
12: return 0 /*There are no possible matrices with eigenvalues

in the disallowed range*/
13: end if
14: fsafe ← DIRECTION CHECKING ALGORITHM

(A, B, Xlower, λ−, λ+)
15: return fsafe

TABLE II

MOTION TEST ALGORITHM.

Theorem 5.3: Assume g′′wgt is bounded and g′wgt(0) = 0.

Then, for any configuration and any proposed direction of

motion v for robot j, permitted under IDEALIZED MOTION

TEST ALGORITHM, there exists a time step, δT , such that

when communication happens every δT time units, with high

probability robot j is allowed to move in direction v. •

B. Simulations

Here, we present simulations of an algorithm synthesized

using MOTION TEST ALGORITHM. Assume we are given

an underlying coordination algorithm that specifies a de-

sired network motion at each configuration. The MOTION

PROJECTION ALGORITHM evaluates MOTION TEST ALGO-

RITHM on directions in a range about the one specified by

the underlying law, and returns the closest direction among

those for which MOTION TEST ALGORITHM returns “safe.”

Further details are presented in [15]. We have developed a

custom Java-based simulation platform for robotic networks,

which is available at [14]. This platform is a software imple-

mentation of the modeling framework for robotic networks

proposed in [11].

We simulated the MOTION PROJECTION ALGORITHM

with the r-disk graph for the actual communication network,

and the nonconvex weight function

gwgt(s) =

{

1− 3( s−rmn

rmx−rmn
)2 + 2( s−rmn

rmx−rmn
)3, rmn ≤ s ≤ rmx,

1 if (s > rmn) else 0, otherwise,

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThC12.5

5486



where rmx, rmn ∈ R satisfy 0 < rmn < rmx < r. Note that

the function gwgt satisfies the conditions of Theorem 5.3.

We ran the simulation with two sets of underlying control

laws. In the first simulation, we specify random desired

motion for each agent, subject to a connectivity threshold. An

example of this execution is shown in Fig. 1. In the second

simulation, one robot attempts to follow a fixed trajectory

while the others move randomly subject to the constraint

of maintaining connectivity. Here we bound the angle each

robot can deviate from its target direction by θmax−i = 0.2.

Fig. 2 shows a sample execution.

(a)
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(b)

Fig. 1. Execution of MOTION PROJECTION ALGORITHM with 18 robotic
agents. The underlying control law for each agent is random motion. Plot
(a) shows the paths taken by the robots and plot (b) shows the evolution of
the algebraic connectivity. The threshold λ+ is 6.
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Fig. 2. Execution of MOTION PROJECTION ALGORITHM with 4 robotic
agents. The underlying control law corresponds to one leader following a
fixed trajectory and the remaining agents moving randomly. Plot (a) shows
the paths taken by the robots and plot (b) shows the evolution of the
algebraic connectivity. The threshold λ+ is .4 for the randomly-moving
agents and .5 for the leader agent.

VI. CONCLUSIONS AND FUTURE WORK

We have studied the problem of connectivity maintenance

in robotic networks. In our approach, the edge weights of the

connectivity graph need not be convex functions of the inter-

robot distances. We have proposed a distributed procedure

to synthesize motion constraints on the individual robots

so that the algebraic connectivity of the network is above

a threshold. This algorithm works even though individual

robots only have partial information about the network state

due to communication delays and network mobility. We

have shown that as the communication rate increases, the

performance of the proposed algorithm approaches the ideal

centralized solution to this problem. Future work will study

the communication complexity of the proposed coordination

algorithm. We are interested in calculating lower bounds

on the communication complexity required to compute the

gradient of f2−conn. We also plan to study the relationship

between the rate of information transmission and the rate of

robot motion in terms of the number of robots and the exact

value of f2−conn. Finally, we plan to combine the proposed

approach with algorithms for deployment and exploration.
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