
  

  

Abstract—The problem of model reduction for the special 
class of continuous-time Metzlerian system is considered in this 
paper. The model reduction is performed under structural 
maintainability and stability preserving constraints. It is shown 
that model reduction based on aggregation method enables to 
maintain the structure of the original Metzlerian system while 
preserving its stability. Furthermore, we employ the frequency 
weighted balancing to Metzlerian systems and show that the 
reduced order models obtained by either truncation or singular 
perturbation approximation are guaranteed to be stable for the 
general case of double-sided weighting.  

I. INTRODUCTION 
Model reduction problem has been an active area of research 
for several years. Algorithms have been developed to find 
reduced order systems both in time domain and frequency 
domain. The classical approaches to model reduction are 
summarized in [1]. After the publication of [2], and the 
development of balanced realization, researchers showed 
renewed interests in model and controller reduction 
techniques (see [3] and references therein). The existing 
methods are applicable to system without special structures. 
However, it is of particular interest to maintain the special 
structure of a system after model reduction. For discrete-
time systems, a model reduction method is available with 
such properties [4]. 
In this paper, we consider the Metzlerian systems, which 
represent the continuous-time counterpart of discrete 
nonnegative systems [5]-[7]. Such systems appear in 
industrial processes involving chemical reactors, heat 
exchangers and distillation columns. A variety of 
nonnegative and Metzlerian systems can also be found in 
engineering, management, economics, biology and social 
sciences.  Applications of discrete nonnegative systems can 
also be found in the input-output analysis model proposed 
by Leontief, Leslie population model, Markov Chains and 
Queueing systems. It is known that majority of such systems 
are of high order and model reduction techniques are 
required to be performed for obvious reasons. We apply 
model reduction techniques for these classes of systems such 
that the structure of the original high-order model and its 
stability are preserved after the reduction process.  
Among the traditional techniques we show that the 
aggregation-based model reduction enables one to reduce a 
high order stable Metzlerian system with the properties that 
the reduced order model remains Metzlerian and stable. 

 
 

We also apply the frequency weighted balanced model 
reduction technique to Metzlerian systems and investigate 
the stability behavior of the reduced system for the general 
case of double-sided weighting. Enns [12] has presented a 
scheme for reducing a stable high-order model with 
frequency weighting based on a modification of balanced 
truncation [13]. The method, known as frequency-weighted 
balanced truncation, may use input weighting, output 
weighting, or both. With only one weighting present, 
stability of the reduced-order model is guaranteed. With 
both weightings present, the method may yield unstable 
models. To overcome the potential drawback of instability, 
Lin and Chiu [14] proposed a new technique which yields 
stable models in case of double-sided weighting. Their 
technique was later generalized to include proper weights in 
[15]. However, this method had a drawback in controller 
reduction application, which was later rectified in [16]. 
Other modifications to Enns technique were proposed in 
[17] and [18] which had the shortcomings of being 
realization dependent.  
A number of frequency weighted model reduction methods 
have been proposed based on partial-fraction-expansion idea 
(see [19]-[21]). However, the approximation error obtained 
using these methods are generally larger compared to Enns 
method with the exception of the method by Zhou [20] 
where optimization is used to improve the approximation 
error. 
A parameterized method which combines the advantages of 
the unweighted balancing with the frequency weighted 
partial fraction expansion technique is also available [22]. 
This method, known as partial fraction expansion based 
frequency weighted model reduction, preserves the stability 
of the reduced order model in case of double-sided 
weighting. 
Motivated by the fact that no result is available for model 
reduction of Metzlerain systems, we provide two techniques 
for model reduction of this class of systems. In this note, we 
show that a direct procedure for model reduction of 
Metzlerian system based on frequency weighted balancing 
maintains the stability property without the requirement of 
partial fraction or any other modifications as proposed by 
other researchers. We demonstrate that the stability of the 
reduced order model with double-sided weighting is 
guaranteed by applying either direct truncation or singular 
perturbation. 
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II. PRELIMINARY 
In this Section, we present preliminary results and necessary 
background material needed for the development of the 
paper. 

A. Metzlerian Systems 

Definition 1: A matrix [ ] nn
ijaA ×ℜ∈= is called a Metzlerian 

matrix if 0≤iia for all i and 0≥ija ji ≠ ; nji ,,2,1 K== . 
 
Note that a necessary condition for stability of Metzlerian 
matrices is 0<iia , which will be assumed in this paper. 
 
In this paper, we consider model reduction problems 
associated with the following continuous-time systems: 

0)0(, xxBuAxx =+=&  
 Cxy =                                                                   (1) 

where nx ℜ∈ , mu ℜ∈  and py ℜ∈  are state, control and 

output vectors, respectively; and nnA ×ℜ∈ , mnB ×ℜ∈  and 
npC ×ℜ∈ are state space matrices. 

 
 Definition 2: A system (1) is called Metzlerian system if A 
is a Metzlerian matrix, and 0,0 ≥≥ CB  are non-negative 
matrices. 
 
Metzlerian systems are closely related to the nonnegative 
discrete-time systems. The system matrix associated with 
this class is elementwise positive. The main characteristic of 
nonnegative matrices stems from the so-called Frobenius-
Perron theorem, which states that the dominant eigenvalue 
of a nonnegative matrix is real and nonnegative. A number 
of nice properties can be derived from this theorem, 
specially in connection to the stability.  
An equivalent result exists for the Metzlerian matrices 
associated with the continuous-time case. The magnitude of 
the largest eigenvalue of the Metzlerian matrix plays the 
same role as the Frobenius-Perron eigenvalue of a 
nonnegative matrix. 
 
Definition 3: The system (1) is called internally positive if 
and only if for any nx +ℜ∈0 , and every mu +ℜ∈ , we have 

nx +ℜ∈  and py +ℜ∈  for all 0≥t . 
 
 Theorem 1: The continuous-time system in (1) is internally 
positive if and only if the matrix A is a Metzlerian matrix 
and mnB ×

+ℜ∈  , npC ×
+ℜ∈  are non-negative matrices (i.e. a 

Metzlerian system).  
 
The response of Metzlerian systems belongs to the positive 
cone. This is evident from the fact that nnAte ×

+ℜ∈  if and 
only if A is the Metzlerian matrix. Since B and C are 

nonnegative, nx +ℜ∈0 , mtu +ℜ∈)(  , then ntx +ℜ∈)(  and 
nty +ℜ∈)(  for all 0≥t . 

Theorem 2: A Metzlerian system is asymptotically stable if 
and only if any one of the following equivalent conditions is 
satisfied: 
1. All eigenvalues of the Metzlerian Matrix A have negative 
real parts. 
2. All coefficient )1,,1,0( −= niai K  of the characteristic 

polynomial 00
1

1)det()( aaaAI n
n

n ++++=−=Δ −
− λλλλλ K  

are positive. 
3. All leading principal minors of the matrix –A are positive. 
4. The matrix A is nonsingular and 01 >− −A . 
 
The proof of the above theorem can be deduced from the 
properties associated with the Metzlerian matrix (see [5]-
[7]). 
 
The discrepancies between the original high order system 
and the reduced order system can be characterized by the 
error analysis. Another important characteristic in the 
problem of model reduction is robustness issue. One way to 
compare the robustness of the reduced order model with the 
original high order system is to compute the robust stability 
radius. Robust stability and robust stability radius of 
nonnegative and Metzlerian system have originally been 
introduced in [8] - [10], whereby direct formulas for real and 
complex stability radius under unstructured and structured 
uncertainties have been derived in [10] (see also [11]).  Here 
we only consider the stability radius of A under unstructured 

uncertainty Δ , which is given by 
1

1
−

=
A

r  . 

 

B. Structural Maintainability 
The main idea behind the concept of maintainability is to 
consider special properties of a certain class of systems and 
perform tasks such as realization, model reduction, control 
design, etc., and guarantee that those properties are 
preserved after the completion of those tasks.  
 
 Definition 4: A system ),,( CBA  is said to be structurally 
maintainable if its corresponding reduced order system 

),,( HGF preserves the same structure.  
 
Structurally maintainable systems play an important role in 
system realization. Balanced truncation is a widely used 
model reduction method. It is well-known that the truncated 
system preserves the balanced structure and its properties. 
 
Another example is the canonical form. A number of model 
reduction techniques both in time and frequency domains 
have been reported, whereby the reduced order model 
preserves the original canonical structures. 
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Finally, the class of Hessenberg forms has also been 
investigated and it is possible to apply model reduction 
procedures to obtain the reduced-order model with the same 
structure. As an example, consider the class of discrete-time 
Mansour form which has the structure of Hessenberg form. 
Mansour form can easily be constructed by Schur-Cohn 
coefficients from Schur-Cohn table. Mansour form has 
several interesting properties in relation to stability, filter 
realization, model reduction and control applications (see [4] 
for more details). In this reference, a model reduction 
technique for Mansour form is outlined, which maintains the 
original structure. In what follows we investigate the model 
reduction for the special structure of Metzlerian system.   

III. MODEL REDUCTION OF METZLERIAN SYSTEMS 
In this section we consider two model reduction techniques 
for Metzlerian system with the properties of the structural 
maintainability and stability. 

A. Aggregation Technique 
It is evident that all model reduction techniques can be 
applied to Metzlerian systems. However, it is not guaranteed 
that the reduced order models maintain the original 
structure. In this section we employ the aggregation method 
for Metzlerian systems and investigate its structural 
maintainability. 
There have been two schemes for model reduction in time 
domain: aggregation and perturbation. Aggregation is 
coarsing state variables while perturbation is ignoring 
certain interaction of the dynamic or structural nature in a 
system. 
Here we provide a brief discussion on aggregation of large-
scale linear time-invariant continuous system.  
Consider a linear time-invariant controllable system (1). It is 
desired to describe the time behavior of 
             00)0(, TxzzTxz ===  

where )(, nlT nl <ℜ∈ ×  is a constant aggregation matrix and 
lz ℜ∈  is aggregation of x . Without loss of generality, it is 

assumed that lTrank =)( . Then the aggregated system is 
described by 

0)0(, zzGuFzz =+=&  
Hzy =ˆ                                                                   (2) 

where the pair ),( GF  satisfy the following dynamic 
exactness (perfect aggregation) conditions: 

TAFT =  
TBG =  

CHT ≅                                                                 (3) 
If an error vector is defined as )()()( tTxtzte −=  , then the 
dynamic behavior is given by )()( tFete =& . To 
asymptotically satisfy dynamic exactness condition, F 
should be a stable matrix to make 0)(lim =

→∞
te

t
 for 0)0( ≠e . 

Thus, once matrix T is known, the aggregated matrix F is 
obtained by: 

1)( −= TT TTTATF                                               (4) 
and G, H are also determined from (3). The essential step of 
aggregation is to find T. According to different requirements 
and emphasis, T can be constructed by different algorithms, 
i.e .,  modal, exact, aggregation by continuous fraction, and so 
on.  
We begin by finding T to retain the dominant modes. When 
applying to Metzlerian systems, it is desirable that the 
resulting reduced order systems are also Metzlerian. To 
maintain the Metzlerian structure, we need to find a proper 
T. 
Definition5: A subset M of nℜ  is called an affine set if  

Myx ∈+− λλ)1(   for every Mx ∈ , My ∈   and ℜ∈λ . 

Lemma 1: The subspaces of  nℜ  are the affine sets which 
contain the origin. 
Theorem 3: Given a Metzlerian system ),,( CBA , and let the 
aggregation matrix T be selected such that: 

0

ln21

22221

11211

>

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

ααα

ααα
ααα

L

MOMM

L

L

ll

n

n

T                               (5) 

               ∑
=

==
n

j
ij ni

1

),,2,1(,1 Kα  

then the resulting reduced order model  is also Metzlerian. 
Proof: According to lemma 1, +ℜ  is an affine set. From 
Theorem 1, Metzlerian system ),,( CBA  is internally 

positive, that is, nx +ℜ∈ , 1
+ℜ∈ix . Moreover, from 

Definition 5, it can easily be shown that for an affine set M, 
it also holds that, for every Mxi ∈ ,  ni ,,2,1 K=  we have   

Mx
n

i
ii ∈∑

=1

α , in which ∑
=

=
n

i
i

1

1α . Since Txz = , 

∑
=

=
n

i
iijj xz

1

α  for  lj ,,2,1 K= ; we have 1
+ℜ∈z  . Similarly, 

we also have +ℜ∈ŷ . Thus ),,( HGF  is an internally 
positive system, and by Theorem 1, it is Metzlerian. 
 
Remark: It is interesting to point out that model reduction 
based on aggregation for the stable interval Metzlerian 
systems leads to the similar properties; namely, the reduced 
order models remain interval Metzlerian and stable. 
 

B. Frequency Weighted Balanced Model Reduction 
Technique 

This subsection is devoted to balanced model reduction with 
double-sided frequency weightings. Consider the transfer 
function of a linear time invariant system: 

DBAsICsG +−= −1)()(                                      (6) 
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where ),,,( DCBA  is its nth-order minimal realization. Let 
transfer functions of the stable input and output weights be 
given by (7) and (8), respectively 

VVVV DBAsICsV +−= −1)()(                              (7) 

WWWW DBAsICsW +−= −1)()(                          (8) 
where ),,,( VVVV DCBA  and ),,,( WWWW DCBA are their 
minimal realizations of orders Vn  and Wn , respectively. The 
augmented systems given by 
            iiii DBAsICsVsG +−= −1)()()(  

            oooo DBAsICsGsW +−= −1)()()(  
have the following realizations: 

            

[ ] ViVi

V

V
i

V

V
i

DDDDCCC

B
BD

B
A

BCA
A

==

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

,

,
0  

and 

     

[ ] DDDCCDC

DB
B

B
ACB

A
A

WoWWo

W
o

WW
o

==

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

,

,
0

 

And the frequency weighted Gramians 

     ⎥
⎦

⎤
⎢
⎣

⎡
=

V
Ti PP

PP
P

12

1211  and ⎥
⎦

⎤
⎢
⎣

⎡
=

W
To QQ

QQ
Q

12

1211   

satisfy the following Lyapunov equations: 
           0=++ T

ii
T

iiii BBAPPA                                         (9) 

     0=++ o
T

oooo
T

o CCAQQA                                   (10) 
Expanding (1, 1) blocks of the above Lyapunov equations 
yield the following: 

01111 =++ E
T PAPAP                                          (11) 

01111 =++ E
T QAQQA                                             (12) 

where 
TT

VV
TT

V
T

VE BDBDBCPPBCP ++= 1212                    (13) 
CDDCCBQQBCQ W

T
W

T
W

TT
W

T
E ++= 1212                   (14) 

Simultaneously diagonalizing the weighted Gramians, we 
get 

     ⎥
⎦

⎤
⎢
⎣

⎡
∑

∑
== −−

2

1
11

1
11 0

0

E

ETT TPTTQT  

in which 
            },,,{ 211 rE diag σσσ K=∑  
     },,{ 12 rrE diag σσ K+=∑  
where 1,,2,1,1 −=≤ + niii Kσσ  and 1+> rr σσ . Now 
transform and partition the original system as shown 

     

[ ] DD,CCC
B
B

B,
AA
AA

ATT

==

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=−

21

2

1

2221

12111

 

Where rrA ×ℜ∈11 , prB ×ℜ∈1 , rqC ×ℜ∈1  and nr < . Then the 
reduced order model can be obtained by 

(i) Direct Truncation where ,D),C,B(A 1111  is the reduced 
order model. 
(ii) singular Perturbation approximation where reduced 
order model ),D,C,B(A SPSPSPSP  is defined by: 

2
1

222

21
1

2221

2
1

22121

21
1

221211

BACDD
AACCC
BAABB
AAAAA

SP

SP

SP

SP

−

−

−

−

−=

−=

−=

−=

                                           (15) 

 
The well-known frequency weighted balanced model 
reduction with the Enns method is based on simultaneously 
diagonalizing the solution of Lyapunov equation (11) and 
(12). Since the matrices EP  and EQ  in these equations may 
not be positive semi-definite, the reduced order model 
obtained by this technique may not be stable. 
However, it is known that with only one weighting present 
the stability of the reduced order model is guaranteed. The 
main contribution of this paper is the fact that for Metzlerian 
system and double-sided weights the reduced order models 
remain stable.   
In the stability of the reduced order Metzlerian system, it is 
of interest to find conditions under which the solution of the 
Lyapunov matrix equation 

QPAPAT −=+                                                       (17) 
is positive matrix, that is, its element are all positive in 
addition to its positive definiteness. The following theorem 
is useful for our main result. 
 
Theorem 4: If a matrix A is Metzlerian and stable, then for 
any positive and positive definite symmetric Q there is a 
positive and positive definite symmetric matrix P as a 
solution of the Lyapunov equation (17). 
  
Proof: The Lyapunov matrix equation (17) can be rewritten 
as a linear matrix equation 

qMp −=                                                             (18) 
where 

AIIAM T ⊗+⊗=                                             (19) 
is 22 nn × an matrix with ⊗  denoting the Kronecker product. 
The matrix M is stable and by construction it is also 
Metzlerian. Since for any Metzlerian matrix 01 >− −M  (see 
Theorem 2) we conclude that for any 0>q  we have 0>p . 
The positive definiteness of P follows directly from stability 
result of the Lyapunov matrix equation. 
 
Theorem 5: Let the system  ),,,( DCBAS =Σ  be Metzlerian 
stable and let ),,,( VVVVV DCBA=Σ  and 

),,,( WWWWW DCBA=Σ be minimal Metzlerian realization of 
input and output weights. Then the reduced order models 
obtained by direct truncation or singular perturbation 
approximation are stable for double-sided weightings. 

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuC18.1

1836



  

Proof: It is easy to see that the augmented Metzlerian 
systems consists of cascade connections of  SΣ and VΣ  as 
well as WΣ and SΣ remain Metzlerian and stable. 
Consequently, the Lyapunov equations (9) and (10) have 
positive definite solutions iP  and oQ . By theorem 4 both of 

these matrices are elementwise positive as well since iA  and 

oA  are Metzlerian stable. Therefore, submatrices 11P  and 

11Q  are also positive and positive definite. Consequently, the 

reduced order model  DBAsICsGr +−= −
1

1
111 )()(  defined 

by truncation is stable. Similarly one can show that the 
reduced order model by singular perturbation approximation 
is also stable. 
 
Theorem 6: Let )(sG  be stable transfer function of order n, 

)(sV and  )(sW  be the weighting functions. If )(sGr  is 
stable reduced order model obtained by the above 
procedure, then the following error bound holds 

∑
+=

∞∞∞ ≤−
n

ri
ir sVsWsVsGsGsW

1

)()(2)())()()(( σ  (20) 

Proof: The proof of the above theorem can directly be 
deduced from [14]. 
 

IV. ILLUSTRATIVE EXAMPLE 
 
Example 1: Consider the fourth-order Metzlerian system 
(A,B,C) with the following parameter matrices 

[ ]5.4820,

0
0
0
1

,

8.0100
1.0110

0025.1
01.02.09.0

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

= CBA  

Applying the aggregation procedure with  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

3.07.000
0010
0001

T  

the resulting third-order system (F,G,H) is obtained as: 

[ ]98.1120,
0
0
1

,
57.07.00

015.1
12.02.09.0

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
= HGF  

which is Metzlerian and stable. To check how dynamic 
exactness is achieved, the step response of the original and 
reduced system is shown for the purpose of comparison. 
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Fig. 1.  Step response of of 4th and 3rd order systems 

Since both the original model and the reduced order model 
are Metzlerian, one can use the direct formula of stability 
radius [10] (see also section III-A) as a measure of 
robustness. In this example, 3655.0)( =Ar and 

3762.0)( =Fr , which shows that full and reduced order 
model have comparable stability robustness properties. 
 
Example 2: Now Consider an MIMO stable forth-order 
Metzlerian system (A,B,C,D) with the following parameter 
matrices 

0,
25.013
5.1231

32
15.0
01
13

,

675.06.07.0
75.0525.02
6.025.031
5.0212

=⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=

DC

BA
 

Moreover, let us use the following input and output weights 

0,
5.10

05.1

30
03

,
5.40

05.4

==⎥
⎦

⎤
⎢
⎣

⎡
==

⎥
⎦

⎤
⎢
⎣

⎡
==⎥

⎦

⎤
⎢
⎣

⎡
−

−
==

WVWV

WVWV

DDCC

BBAA
 

Then, using the frequency weighted balanced technique  
described is section III, the matrices 11P  and 11Q  are 
obtained as  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

5.8521    6.9514    6.1340    13.9881   
6.9514    10.6851   9.9780    21.5866   
6.1340    9.9780    9.6418    20.6446   
13.9881   21.5866   20.6446   44.6030   

11P  

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

4.7149    8.1553    9.2333    16.1370   
8.1553    15.9662   17.5035   31.1594   
9.2333    17.5035   19.8226   33.3649   
16.1370   31.1594   33.3649   63.0961   

11Q  

and the system matrices of 2nd and 3rd  order reduced models 
obtained by direct truncation  are given by 
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

6.5588-   0.3753-   0.0959    
0.1046    6.4360-   0.2519-   
0.0691-   0.2824-   0.4011-   

3,11A

⎥
⎦

⎤
⎢
⎣

⎡
=

6.4360-   0.2519-   
0.2824-   0.4011-   

2,11A  

 
remain stable in the presence of double-sided weighting as it 
is proved. 

V. CONCLUSION 
In this paper, the problem of model reduction for the special 
class of continuous-time Metzlerian system was 
investigated. Two techniques were proposed under structural 
maintainability and stability preserving constraints. The first 
technique was based on aggregation, which led to a reduced 
order stable Metzlerian system. The second technique was 
the frequency weighted balancing to Metzlerian systems and 
it was shown that the reduced order model obtained by 
either truncation or singular perturbation approximation are 
guaranteed to be stable for the general case of double-sided 
weightings. 
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