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Abstract— A result of Friedland for efficient filtering in the
presence of a static bias is extended to the case where the
bias signals are given by the response of persistent autonomous
systems with random initial conditions. It is shown that the
optimal filter decouples into a bias free and a bias error

correction filter. We apply the results to filtering of a system
with delay when the initial data is missing. Theses results have
potential applications in secure communication, synchroniza-
tion and networked control.

I. INTRODUCTION

This short paper considers the problem of estimating in

a linear least squares sense, the state of a system, which

is driven by an unknown but deterministic bias function

superposed on the usual stochastic perturbation. In addition,

the output may be corrupted by such a deterministic

bias term. We assume that it is known that the bias is

generated by an autonomous system for which a state space

model is available. Consequently, all uncertainty resides

in its initial condition. Such a system is also known as a

crypto-deterministic system, the roots of this nomenclature

taking place in quantum mechanics (more precisely, the

hidden variable theories) [1].

Thus let the state space model be

ẋ = Ax + Bb + w (1)

y = Hx +Cb + v (2)

where x is the state to be estimated, w and v are zero mean

white noises, with covariance respectively Q and R > 0. For

simplicity it is assumed that these noises are uncorrelated.

The crypto-deterministic bias satisfies

ḃ = Fb.

A special case of this crypto-deterministic model is the case

of a constant bias, which was treated in [6]. Another case

of interest occurs when the signals of interest are corrupted

by sinusoidal interferences. In this case, the matrix F has all

its eigenvalues on the imaginary axis. In signal processing

(e.g., of EKG signals) there is great interest in removing

such interferences, coming for instance from the power net

(base frequency and higher harmonics). Besides filtering of

unwanted signals the results we derive may also be relevant

in synchronization and secure communication. Indeed deter-

ministic observers have already found applicability in this

field [3], [5], [11]. Using state augmentation, one obtains a

combined model for the extended state z′ = [x′,b′]:

ż =

[
A B

0 F

]
z+

[
I

0

]
w = F z+G w. (3)

The output equation in augmented form is

y =
[

H C
]

z+ v = H z+ v. (4)

The rest of the paper is organized as follows: In Section 2, we

show how the Kalman filter equations for the augmented sys-

tem can be decoupled. We then proceed in Section 3 to obtain

the crypto-deterministic filter, and derive an information form

in Section 4. Section 5 shows an application for a notch filter

which can remove an undesirable harmonic signal. Some

comments about observability are made in Section 6. We

extend the results in Section 7 for a crypto-deterministic

signal generated by a functional differential system (a delay

system).

II. DECOUPLING OF AUGMENTED KALMAN FILTER

The Kalman filter equations for this augmented form are

˙̂z = F ẑ+PH
′R−1(y−H ẑ), (5)

where P satisfies the Riccati equation

Ṗ = FP +PF
′−PH

′R−1
H P +G QG

′, (6)

with the initialization

P(t0) =

[
P0 0

0 Pb0

]
. (7)

Partition P consistent with the above as

P =

[
Px Pxb

P′
xb Pb

]
. (8)

Its block components satisfy the coupled ODE’s

Ṗx = APx + PxA′ + BP′
xb + PxbB′ +

−(PxH ′ + PxbC′)R−1(HPx +CP′
xb)+ Q (9)

Ṗxb = [A− (PxH
′ + PxbC

′)R−1H]Pxb +

+[B− (PxH
′ + PxbC′)R−1C]Pb + PxbF ′ (10)

Ṗb = FPb + PbF ′−(P′
xbH ′ + PbC

′)R−1(HPxb +CPb).(11)
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It is readily seen that these equations are homogeneous in

Pxb and Pb. Therefore, if Pxb(0) = 0 and Pb(0) = 0, then for

all t, it follows that Pxb(t) = 0 and Pb(t) = 0, and

Ṗx = APx + PxA′−PxH ′R−1HPx + Q. (12)

This may be exploited in a similar fashion as in Fried-

land’s paper [6]. Let P̃ =

[
P̃x 0

0 0

]
be the solution to the

unbiased variance equation. and set

P = P̃ +VMV ′, (13)

where V and M satisfy

V̇ = (F −P̃H R−1
H )V (14)

Ṁ = −MV ′
H

′R−1
H VM. (15)

Letting this V be partitioned in a consistent way as

V =

[
Vx

Vb

]
(16)

one obtains

V̇x = (A− P̃xH ′R−1H)Vx +(B− P̃xH
′R−1C)Vb (17)

V̇b = FVb, (18)

and

Ṁ = −M(V ′
xH ′ +V ′

bC′)R−1(HVx +CVb)M. (19)

As long as the following consistency conditions hold,

freedom remains in the choice for their initial conditions.

Vx(0)M(0)V ′
x(0) = Px(0)− P̃x(0) = 0 (20)

Vx(0)M(0)V ′
b(0) = Pxb(0) (21)

Vb(0)M(0)V ′
b(0) = Pb(0). (22)

It seems reasonable to assume that Pxb(0) = 0. Therefore,

a simple compatible choice is provided by

M(0) = Pb(0) (23)

Vx(0) = 0 (24)

Vb(0) = I. (25)

It follows from the latter and the equation V̇b = FVb that

Vb is the transition matrix of F . For instance, if F is the

system matrix of an oscillatory or quasi-oscillatory system,

i.e., if the bias vector contains the pure oscillations at circular

frequencies ω1,ω2, . . . ,ωk, then

Vb,k = Block diag

{[
cosωit sin ωit

−sinωit cosωit

]}

i=1,...,k

(26)

Using the identity d
dt

M−1 = −M−1ṀM−1, it is readily seen

that the M-equation has the solution

M(t) =

[∫ t

0
(V ′

xH ′ +V ′
bC′)R−1(HVx +CVb)dt + P−1

b (0)

]−1

.

(27)

Consequently, solving (12) for P̃x and (18) for Vb, one readily

obtains Vx, and then M. Finally, this results in

Pxb = VxMV ′
b (28)

Pb = VbMV ′
b, (29)

which is oscillatory in the limit if F is quasi oscillatory.

III. FILTER FOR CRYPTO-DETERMINISTIC SYSTEMS

The above exact least squares filter (5) in partitioned form

yields the equations for the estimates

˙̂x = Ax̂ + Bb̂+(PxH ′ + PxbC′)R−1(y−Hx̂−Cb̂) (30)

˙̂
b = Fb̂+(P′

xbH ′ + PbC
′)R−1(y−Hx̂−Cb̂). (31)

With (12) this yields

˙̂x = Ax̂+ Bb̂+(PxH ′ +VxMV ′
bC′)

× R−1(y−Hx̂−Cb̂) (32)

˙̂
b = Fb̂+(VbMV ′

xH ′ +VbMV ′
bC′)

×R−1(y−Hx̂−Cb̂). (33)

or, exploiting the relation (13) between Px and P̃x

˙̂x = Ax̂ + Bb̂+[P̃xH ′ +VxM(V ′
xH ′ +V ′

bC′)]

× R−1(y−Hx̂−Cb̂) (34)

˙̂
b = Fb̂+VbM(V ′

xH ′ +V ′
bC′)

× R−1(y−Hx̂−Cb̂). (35)

Clearly, the x̂ and b̂ update equations are coupled. In order to

reduce the complexity of the computation, we try to decouple

them by seeking a solution in the form

x̂ = x∗ + Sb̂ (36)

where x∗ is the optimal estimate in the absence of the bias.

This estimate is given by

ẋ∗ = Ax∗ + P̃xH ′R−1(y−Hx∗). (37)

Substituting in the equation for x̂, one finds after a bit of

algebra
[
Ṡ + SF −AS−SVbM(V ′

xH ′ +V ′
bC′)R−1C−B+

+P̃xH ′R−1(HS +C)+VxM(V ′
xH ′ +V ′

bC′)R−1C
]

b̂+

+
[
(SVb −Vx)M(V ′

xH ′ +V ′
bC′)R−1

]
(y−Hx̂) = 0.

Since initial conditions can be arbitrary, and the above must

be identically satisfied for arbitrary b̂ and (y−Hx̂), it follows

that

(SVb −Vx)M(V ′
xH ′ +V ′

bC′)R−1 ≡ 0

and

Ṡ = AS−SF + B +(SVb−Vx)M(V ′
xH ′ +V ′

bC′)R−1C +

−P̃xH ′R−1(HS +C).

The first equation is satisfied for

S = VxV
−1
b . (38)

When substituted in the second, it gives a Lyapunov like

equation

Ṡ = (A− P̃xH
′R−1H)S−SF + B− P̃xH

′R−1C. (39)

for which the initial condition is

S(0) = Vx(0)Vb(0)−1 = 0. (40)
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Thus we summarize the filter

x̂ = x∗ +VxV
−1
b b̂, (41)

where the estimate b̂ of the crypto-deterministic term satisfies

˙̂
b = [F −VbM(V ′

xH ′ +V ′
bC′)R−1C]b̂+

+Vb(M(V ′
xH ′ +V ′

bC′)R−1(y−Hx̂). (42)

or, in terms of the unbiased estimate x∗:

˙̂
b = [F −VbM(V ′

xH ′ +V ′
bC′)R−1(HS +C)]b̂+

+VbM(V ′
xH ′ +V ′

bC′)R−1(y−Hx∗).

Theorem 1: The exact least squares filter for the crypto-

deterministic system is given by the usual Kalman filter

ẋ∗ = Ax∗ + K(y−Hx∗)

K = P̃xH ′R−1

˙̃
Px = AP̃x + P̃xA′−KRK′+ Q, P̃x(0) = 0.

and the bias-correction filter

Ṡ = AS−SF + B− P̃xH
′R−1(HS +C), S(0) = 0

V̇b = FVb, Vb(0) = I

M =

[∫ t

0
V ′

b(S
′H ′ +C′)R−1(HS +C)Vb dt + P−1

b (0)

]−1

.

˙̂
b = [F −VbMV ′

b(S
′H ′ +C′)R−1(HS +C)]b̂+

+VbMV ′
b(S

′H ′ +C′)R−1(y−Hx∗)

with the combination

x̂ = x∗ + Sb̂.

IV. INFORMATION FORM

Further simplification can be obtained by considering the

information state, b∗ = V−1
b b̂. Indeed. one gets then from

ḃ∗ = −V−1
b V̇bV−1

b b̂+V−1
b

˙̂
b, that

d

dt
b∗ = M(V ′

xH ′ +V ′
bC′)R−1(y−Hx∗− (HVx +CVb)b

∗).

(43)

The structure of the solution is thus the same as in the

special case of a constant bias. First, a bias free estimate

x∗ is obtained. From the residuals y−Hx∗, the bias filter

computes the quantity b∗, which in turn is used to update

x̂. If the bias states are not necessary, the complexity of the

information form is reduced. We summarize:

Unbiased estimator

ẋ∗ = Ax∗ + P̃xH ′R−1(y−Hx∗)
˙̃
Px = AP̃x + P̃xA′ + Q− P̃xH

′R−1HP̃x.

Crypto-deterministic estimator

ḃ∗=W−1(V ′
xH ′ +V ′

bC′)R−1(y−Hx∗− (HVx +CVb)b
∗)

V̇b =FVb, Vb(0) = I

V̇x =(A− P̃xH ′R−1H)Vx +(B− P̃xH
′R−1C)Vb, Vx(0) = 0

Ẇ =(V ′
xH ′ +V ′

bC′)R−1(HVx +CVb), W (0) = P−1
b (0).

followed by the correction to obtain the LS estimate

x̂ = x∗ +Vxb∗.

It is readily seen that β = Wb∗ satisfies

β̇ = (V ′
xH ′ +V ′

bC′)R−1(y−Hx∗).

If an estimate is not needed until some time t1, the the

weighted residual (V ′
xH ′ +V ′

bC′)R−1(y−Hx∗) is integrated

to yield β = Wb∗ at t1. At this one time (and only then) the

matrix W (t1) is inverted to yield M(t1) and thus x̂(t1) and

b̂(t1).
Since the filter has the same structure as for a constant

bias, the same computational considerations as described in

[6] will hold. A block diagram is shown in Figure 1.

Bias Free
Estimator

H

Bias
Computer

Vx

+

+
x
∗y x̂

+
−

b
∗

˜
Px

Vb, Vx, M
̂
b

Vb

Fig. 1. Structure of the Decoupled Solution

V. APPLICATION: NOTCH FILTER

If the bias b is purely harmonic, then F is a 2×2 matrix

with eigenvalues at ± jω . specified before, and Vb is a

rotation matrix. In this case, the steady state solution for

the ∗− f ilter,

P̃x = P∞.

corresponds to the Wiener filter solution, with

ẋ∗ = (A−K∞H)x∗ + K∞y, (44)

with constant gain

K∞ = P∞H ′R−1, (45)

where P∞ is the solution to the algebraic Riccati equation

AP∞ + P∞A′ + Q−K∞RK′
∞ = 0. (46)

Let also

V̇x = (A−K∞H)Vx +(B−K∞C)Vb (47)

V̇b = FVb (48)

with initial condition Vb(0) = I. The solution to the latter is

Vb(t) = Φ(t) = exp(Ft), which is purely oscillatory. Consider

now the periodic regime solution of Vx. Since it is driven by
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an oscillation, the solution will have the same oscillation

frequency. Thus for some L,

Vx = LVb = LΦ, (49)

where in view of the general solution, L = S∞. Differentiating

this relation

V̇x = LΦ̇ = LFΦ

leads to an asymmetric algebraic Lyapunov equation

(A−K∞H)L+(B−K∞C) = LF. (50)

Since (A−K∞H) is stable, its eigenvalues have negative real

parts. The matrix F has its eigenvalues on the imaginary

axis. So the equation

(A−K∞H)L−LF = −(B−K∞C)

or equivalently, its Kronecker form

[(A−K∞H)⊗ I− I⊗F ′]vec(L) = vec(K∞C−B).

is solvable for L, since the matrix [(A−K∞H)⊗ I− I ⊗F ′]
has eigenvalues λi(A−K∞H)+ λ j(F) 6= 0. We note that the

observability of the full system requires full rankness of



sI−A −B

0 sI −F

H C




for all s ∈ C by the PBH-test [12, p. 762]. Observability

guarantees that the error covariance matrix of the combined

system state and the cryptodeterministic state are bounded.

Example

In Figure 2 we show an observation for a system with

state space parameters

A =

[
1

−1

]
,G =

[
0

0.2

]
,H = [1,0] and Q = R = 1.

It is known that an additive harmonic signal (a position, say)

of frequency ω = 1/
√

10 corrupts the output on top of a unit

variance white noise. The crypto-deterministic filter output

(’xe’ and ’be’) are shown in Figure 3. A comparison is given

with the unperturbed output x and the actual perturbing bias

signal b. The continuous time system was integrated with

stepsize ∆t = 0.005, using the sochastic differential equation

numerical algorithm in [10]. Hence the real time at step

5000 is 25 sec. After about 5 seconds the cryptodeterministic

signal is completely captured.

VI. OBSERVABILITY

More generally, consider a quasi periodic bias signal

formed by a superposition of k oscillations. The system

is augmented with 2k additional states (for the bias). In

the worst case, no information is initially available for this

bias, and we set Pb(0) = 0. The matrices Vx and Vb have

respectively the dimension n×2k and 2k×2k, so that since

Vx = LVb, we get L∈ IRn×2k. Since this yields a set of (n×2k)

0 1000 2000 3000 4000 5000
−20

−15

−10

−5

0

5

10

15

20

y

t

observation

Fig. 2. Corrupted system output

0 1000 2000 3000 4000 5000
−15

−10

−5

0

5

10

15

20

25

t

x,b

position and bias and their estimates

 

 

x

xe

b

be

Fig. 3. Actual signals and their estimates

equations in (n × 2k) unknowns, the system is solvable.

Letting then W = M−1, gives

Ẇ = Φ′(L′H ′ +C′)R−1(HL+C)Φ (51)

it follows that W (T ) =
∫ T

0 Φ′(L′H ′ + C′)R−1(HL + C)Φdt

is the observability Gramian, = O(F,R−1/2(HL+C)), of the

pair (F,R−1/2(HL + C)). Hence observability of the sys-

tem (F,R−1/2(HL +C)) is required for the inversion to be

possible. For nonsingular noise, this is equivalent to the

observability of the pair (F,HL+C) over the interval (0,T ).
By the PBH test, this is again equivalent to

rank

[
sI−F

HL+C

]
= 2k, ∀s ∈ C.

VII. DELAY SYSTEMS AS CRYPTO-DETERMINISTIC

SYSTEMS

Let the bias be driven by an autonomous functional

differential equation, say of the form

ḃ(t) = F0b(t)+ F1b(t − τ). (52)

A sufficient condition for asymptotic stability is the existence

of a triple (P0,P1,P2) of positive definite matrices satisfying

a Riccati equation F ′
0P0 + P0F0 + P1 + P0F1P−1

1 F ′
1P0 + P2 =
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0 [13]. Such a system has a countably infinite number of

eigenvalues, and with each corresponds an unknown initial

condition for the bias. One way to represented the dynamics

of an autonomous delay system with a crisp delay is by a

multi-mode multi-dimensional system [15] with increasing

dimension as time evolves.

First partition the positive time axis into the intervals ((k−
1)τ,kτ], for k = 1,2, . . .. Then define for t = kτ + θ ,

b(t) = b(kτ + θ )
def
= bk(θ )

where θ ∈ [−τ,0]. We denote these subintervals as couplets

[14]. In order to retrieve the bias signal, note that if we define

in the the k-couplet the output

β (θ ) = bk(θ ), (53)

then indeed β (θ ) = b(kτ + θ ).
This establishes an equivalence between the delay system

for t < kτ and a finite dimensional system in the interval

[−τ,0].
More precisely, if the initial data is ζ , the method of steps

yields for the first couplet (0 ≤ t < τ) the equation

ḃ1(θ ) = F0b1(θ )+ F1ζ (θ )

β (θ ) = b1(θ ).

In the second couplet, we get the couplet-form

ḃ2(θ ) = F0b2(θ )+ F1b1(θ )

ḃ1(θ ) = F0b1(θ )+ F1ζ (θ )

β (θ ) = b2(θ ),

and so on. The first use of such a representation is attributed

to Olbrot’s PhD thesis (in Polish).

In general, we get for the autonomous mode, the k-couplet

equation, describing the system and its output up to time kτ
as

d

dθ




bk

bk−1

...

b1


=




F0 F1

F0 F1

. . . F1

F0







bk

bk−1

...

b1


+




0
...
...

I




ζ .

with β = bk, Represent these equations in compact form by

d

dθ
χk = Akχk + Γkζ (54)

β = Ckχk, (55)

where χ ′
k = [b′k,b

′
k−1, . . . ,b

′
1], Γk = ek ⊗ I and Ck = e′1 ⊗ I, of

appropriate size. This leads then to the multi-mode multi-

dimensional system (M3D). Since the initial data is com-

pletely unknown, we set ζ = 0, all initial uncertainty then

be mapped to the initial uncertainty of the finite dimensional

(but of increasing dimension) bias state.

ẋ = Ax + B[I,0, . . . ,0]χk + w (56)

y = Hx +C(I,0, . . . ,0)χk + v. (57)

The equation for S assumes here the form (in the k-th

couplet)

Ṡ = (A− P̃xH
′R−1H)S−SAk +[B,0, . . . ,0]+

−P̃xH ′R−1[C,0, . . . ,0].

These equations decouple very nicely to

Ṡ1 = (A− P̃xH
′R−1H)S1 −S1F0 + B− P̃xH

′R−1C

Ṡ2 = (A− P̃xH
′R−1H)S2 −S1F1 −S2F0

...

Ṡk = (A− P̃xH
′R−1H)Sk −Sk−1F1 −SkF0.

Since the initial conditions are zero, once S1 is found, we

obtain sequentially S2, S3, etc. A simple suboptimal filter

(for time invariant systems and stationary noise) is obtained

by taking the Wiener solution i.e., if Px = limt→∞ P̃x(t), then

Acl = A−PxH ′R−1H, is the closed loop with dynamic matrix

and we can iteratively integrate

Sk =

∫ t

0
e−Aclθ Sk−1(t −θ )F1eF0θ dθ . (58)

VIII. CONCLUSIONS AND FURTHER WORK

We extended an old result by Friedland for efficient filter-

ing in the presence of a static bias to the case where the bias

signals are given by the response of persistent autonomous

systems with random initial conditions. It has been shown

that the optimal filter again decouples into a bias free and

a bias error correction filter. We also derived the filter when

the bias is generated by an autonomous delay equation, by

applying a technique of representing the delay system in

couplet form. It was shown that the Riccati equation for

S may be solved as an iteration of the lower dimensional

system.

It is believed that this work can be extended to include the

case where the crypto-deterministic is nonlinear and possibly

chaotic, by incorporating the theory of polynomial filters

developed in [7], [8], [9]. This has potential applications in

secure communication, synchronization and network control

systems [2].
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