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Abstract— This article studies the problem of optimal fil-
tering in multiple channel networked control systems (NCSs)
with multiple packet dropouts. A generalized formulation is
employed to model the multiple packet dropout in multiple
channel case, the random dropout rates are transformed into
stochastic parameters in the system’s representation. By gener-
alization of the definition of the H2-norm, generalized relations
for the stochastic norm of a linear discrete-time stochastic
parameter system represented in the state space form are
studied. The stochastic norm of the estimation error is used as
a criteria for filter design in the NCS framework. A set of linear
matrix inequalities (LMIs) is given to solve the corresponding
filter design problem. A simulation example is presented for
clarification.

I. INTRODUCTION

State feedback is the most widely used methodology in

modern control systems. State feedback control implicitly

assumes that all state variables are measurable. However, in

practice, some state variables may not be directly accessible

or the corresponding sensing devices may be very expensive

or unavailable. In such cases, state filters are used to give an

estimate of unavailable states.

In the last two decades, advances in computer technology,

communication and control introduced a modern control

system architecture termed as networked control systems

(NCSs). In an NCS, sensors and actuators exchange infor-

mation with a controller through a shared communication

medium. Compared to conventional point-to-point system

interconnection, using an NCS has advantages such as easy

installation and reduced set-up, wiring and maintenance

costs, and increased system flexibility.

In a classical configuration, a real-time communication

between all components of the control system is assumed.

However, in a large and complex control system, point-

to-point wiring becomes costly, inflexible, unreliable and

even impractical due to limited input-output capacity. In

the other hand, in an NCS, the controller and all of the

sensors and actuators are connected to a shared medium.

Because of the shared medium, only a limited number of

connections can be implemented simultaneously. In another

word, the basic assumption of real time data exchange is

not valid in an NCS. This limitation introduces some new

challenges in an NCS. The network can be modeled as a

switch that opens and closes in a random manner as shown
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in Figure 1. When a switch is open, its output is held at

the previous value and the data packet is lost. Data packet

dropout can occur due to node failures or network congestion

and is a common problem in networked systems. In real-

time feedback control systems, it is normally advantageous to

discard the old packets and consider the new ones so that the

controller always receives fresh data for control calculation.

Packet dropouts usually occur randomly. Because of random

dropout, classical estimation and control methods cannot be

used directly in NCS systems. Dropouts degrade system

performance and make the filtering and estimation more

difficult and challenging.

Networked control systems (NCSs) and the random packet

dropouts have gained high attention in research studies

in last few years (e.g., see [7], [8], [13], [15]–[17] and

references therein). Specifically, the problem of stochastic

packet dropout has been studied in single channel sensor

delay systems, [15], and single channel NCSs in the H2 and

H∞ framework [16], [17]. Also, the problem of stabilization

and control has been studied recently in these systems (e.g.,

see [9], [10], [20]–[22] and references therein).

In all of the NCS studies so far, a single channel sys-

tem has been considered. It means that all of the sensor

information or controller command information pass through

a single channel. But it should be noted that in practice,

especially in complex systems with a large number of input-

outputs, multiple channel modeling should be considered.

For example, sensor networks can be modeled by this method

where each sensor measurement should be independently

encapsulated in one single packet and should be transmitted

to the controller through its own channel. If multiple channels

are available, then the probability of successful transmission

will greatly increase. To the best of our knowledge, due

to their complexity, multiple channel NCSs with multiple

packet dropouts have not been studied yet.

In this article, we consider the problem of optimal filtering

in a multiple channel NCS with multiple packet dropouts.

The random dropout rates are transformed into stochastic

parameters in the system’s representation. By generalization

of the stochastic H2-norm [16], generalized relations for the

stochastic norm of a linear discrete-time stochastic parameter

system represented in the state space form are studied. The

stochastic norm of the estimation error is used as a criteria

for filter design in the NCS framework. Set of linear matrix

inequalities (LMIs) [1] is given to solve the corresponding
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filter design problem. Simulation example is presented for

clarification.

The remainder of this article is organized as follows. In

Section 2, the formulation of a multiple channel NCS with

multiple packet dropouts, and the filter relations are given.

Section 3 introduces the generalized stochastic H2-norm of

a system represented in the state-space form with several

stochastic parameters. The LMI formulation of optimal fil-

tering based on the stochastic norm of a stochastic parameter

system is given in Section 4. Simulation example is presented

in Section 5 to show the applicability and effectiveness of the

proposed theory followed by concluding remarks in Section

6.

II. PROBLEM FORMULATION

The schematic of the multiple channel NCS under study

is depicted in Figure 1. We suppose that the controller is

already designed. Ω̃ is the exogenous noise input, and z is

the signal to be estimated, and ẑ is its estimate. The filtering

error, z̃ is defined as z̃ = z − ẑ. The plant is a multiple-
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Fig. 1. Multiple channel NCS schematic with packet dropouts

input, multiple-output (MIMO) discrete-time linear time-

invariant (LTI) one subject to random disturbances. Also,

the sensor data are contaminated with noise. The plant can

be represented by the following equations:
{

X̃k+1 = aX̃k + b1Ũk + b2Ω̃k

Ỹk = cX̃k + d1Ũk + d2Ω̃k,
(1)

where X̃k ∈ R
n is the plant state vector, and a, b1, b2, c, d1

and d2 are system parameter matrices with appropriate

dimensions. Ỹk ∈R
p is the system output vector contaminated

with noise, Ω̃k, and Ũk ∈ R
m is the system command input

vector:

Ỹk =







ỹ1k

...

ỹpk






, Ũk =







ũ1k

...

ũmk






, Ω̃k =







ω̃1k

...

ω̃mk






. (2)

We consider the case where there are m input channels and

p output channels in the network. In another words, it is

assumed that each input actuator or output sensor has its

own channel.

Consider the system described by (1). The system outputs,

ỹiks, are passed through the network and there may be

random dropouts, only the probability of the dropouts, αis,

are known. Thus, the current observation at channel i, yik,

is the current system output, ỹik, with the probability of αi.

In the case of no new data, previous data will be used, so

the previous data, yi,k−1, will be used with the probability

of (1−αi). The filter has knowledge of the current control

command, but the system input, ũ jk, is the current controller

output, u jk, with the probability of β j or the previous one,

ũ j,k−1, with the probability of (1− β j). These expressions

can be represented by the following relations:
{

yik = δikỹik + δ̄ikyi,k−1, i = 1, · · · , p

ũ jk = γ jku jk + γ̄ jkũ j,k−1, j = 1, · · · ,m,
(3)

with

δ̄ik = 1− δik, γ̄ jk = 1− γ jk (4)

where yik and u jk are the controller inputs and outputs,

repectively, and the stochastic parameters δiks and γ jks are

Bernoulli distributed white sequences taking the values of 0

or 1 with

prob{δik = 1}= E {δik}= αi, 0 ≤ αi ≤ 1, i = 1, · · · , p (5)

and

prob{γ jk = 1}= E {γ jk}= β j, 0≤ β j ≤ 1, j = 1, · · · ,m (6)

where αis and β js are known constants. Also suppose that

δiks and γ jks are uncorrelated with each other, ω̃iks, and the

initial state values, so

prob{δik = 0} = 1−αi, var{δik} = αi(1−αi) = q2
i , (7)

and

prob{γ jk = 0} = 1−β j, var{γ jk} = β j(1−β j) = r2
j , (8)

Now, Equations (1) and (3) can be put together to have

the multiple channel NCS formulation with multiple packet

dropouts as follows:














X̃k+1 = aX̃k + b1Ũk + b2Ω̃k

Ỹk = cX̃k + d1Ũk + d2Ω̃k

Yk = ∆kỸk + ∆̄kYk−1

Ũk = ΓkUk + Γ̄kŨk−1,

(9)

where

∆k = diag(δ1k, · · · ,δpk), Γk = diag(γ1k, · · · ,γmk), (10)

and

∆̄k = Ip −∆k, Γ̄k = Im −Γk, (11)

and Yk and Uk can be defined similar to Ỹk and Ũk in (2).

In order to get a compact representation, we augment the

system states, measurement and the system input:

Xk+1 =





X̃k+1

Yk

Ũk



 , (12)
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thus,






Xk+1 = akXk + b1kUk + b2kΩ̃k

Yk = ckXk + d1kUk + d2kΩ̃k

zk = LXk

(13)

where zk is the signal to be estimated and

ak =





a 0 b1Γ̄k

∆kc ∆̄k ∆kd1Γ̄k

0 0 Γ̄k



 , b1k =





b1Γk

∆kd1Γk

Γk



 , b2k =





b2

∆kd2

0





ck =
[

∆kc ∆̄k ∆kd1Γ̄k

]

, d1k = ∆kd1Γk, d2k = ∆kd2.

(14)

Note that ak, b1k, b2k, ck, d1k and d2k are functions of

∆k and Γk, but for simplicity, this dependency haven’t been

shown explicitly.

Considering the linear stochastic discrete-time system as

in (13), we want to find the estimate ẑk of zk such that the

H2-norm of the filtering error is minimized. Now, consider

the following filter:

F :

{

X̂k+1 = a f X̂k + b fUk + c fYk

ẑk = L f X̂k,
(15)

where X̂k is an estimate of the state, and a f , b f , c f and L f

are the filter parameters to be designed. The filtering error

is defined as z̃k = zk − ẑk. Now, the system states, Xk, and

the filter states, X̂k, can be augmented to get the following

augmented system:

G :

{

ζk+1 = Akζk + B1kUk + B2kΩ̃k

z̃k = Cζk,
(16)

where

Ak =

[

ak 0

c f ck a f

]

, B1k =

[

b1k

b f + c f d1k

]

, B2k =

[

b2k

c f d2k

]

,

C =
[

L −L f

]

, ζk =

[

Xk

X̂k

]

.

(17)

In the next section, to find the optimal filter gains, first

the generalized relations for the H2-norm of systems with

stochastic parameters is found.

Remark. The formulation given in this section is for the case

when number of channels equals the number of sensors or

actuators. This modeling can be easily modified to be used

in the case when several sensors or actuators share the same

channel. The derivation is straightforward and omitted.

III. H2-NORM OF SYSTEMS WITH STOCHASTIC

PARAMETERS

As was shown in the previous section, the formulation of

state estimation in the multiple channel NCSs with random

packet dropouts leads to the state space representation of a

system with several stochastic parameters. The problem of

state filtering for systems with stochastic parameters has been

studied before [16], [17]. In this section, we generalize our

previous work to extend the problem to a more general case

with several stochastic parameters. The stochastic H2-norm

(H2s-norm) of the filtering error dynamics can be used as a

performance index for the filter design. The LMI formulation

of the performance index and corresponding constraints are

presented in the next section.

For a deterministic stable discrete-time linear time-

invariant (LTI) system, we have the following two facts:

Fact 1: If the input is standard (unit variance) white noise,

then the root-mean-square value of the output equals the H2-

norm of the system [2].

Fact 2: An immediate consequence of Parseval’s equality

is that if the input is the unit impulse, then the 2-norm of the

output equals the H2-norm of the system [2].

As the NCS under consideration is reformulated as a time-

varying stochastic system, the classical norm definition needs

to be modified to be applicable in this case. Consider a stable

time-varying stochastic system G with both deterministic

input vector, Uk, and a noise input vector, Ω̃k, with each

element as an unit variance white noise as in (16) where

Ak, B1k and B2k are stochastic time dependent matrices. In

the following, for simplicity, we replace Ω̃k with Ωk.

To handle the problem of both the deterministic and

stochastic inputs, the linearity property of the system is used

to write

z̃k = z̃1k + z̃2k = G1Uk + G2Ωk, (18)

where

G1 :

{

ζ1,k+1 = Akζ1,k + B1kUk

z̃1k = Cζ1,k
(19)

and

G2 :

{

ζ2,k+1 = Akζ2,k + B2kΩk

z̃2k = Cζ2,k.
(20)

Following the general definition of the H2-norm of a time-

invariant system, the H2-norm of the stable stochastic time

varying system G1 is defined as

‖G1‖
2
2s = lim

N→∞

1

N

N−1

∑
k=0

trace{E {z̃1kz̃′1k}}, (21)

where the input Uk is a vector of unit impulses. Similarly,

we can define

‖G2‖
2
2s = lim

N→∞

1

N

N−1

∑
k=0

trace{E {z̃2kz̃′2k}}, (22)

where the input Ωk is a vector of standard (unit variance)

white noises.

In the following, relations are derived in a closed form

for the H2-norm of G2. The derivations for G1 will be very

similar and will be discussed later. A discussion of the H2-

norm of G follows.

By using the G2 subsystem representations in (20),

E {z̃2kz̃′2k} = E {(Cζ2k)(ζ
′
2kC

′)} = E {CL2kC
′}, (23)

where

L2k = E {ζ2kζ ′
2k}. (24)

Thus,

L2,k+1 = E {(Akζ2k + B2kΩk)(Akζ2k + B2kΩk)
′}

= E {AkL2kA′
k + B2kB′

2k}.
(25)
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Matrices Ak,B2k,Ck and D2k are dependent on stochastic

vectors ∆k and Γk. The δiks and γ jks are Bernoulli distributed

white sequences with known mean values of αis and βis and

variances of q2
i s and r2

j s respectively.

The δiks can be written as the sum of their mean value and the

zero mean stochastic variables λiks with the same variance:

δik = αi + λik, (26)

and

E {λik} = 0, var{λik} = q2
i , E {λikλ js} = 0, ∀ k 6= s, (27)

or,

∆k = Aα + Λk, var{Λ} = Q2
, (28)

where

Aα = diag(α1, · · · ,αp), Q = diag(q1, · · · ,qp). (29)

Similarly,

γik = βi + θik, (30)

E {θik} = 0, var{θik} = r2
i , E {θikθ js} = 0, ∀ k 6= s. (31)

or,

Γk = Bβ + Θk, var{Θ} = R2
, (32)

where

Bβ = diag(β1, · · · ,βm), R = diag(r1, · · · ,rm). (33)

Now, from (14) and (17), we can write

Ak = A + Ã1l∆kÃ1r + Ã2lΓkÃ2r + Ã3l∆kÃ3rΓk, (34)

where

Γk = diag{0,0,Γk,0} (35)

and A, Ãil and Ãir, i = 1,2,3, are known constant matrices

defined as follows with appropriate dimensions for 0s and Is

in the matrices:

A =









a 0 b1 0

0 I 0 0

0 0 I 0

0 c f 0 a f









, (36)

Ã1l =









0

−I

0

c f









, Ã2l =









b1

0

I

0









, Ã3l =









0

−I

0

−c f









, (37)

Ã1r =
[

c I d1 0
]

, , Ã2r =
[

0 0 −I 0
]

,

Ã3r =
[

0 0 d1 0
]

.
(38)

Now, define

Aq = Ã1lQÃ1r, Ar = Ã2lRÃ2r, Aqr = Ã3lQÃ3rR, (39)

with

R = diag{0,0,R,0}. (40)

Considering the independence of states and system matrices,

we can write

E {AkL2kA′
k} = AL2kA′ + AqL2kA′

q + ArL2kA′
r + AqrL2kA′

qr.

(41)

Similar relations can be found for E {B2kB′
2k} as follows:

E {B2kB′
2k} = B2B′

2 + B2qB′
2q, (42)

where

B2k = B2 + B̃2l∆kB̃2r, (43)

with

B̃2l =









0

I

0

c f









, B̃2r = d2, B2 =









b2

0

0

0









, B2q = B̃2lQB̃2r.

(44)

Putting all these relations into equation (22), we have the

following theorem:

Theorem 1. (H2s-norm)- Consider G2, the stable discrete-

time linear stochastic parameter system represented in (20).

The H2s-norm of the system defined by (22) is

‖G2‖
2
2s = trace{CLcC

′} (45)

with

Lc = E {AkLcA′
k + B2kB′

2k}

= B2B′
2 + B2qB′

2q + ALcA′ + AqLcA′
q + ArLcA′

r + AqrLcA′
qr.

(46)

So far, we have found the H2s-norm of system G2 with

stochastic input Ωk as in (20). Following the same method,

similar relations are obtained for system G1 in (19) with a

deterministic input. The results are given in the following

corollary.

Corollary 1. Consider G1, the stable discrete-time linear

stochastic parameter system represented in (19). The H2s-

norm of the system defined by (21) is

‖G1‖
2
2s = trace{CLcC

′}, (47)

where

Lc = E {AkLcA′
k + B1kB′

1k}

= B1B′
1 + B1qB′

1q + B1qrB
′
1qr + ALcA′ + AqLcA′

q+

+ ArLcA′
r + AqrLcA′

qr

(48)

with

B1k = B1 + B̃1,1lΓk + B̃1,2l∆kB̃1,2rΓk

B̃1,1l =









b

0

I

0









, B̃1,2l =









0

I

0

c f









, B̃1,2r = d1,

B1 =









0

0

0

b f









, B1r = B̃1,1lR, B1qr = B̃1,2lQB̃1,2rR.

(49)

Now, to combine the stochastic and deterministic inputs,

the weighted H2-norm of G is defined as follows:

‖G‖2
2s = ‖G1‖

2
2s + ρ‖G2‖

2
2s, (50)
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where ρ ∈ R (ρ > 0) is a weighting factor.

The following theorem gives the relations for the stochas-

tic weighted H2-norm of the system G. The proof is straight-

forward and is omitted.

Theorem 2. Consider G, the stable discrete-time linear

stochastic parameter system represented in (16). The H2s-

norm of the system defined by (50) is

‖G‖2
2s = trace{CLcC

′}, (51)

where

Lc =B1B′
1 + B1qrB

′
1qr + ρ(B2B′

2 + B2qB′
2q)+ ALcA′+

+ AqLcA′
q + ArLcA′

r + AqrLcA′
qr.

(52)

IV. OPTIMAL FILTER DESIGN

Now, we have the required tools to solve the optimal H2

filtering problem in the multiple channel NCS framework

with multiple packet dropouts. We want to design a filter F as

in (15) such that the estimation error variance is minimized.

Based on the H2s-norm definition, it is needed to minimize

the H2s-norm of the filtering error dynamics to solve the

filtering problem.

The problem of H2 filtering for deterministic discrete-

time systems has been studied in the literature (see, e.g.,

[4], [14] and references therein). The problem has also been

considered in stochastic domain in single channel networks

(see, e.g., [15]–[17] and references therein). In the following,

we try to adapt the filter design problem to the multiple

channel cases by using the tools developed in the previous

section.

As a generalization of the H2s filtering in single channel

cases ( [15], [16]), the H2s filtering in the multiple channel

NCS can be formulated as follows:

min
a f ,b f ,c f ,L f ,P

trace(J) (53)

s.t.
[

P PC′

CP J

]

> 0 (54)









P ΞA ΞB1
ΞB2

∗ ΞP 0 0

∗ ∗ ΞI3 0

∗ ∗ ∗ ΞI2









> 0 (55)

where the matrix variables J and P and the matrix inequali-

ties are symmetric, ρ is known, and

ΞA =
[

AP AqP ArP AqrP
]

ΞB1
=

[

B1 B1r B1qr

]

ΞB2
= ρ

[

B2 B2q

]

ΞP = diag(P,P,P,P)

ΞI2 = diag(I, I)

ΞI3 = diag(I, I, I).

(56)

Now, it is desirable to convert the two matrix inequalities

in (54) and (55) into LMIs. Then, the filter design problem

turns out into a convex programming problem that can be

solved efficiently by the numerical methods available.

Let us partition P and its inverse as

P =

[

X U

U ′ X2

]

, P−1 =

[

Y V

V ′ Y2

]

, (57)

where X ,Y,X2 and Y2 are symmetric and positive definite

matrices. Now, we define the following nonsingular matri-

ces:

T̄ =

[

Z Y

0 V ′

]

, T1 =

[

T̄ 0

0 I

]

,

T2 = diag(T̄ , T̄ , T̄ , T̄ , T̄ , I, I, I, I, I),

(58)

where Z = X−1
, and I is the identity matrix with appropriate

dimension. By applying the congruence transformation with

T1 to (54), we get the following LMI:

T ′
1

[

P PC′

∗ J

]

T1 =





Z Z L′−G′

∗ Y L′

∗ ∗ J



 > 0, (59)

where G = L fU
′Z. We can also get an LMI by applying the

congruence transformation with T2 to (55):

T ′
2 [55] T2 > 0, (60)

where it is easy to see that

T̄ ′PT̄ =

[

Z Z

Z Y

]

,

T̄ ′APT̄ =

[

Za Za

Y a + Fc + Q Y a + Fc

]

T̄ ′A∗PT̄ =

[

Za∗ Za∗
Y a∗ + Fc∗ Y a∗ + Fc∗

]

(61)

T̄ ′B1 =

[

Zb1

Y b1 + M + Fd1

]

, T̄ ′B2 =

[

Zb2

Y b2 + Fd2

]

T̄ ′B1,∗ =

[

Zb1∗

Y b1∗ + Fd1∗

]

, T̄ ′B2,∗

[

Zb2∗

Yb2∗ + Fd2∗

]

,

where F = V c f , Q = Va fU
′Z and M = Vb f . Also, ∗ stands

for q,r or qr. Thus, the results can be summarized as follows.

Theorem 3. (H2s-filtering) The filter design problem of

(53)-(55) is equivalent to the following convex programming

problem:

min
Z,Y,Q,F,G,M

trace(J)

s.t.

(59) and (60).

(62)

To find the filter parameters, a f , b f , c f and L f , we need to

know U and V , which do not appear in the LMIs. One of the

matrices U or V can be defined freely. Different choices give

us different filter state-space realizations. One logical choice

is to set L f = L that can come from setting V = V ′ = −Y ,

leading to U = U ′ = Z−1 −Y−1.
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Fig. 2. Actual and estimated states for the classical and stochastic H2

filtering, α1 = 0.2, α2 = 0.48, β1 = 0.5, β2 = 0.4 and ρ = 1

V. EXAMPLE

A simulation example is given in this section to support

the developed theory. Consider a discrete-time LTI system

represented by (13) with the following matrix values:

a =

[

1.7240 −0.7788

1 0

]

, b1 =

[

1 1

0.5 1

]

,

b2 =

[

0.05 0.05

0.1 0.01

]

c =

[

0.0286 0.0264

0.286 0.0264

]

,

d1 =

[

1 1

1 0.5

]

d2 =

[

0.1 0.1

0.05 0.1

]

, L = I2,

(63)

where I2 is an identity matrix with the size of 2. The initial

state values are x̃(0)= [0 0]′ and ˆ̃x(0) = [2 −2]′. The system

states and their estimates due to sinusoidal input are plotted

in Figure 2. Note that the controller is not designed here. It

is assumed that it simply sends some sinusoidal commands.

This figure shows the simulation results for the case when

the average sensor to the controller and the controller to

the actuator dropout rate are α1 = 0.2, α2 = 0.4, β1 = 0.5

and β2 = 0.4, respectively, with a weighting factor of ρ =
1. This result shows the superiority of the proposed H2s

filtering over the classical one. In the classical method, no

compensation is made for the dropouts; in the case of no

new information, simply the previous ones are used.

VI. CONCLUSIONS

In this paper, the problem of optimal H2 filtering in

the multiple channel NCS environment with multiple packet

dropouts has been studied. The stochastic H2-norm of

systems containing stochastic parameters was defined, and

the relations were developed. A weighted H2-norm was

generalized to be used in systems with both deterministic and

stochastic inputs. Based on the new derivations, the problem

was transformed into a set of LMIs that can be easily solved

by existing software packages. A simulation example showed

the effectiveness and applicability of the proposed method.
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