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Abstract— We consider the problem of designing optimal
distributed controllers whose impulse response has limited
propagation speed. We introduce a state-space framework in
which such controllers can be described. We show that the
optimal control problem is not convex with respect to certain
state-space design parameters, and demonstrate a reasonable
relaxation that renders the problem convex. This relaxation
is associated with an iterative numerical scheme known as
the Steiglitz-McBride (SM) algorithm. We improve the SM
algorithm by using the algebraic Lyapunov equation to relieve
time integration, thus significantly reducing computational
costs.

I. INTRODUCTION

The synthesis problem of distributed control has received
considerable attention in recent years [1]–[8]. In the control
of distributed systems a desired scenario is to have each
subsystem possess its own controller and each controller
exchange information only within a prespecified “local”
architecture. Standard optimal control design methods,
when applied to distributed systems, yield “centralized”
controllers [1]. In other words the controller of each
subsystem demands information about the state of the entire
system. Such solutions are undesirable from a practical point
of view as they are expensive in hardware and computation
requirements and demand excessive communication between
different subsystems.

In the case of spatially invariant systems, [1] demonstrates
that for optimal distributed controllers, the dependence of
a controller on information coming from other parts of
the system decays exponentially as one moves away from
that controller. This motivates the search for inherently
“localized” controllers. For example, one could search for
optimal controllers that are subject to the condition that they
communicate only to other controllers within a certain radius.

Optimal control problems are often reformulated in the
“Youla parameter” domain, which allows for a closed-loop
transfer function that is affine in the Youla parameter [9].
However, this generally comes at the expense of losing
convexity of the constraint set to which the design parameter
belongs. This is due to the nonlinearity of the mapping
from the controller to the Youla parameter.

Recently, certain subspaces of localized systems which
remain invariant under this nonlinear mapping have been
characterized. References [2] and [3] introduce the subspaces
of “cone causal” and “funnel causal” systems, respectively.
These subspaces describe how information from every
controller propagates through the distributed system. A
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similar but more general characterization, termed “quadratic
invariance,” is introduced in [4]. It is important to note
that constructs such as cone and funnel causality lead to
optimal control problems that are convex in the Markov
(i.e., impulse response) parameters of the Youla variable
and not its state-space parameters. Therefore, one is still
faced with solving a realization problem for a distributed
system.

In this paper we address the problem of designing
structured optimal distributed controllers using a state-
space framework. We show that not all controller design
parameters appear quadratically in the objective function and
we use a relaxation, associated with the the SM algorithm
[10], to convexify the objective function. The SM–optimal
coefficients are then obtained through an iterative numerical
scheme. We improve upon existing SM algorithms [11]
by using the algebraic Lyapunov equation to relieve time
integration, thus significantly reducing the computational
cost of the numerical scheme.

The paper is organized as follows. In Section II we
describe the subspaces of distributed systems considered
in this paper. In Section III we use the model-matching
framework to find the optimal centralized controller, which
we wish to approximate by a localized one. In Section IV
we present a numerical algorithm for the design of structured
decentralized controllers. We demonstrate our results by two
illustrative examples in Section V and finish with conclusions
in Section VI.

Preliminaries

We consider discrete spatio-temporal systems, i.e., discrete
time systems on a discrete one-dimensional spatial lattice.
All systems are linear time invariant and spatially invariant.
λ denotes the temporal (one-sided) transform variable and
ζ denotes the spatial (two-sided) transform variable. When
evaluated on the unit circle, λ and ζ are denoted by ejω and
ejθ, respectively. U∗ = U

T
if U is a constant matrix and

U(ζ, λ)∗ = U(ζ−1, λ−1)T if U is a spatio-temporal transfer
function, where the bar over U denotes complex conjugation
and T denotes transposition. U† denotes the pseudo-inverse
of U .

II. CONE CAUSAL AND C –CAUSAL SYSTEMS

We begin by defining the class of cone causal systems
introduced in [2].

Definition 1: A linear spatially invariant system is called
cone causal if its spatio-temporal impulse response is of the
form

G(ζ, λ) =
∞∑
k=0

gk(ζ)λk, (1)
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Fig. 1. The vertical axis denotes time and the horizontal axis denotes
space. Left: The support of the spatio-temporal impulse response of a cone
causal system. Right: The support of the spatio-temporal impulse response
of a centralized system.

gk(ζ) =
k∑

n=−k

gnk ζ
n, g0(ζ) = g00,

where gnk can be matrices in general.
Note that by the above definition, a spatio-temporal system

can be cone causal without having to be stable. Cone
causality is only a condition on the support of the impulse
response in the spatio-temporal domain. The left picture in
Figure 1 demonstrates the support of the spatio-temporal
impulse response of a cone causal system.

A spatio-temporal system described by (1) in which

gk(ζ) =
∞∑

n=−∞
gnk ζ

n, k = 0, 1, 2, . . . ,

is said to be centralized. In other words, a centralized system
is one in which the impulse response has unbounded spatial
spread at every time instant k; see the right picture in Figure
1.

Subspace C and its State-Space Representation
Consider a system G with state-space representation

G =
[
A B
C D

]
= D + λC (I − λA)−1B. (2)

Definition 2: We denote by C the set of systems that
satisfy the following assumptions.
(i) B, D are independent of ζ.

(ii) A, C have the form

A(ζ) = A−1 ζ
−1 + A0 + A1 ζ,

C(ζ) = C−1 ζ
−1 + C0 + C1 ζ,

with An, Cn, n = −1, 0, 1 independent of ζ.

The systems that belong to the set C are systems in which
effects propagate at most one unit in space for every unit in
time.

We refer to systems that belong to the set C as C –causal.
Furthermore, we denote by Cµ the subset of C –causal
systems for which the matrix A has Euclidean dimension
equal to µ. We refer to µ as the temporal degree or temporal
order of G.
Of course, the above definition includes systems for which
either or both of the matrices A and C are ζ-independent.

Proposition 1: If G ∈ C then G is cone causal.
Proof: Write the transfer function of G in terms of its

Markov parameters

G(ζ, λ) = D + CB λ + CAB λ2 + CA2B λ3 + · · · .

It is clear that G has the structure described in Definition 1.

Closure of C Under LFTs
As we will show, the subspace C of cone causal systems

is closed under addition, composition, and inversion of
systems. Thus it is closed under feedback and linear
fractional transformations (LFTs [12]).

Reference [2] demonstrates closure results for cone
causal systems using Markov parameter descriptions. The
following proposition proves closure results for C –causal
systems using state-space descriptions. Let G† denote the
right (left) inverse of G and let D† denote the right (left)
inverse of D.

Proposition 2: Let G be as in (2) and eG =

» eA eBeC eD
–

,

and assume that D† exists. If G and G̃ belong to C then
G+ G̃, GG̃, and G† belong to C .

Proof: We have [12]

G + eG =

24 A 0 B

0 eA eB
C eC D + eD

35, G eG =

24 A B eC B eD
0 eA eB
C D eC D eD

35,

G† =

»
A−BD†C −BD†

D†C D†

–
.

It is clear from Definition 2 and the state-space representa-
tions of G+ G̃, GG̃, and G† that they all belong to C , and
the proof is complete.

III. THE STRUCTURED H2 OPTIMAL CONTROL PROBLEM

Consider the system G ∈ C ,

G =
[
G11 G12

G21 G22

]
=

 A Bw Bu
Cz 0 Dzu

Cy Dyw 0

 . (3)

Note that since G ∈ C then Bw, Bu, Dzu, Dyw are
independent of ζ, and A, Cz , Cy have ζ-dependence of the
form described in Definition 2. We also make the following
simplifying assumptions.

Assumption 1: In system (3)
(i) Bu, Dzu are column vectors.

(ii) Cy , Dyw are row vectors.
Assumption 1 implies that the transfer functions G22 from u
to y is SISO (single input single output). Placing system G
in feedback with a SISO controller K we obtain the closed-
loop transfer function

Gzw = G11 + G12K (I − G22K)−1G21. (4)

Before we discuss the optimal control problem of interest,
we have to define the system norm we will be using.

Definition 3: Let Gzw be a stable system. Then the spatio-
temporal H2 norm of Gzw is defined by [1]

‖Gzw‖2H2 := (
1

2π
)2

∫ 2π

0

∫ 2π

0

tr [Gzw(ejθ, ejω)

Gzw(ejθ, ejω)∗] dθ dω.

The problem we are interested in is the following. Given
system G ∈ C find a stabilizing controller K ∈ C such that
the closed-loop norm ‖Gzw‖2H2 is minimized.
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Remark 1: Structured optimal control problems such
as the one posed above are hard to solve because of the
nonlinear way in which the design parameter K appears
in the expression for Gzw; see (4). As we show below, a
change of variables allows for a new design parameter Q
to appear affinely in Gzw, thus forming a convex objective
function. However, the mapping from K to Q will be
nonlinear, and therefore a convex constraint set for K does
not always get mapped to a convex constraint set for Q.
This underlines the importance of subspaces such as cone
causal [2], funnel causal [3], quadratically invariant [4],
and C –causal systems: they remain invariant under the
map K 7→ Q. Since every subspace is convex we thus end
up with optimizing a convex objective over a convex set,
which is a desired scenario. This remark is summarized in
Theorem 3 below.

Using the “Youla parameterization”, it is well-known [9,
Chap. 3] that the transfer function of the closed-loop system
(4) can be recast as

Gzw = T1 − T2QT3, (5)

and thus the problem of minimizing ‖Gzw‖2H2 can be rewrit-
ten as the so-called “model-matching problem”

inf
Q
‖T1 − T2QT3‖2H2 . (6)

The model-matching parameters Q and Ti, i = 1, 2, 3 are
all stable transfer functions. The Ti have known state-space
representations and can be found using only knowledge of
the open-loop system G (i.e., they are independent of Q).
Q, often referred to as the Youla parameter, is unknown
and depends on both the controller K and the system G.
Once problem (6) is solved and the optimal system Qopt is
found we obtain the optimal controller Kopt from Qopt, as
discussed in [9].

By Assumption 1, Q is a scalar and thus commutes with
T3. Defining T = T1 and U = T2 T3, problem (6) becomes

inf
Q
‖T − U Q‖2H2 . (7)

From [9, Chap. 4] it follows that

T =

[
A+BuF −BuF Bw

0 A+HCy Bw +HDyw

Cz +DzuF −DzuF 0

]
, (8)

U =

[
A+BuF BuCy BuDyw

0 A+HCy Bw +HDyw

Cz +DzuF DzuCy DzuDyw

]
, (9)

where F and H are chosen such that A + BuF and
A + HCz are stable, i.e., the matrices [A + BuF ](ejθ) and
[A+HCz](ejθ) have strictly negative eigenvalues for every
θ ∈ [0, 2π]. We make the following assumptions on H and F .

Assumption 2: In system (3)

(i) A column vector H independent of ζ can be found such
that A(ejθ) +HCy(ejθ) is a stable matrix for every θ ∈
[0, 2π].

(ii) A row vector F (ζ) of the form

F (ζ) = F−1 ζ
−1 + F0 + F1 ζ,

with Fn, n = −1, 0, 1 independent of ζ, can be found
such that A(ejθ) + BuF (ejθ) is a stable matrix for

every θ ∈ [0, 2π].

We now state the main result of this section.

Theorem 3: Let the system G ∈ C with state-space
representation (3) satisfy the conditions stated in Assumption
2. Then the mapping Q 7→ K is a bijection from C to itself.
In particular, K is stabilizing and belongs to C if and only
if Q is stable and belongs to C .

Proof: See Appendix.

The Model-Matching Problem

In this section we present the model-matching problem.
We introduce an inner-outer factorization of U , U = UinUout,
see [9]. In the following, we will use the isometry property
of the inner function Uin(ejθ, ejω), θ, ω ∈ [0, 2π], and the fact
that

‖EG‖2H2 = ‖G‖2H2 , E :=
[

U∗in
I − Uin U

∗
in

]
,

see [9, Lem. 1, Chap. 8]. We have

‖T − U Q‖2H2 = ‖E (T − Uin Uout Q)‖2H2

= ‖
»

U∗in T − Uout Q
(I − Uin U∗in) T

–
‖2H2

= ‖(I − Uin U∗in) T‖2H2 + ‖U∗in T − Uout Q‖2H2

= ‖(I − Uin U∗in) T‖2H2 + ‖[U∗in T ]un + [U∗in T ]st − Uout Q‖2H2

= ‖(I − Uin U∗in) T‖2H2 + ‖[U∗in T ]un‖2H2 + ‖[U∗in T ]st − Uout Q‖2H2

where R := [U∗in T ]st and [U∗in T ]un correspond to the stable
and unstable parts of U∗in T , respectively; see [13, Chap. 6]
for more details. The optimal solution (regardless of whether
it does or does not belong to C ) is given by

Qc = U−1
out [U∗in T ]st.

Note that Qc is stable since U−1
out is the inverse of a

minimum phase system and thus stable.

The difficulty here is that once an inner-outer factorization
of U ∈ C is performed, in general neither Uin nor Uout
belongs to C . In fact Qc is a centralized system in general.
This is due to Uin and Uout containing parameters that are
found by solving an algebraic Riccati equation (ARE), and
the solution X of this ARE can not be expressed as a
polynomial in ζ. In particular, the state-space realizations
of Uin and Uout do not satisfy conditions (i) and (ii) of
Definition 2.

In this paper our aim is to find Q ∈ C that minimizes

J := ‖R − Uout Q‖2H2 (10)
= ‖Uout(U−1

out R − Q)‖2H2

= ‖Uout(Qc − Q)‖2H2 . (11)

Thus we would like to find Q ∈ C that best approximates
the centralized system Qc in the sense of the weighted H2

norm. The norm in (11) is weighted by Uout. Note that in (11)
there is no restriction on the temporal order of Q. However
one possibility is to choose the temporal degree of Q to be
equal to that of Qc, so that Q imitates the temporal dynamics
of Qc. We emphasize that there is no reason to expect that
such a choice of temporal order is optimal.
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Literature Review

To the best knowledge of the authors, no exact solution
to the problem posed at the end of the previous section is
known in general, and to find Q ∈ C one has to resort to
some form of approximation.

Voulgaris et al. [2] consider this problem in the Markov-
parameter setting using the projection theorem for Hilbert
spaces. More specifically, they obtain the spatio-temporal
Markov parameters qnk, up to time k = κ, of an FIR (finite
impulse response) cone causal system Qκ

Qκ(ζ, λ) =
κ∑
k=0

qk(ζ)λk, qk(ζ) =
k∑

n=−k

qnk ζ
n,

such that Qκ minimizes

‖R − Uout Q‖2H2 , Q cone causal,

if the H2 norm is computed up to time k = κ. Furthermore,
they show weak convergence of Qκ to the unique optimal
cone causal system Qopt as κ→∞.

In a mathematical sense [2] solves the optimal control
problem. But the difficulty with the approach of [2] is with
regards to the implementation of the resulting controller.
The state-space realization of Qκ is a dead-beat system
of order κ. If κ is taken to be large to achieve a small
closed-loop norm, Qκ and thus the controller Kκ will have
large temporal degrees, in general.

This motivates the problem of solving the structured
optimal control problem not with respect to the Markov
parameters of Q, but with respect to its state-space or transfer
function representation. This will be our aim in the following
section, where given a temporal order µ, we present a
numerical algorithm for computing Q ∈ Cµ that minimize a
relaxation of the objective function J in (10).

IV. A NUMERICAL ALGORITHM FOR COMPUTING Q

The SM (Steiglitz-McBride) algorithm is an iterative
numerical optimization scheme originally used for the
identification of linear systems [10]. Recently it has been
further developed and coupled with other numerical methods
for the purpose of designing IIR (infinite impulse response)
digital filters [11]. In this section we use this algorithm to
find Q ∈ C that minimizes J in (10). We improve upon
existing SM algorithms by using the algebraic Lyapunov
equation to relieve time integration, thus significantly
reducing the computational cost of the numerical scheme.

For the sake of clarity we first describe the basic idea
of the SM algorithm in the transfer function setting. We
then derive the computational procedure in state-space. We
assume all transfer functions are SISO.

Let Q(ζ, λ) = N(ζ, λ)/M(ζ, λ), where N(ζ, λ) and
M(ζ, λ) are scalar polynomial functions in ζkλl, and con-
sider

J = ‖R − Uout Q‖2H2 = ‖R − Uout
N

M
‖2H2

= ‖ 1
M

(RM − Uout N)‖2H2 . (12)

It is desired to find the coefficients of N and M so that
Q = N

M belongs to Cµ and minimizes J .

The difficulty here is that J is not convex in the coefficients
of M . The SM algorithm circumvents this issue by relaxing
the objective function (12) to

JSM = ‖ 1

M̃
(RM − Uout N)‖2H2 ,

where M̃ corresponds to M obtained from the previous
iteration. At each step JSM is convex in the unknown
coefficients, since N and M both appear affinely inside the
norm and the norm is a convex function of its argument.

We next describe a state-space method of implementing
the SM algorithm.

Consider the problem of minimizing (10) with

Q = e +
λ p1(ζ) + λ2 p2(ζ) + · · ·+ λη pη(ζ)

1 + λ q1(ζ) + λ2 q2(ζ) + · · ·+ λµ qµ(ζ)
,

where µ > η. Q belongs to Cµ with

qk(ζ) =
k∑

n=−k

qnk ζ
n, pk(ζ) =

k∑
n=−k

pnk ζ
n, (13)

and e is independent of ζ.
Let us introduce a controller canonical form realization of

R− Uout Q,

R − Uout Q =
[

Λ Φ
Ψ ∆

]
.

Our goal is to minimize

J = ‖
[

Λ(ζ) Φ
Ψ(ζ) ∆(ζ)

]
‖2H2

= ‖
[

Λ(ζ) Φ
Ψ(ζ) 0

]
‖2H2 + ‖∆(ζ) ‖2H2

=: JSM + J∆.

We relax the problem of minimizing J to one in which we
first minimize J∆ and then minimize JSM.

Minimizing J∆

We find the value of e that minimizes

J∆ = ‖∆(ζ) ‖2H2 =
1

2π

∫ 2π

0

∆(ejθ) ∆(ejθ)∗ dθ.

Substituting ∆ = dR − dU e and setting

∂

∂e
J∆ = 0

we obtain

eSM =
Re{

∫ 2π

0
dR(ejθ) dU (ejθ)∗ dθ}∫ 2π

0
dU (ejθ) dU (ejθ)∗ dθ

. (14)

Note that there is no iteration involved in finding eSM.

Minimizing JSM

We now minimize JSM while assuming e = eSM. We
consider again the state-space realization[

Λ Φ
Ψ 0

]
,

and make the following observations.
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(a) Since qk(ζ), k = 1, . . . , µ appear in the denominator
of R − Uout Q, they also show up inside the matrix Λ.
However, the SM algorithm is based on replacing every
qk(ζ) with it previous estimate q̃k(ζ), so that only q̃k(ζ),
k = 1, . . . , µ appear in Λ. This is the key attribute of
the SM algorithm and is responsible for rendering the
optimization scheme convex.

(b) From (12) it is clear that qk(ζ), k = 1, . . . , µ and
pk(ζ), k = 1, . . . , η also appear in the numerator
of R − Uout Q, and thus they show up affinely in
the output matrix Ψ. We can extract the coefficients
qnk and pnk of qk(ζ) and pk(ζ) from Ψ and form
a quadratic problem in these coefficients (since Ψ
appears quadratically in the expression of theH2 norm).

We now describe items (a) and (b) above in more detail.
It is known [1] that

JSM = ‖
[

Λ(ζ) Φ
Ψ(ζ) 0

]
‖2H2

=
1

2π

∫ 2π

0

Ψ(ejθ) Π(ejθ) Ψ(ejθ)∗ dθ (15)

where Π is the solution of the algebraic Lyapunov equation

Λ(ζ) Π(ζ) Λ(ζ)∗ − Π(ζ) = − Φ Φ∗. (16)

Thus the optimization problem has simplified to choosing
the coefficients qnk and pnk of qk(ζ) and pk(ζ) that appear
in Ψ so as to minimize

∫ 2π

0
Ψ Π Ψ∗ dθ.1 Note that since the

realization is a controller canonical form, Φ is a constant
matrix independent of ζ and the unknown parameters.

The output matrix Ψ(ζ) depends affinely on qk(ζ), pk(ζ),
and qk(ζ), pk(ζ) depend linearly on their coefficients qnk,
pnk. Therefore it is possible to reorganize Ψ so that it can
be written as

Ψ(ζ) = [ qpar ppar ] Σ(ζ) + σ(ζ), (17)

where qpar and ppar denote row vectors stacked with the
unknown coefficients qnk and pnk of the denominator and
numerator of Q, respectively,

qpar = [ q−11, q01, q11 | · · · | q−µµ, · · · , q0µ, · · · , qµµ ],
ppar = [ p−11, p01, p11 | · · · | p−ηη, · · · , p0η, · · · , pηη ].

Substituting (17) into (15) and assuming that the coefficients
pnk and qnk are all real, we arrive at the quadratic problem

JSM =
1
2

[ qpar ppar ] Γ [ qpar ppar ]T + [ qpar ppar ] ρ + τ,

where

Γ =
1
π

∫ 2π

0

Σ Π Σ∗ dθ, (18)

ρ =
1
π

Re
{∫ 2π

0

Σ Πσ∗ dθ
}
, (19)

τ =
1

2π

∫ 2π

0

σΠσ∗ dθ. (20)

Finally, the SM–optimal values of the parameters are given

1We henceforth drop the “(ejθ)” notation from inside all integrals, with
the understanding that any function of ζ inside an integral is evaluated on
the unit circle.

by setting

∂

∂qnk
JSM = 0,

∂

∂pnk
JSM = 0, for all qnk, pnk

which gives

[ qpar ppar ]SM =
1
2
ρΓ−1. (21)

Note that these parameter values are the result of just one
iteration and can now be used to initialize the next iteration,
and so on.

Let us summarize the state-space SM algorithm.
(1) Compute eSM from (14). Choose initial values for the

coefficients qnk, pnk.
(2) Set q̃k(ζ) =

∑k
n=−k qnk ζ

n, k = 1, . . . , µ using the
current estimate of the coefficients qnk.

(3) Form the matrix Λ(ζ) and solve the algebraic Lyapunov
equation (16) to find Π(ζ).

(4) Compute Γ and ρ from equations (18)–(19).
(5) Find the next estimate of the coefficients qnk, pnk from

(21). If qk(ζ)− q̃k(ζ), k = 1, . . . , µ and pk(ζ)− p̃k(ζ),
k = 1, . . . , η are sufficiently small in norm, stop.
Otherwise go to step 2.

V. EXAMPLES

Example 1

Let

G =


a 1 1[
1
0

]
0
[

0
1

]
1 0 0

 , a(ζ) = ζ−1/4 + 1/4 + ζ/4.

The system is open-loop stable and we have

T =

 λ

1− λ a
0

 , U = −

 λ

1− λ a
1

 λ

1− λ a
.

Performing an inner-outer factorization on U and carrying
out the steps described in Section III, we arrive at

R = dR +
λ cR

1− λ aR
, (22)

Uout = dU +
λ c1U + λ2 c2U

(1− λ a1U )(1− λ a2U )
, (23)

where

aR = a, cR = 1/(γ∗ − κ∗/a), dR = 1/γ∗,
a1U = a, a2U = a, dU = κ,

c1U = 2 a κ− γ, c2U = − a2 κ,

and

κ =
√

1 + a∗a/2 +
√

1 + (a∗a)2/4, γ = a/κ∗.

The optimal values of the parameters of Q ∈ C1, as given
by the SM algorithm, are

q−1 = −0.1417, q0 = −0.1133, q1 = −0.1417,
p−1 = 0.0249, p0 = −0.9455, p1 = 0.0249,
e = 0.2667,
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which result in

JSM = ‖R − Uout Q
SM‖2H2 = 0.3943.

For this example, the SM algorithm was iterated 40 times.
But the parameters converged to values very close to those
given above in less than 5 iterations.

Note that we do not claim global optimality for the
above solution. However, we formed 1000 systems Qpert by
perturbing the parameters of QSM around their SM–optimal
values, and we observed that ‖R−Uout Q

pert‖2H2 was always
larger that JSM.

Finally note that for Q = 0 (open-loop system) we have

‖R − Uout Q‖2H2 = ‖R‖2H2 = 2.6627.

Example 2
We consider the example given in Voulgaris et al. [2]

T =
λ

1− λ r
, U =

λ2

(1− λ ρ)(1− λ r)
,

with

ρ(ζ) = ζ−1/6 + 1/3 + ζ/6,
r(ζ) = ζ−1/8 + 1/4 + ζ/8.

The transfer functions R and Uout for this problem have the
same form as in (22) and (23) with

aR = r, cR = r2, dR = r,

a1U = ρ, a2U = r, dU = 1,
c1U = ρ+ r, c2U = − ρ r.

The optimal values of the parameters of Q, as given by the
SM algorithm, are

q−1 = 0.0873, q0 = 0.1985, q1 = 0.0873,
p−1 = −0.0137, p0 = −0.0564, p1 = −0.0137,
e = 0.25,

which result in

‖T − UQSM‖2H2 = 1.0318.

This is an improvement on the “truncated 2–relaxed” solution
QVou presented in [2], for which

‖T − UQVou‖2H2 = 1.0659.

Let Qopt denote the globally optimal cone causal Q as
discussed at the end of Section III, i.e.,

Qopt = arg inf
cone causal Q

‖T − UQ‖2H2 .

Voulgaris et al. show that

‖T − UQopt‖2H2 = 1.0157.

It can be seen that QSM ∈ C1 gives a value of the closed-loop
H2 norm that is within 2% of the optimal value.

VI. CONCLUSIONS

We consider the design of optimal distributed controllers
with finite communication speed. These are controllers
whose impulse response has support inside a cone in the
spatio-temporal domain. This problem has been previously
considered by [2] in the context of cone causal systems.

We part from [2] by searching for the optimal controller
parameters in state-space. We achieve convexity by relaxing
the optimal control objective, and use an iterative numerical
scheme to compute the state-space parameters.

VII. APPENDIX

Proof of Theorem 3:
The basic idea of the proof can be found in [3]. By
Assumption 2 we can find H and F such that A + HCy
and A + BuF are stable. From [12, Thm. 12.8], [13, Thm.
5.4.1] all stabilizing controllers (C causal or not) can be
parameterized by

K = J11 + J12Q (I − J22Q)−1 J21,

J =
[
J11 J12

J21 J22

]
=

 A+BuF +HCy −H Bu
F 0 I
−Cy I 0

 ,
Q stable,

and any K found from the above relation is stabilizing if
and only if its corresponding Q is stable.

Next we bring into consideration the spatial structure of
K and Q, and show that the mapping Q 7→ K is a bijection
on C .

From G ∈ C , Assumption 2 on the matrices H and F , and
the state-space representation of J , it follows that J ∈ C .
Now, assume Q ∈ C . Since K is given by a linear fractional
transformation of Q with coefficients Jij ∈ C , i, j = 1, 2
then K ∈ C . Conversely, assume K ∈ C . From [13, Thm.
5.4.1] we have

Q = J−1
12 (K − J11) J−1

21 [I + J−1
12 (K − J11) J−1

21 J22]−1.

Since Jij ∈ C , i, j = 1, 2 then Q ∈ C . The proof is thus
complete.
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