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Abstract— In this paper we consider a formulation of the
failure diagnosis problem in stochastic systems as a maximum
likelihood classification problem: a diagnoser observes the
system under diagnosis online and determines which candidate
model (e.g., a fault-free model or a faulty model) is more
likely given the observations. We are interested in measuring
a priori the diagnosis/classification capability of the diagnoser
by computing offline the probability that the diagnoser makes
an incorrect decision (irrespective of the actual observation
sequence) as a function of the observation step. We focus on
hidden Markov models and compute an upper bound on this
probability as a function of the length of the sequence observed.
We also find necessary and sufficient conditions for this bound
to decay to zero exponentially with the number of observations.

I. INTRODUCTION

In this paper our goal is to evaluate the diagnosis (classi-
fication) capability of maximum likelihood diagnosis (clas-
sification) schemes. Given two candidate hidden Markov
models (HMMs) along with their priors, we would like to
compute offline the a priori probability that the diagnoser
will make an incorrect decision as a function of the number
of observation steps, irrespective of the actual observation
sequence. To avoid high computational complexity, we focus
on finding an upper bound on this probability of error
and obtain necessary and sufficient conditions under which
this bound goes to zero exponentially with the number of
observations.

Much work has been done in failure diagnosis of discrete
event systems, including probabilistic diagnosis or diagnosis
of stochastic finite automata [1]–[5]. The work in [3] intro-
duces two notions of stochastic diagnosability (namely A-
and AA-diagnosability), both of which refer to asymptotic
diagnosis properties as the observation time tends to infinity,
and provides conditions that guarantee them. Although our
failure model is not the same as the one in [3], the use of the
probability of error as a measure of the diagnosis capability is
related to the notion of stochastic diagnosability. The biggest
difference is that our bound on the probability of diagnosis
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error is not only concerned with the asymptotic behavior
of the system but also gives us information regarding the
probability of error as a function of the observation interval.

In our previous work [4], [5] we formulated the failure
diagnosis problem in discrete event systems as a maximum
likelihood classification problem. (The challenge in [4], [5]
was to find ways to deal with erroneous observations rather
than the application of the forward algorithm; for simplicity,
erroneous observations are not considered in this paper.)
For HMMs this can be done using a recursive algorithm
similar to the forward algorithm, which solves the evaluation
problem in hidden Markov models (HMMs) and is used
frequently in speech recognition, pattern recognition applica-
tions, and bioinformatics (see [6]–[9] and references therein).
There are also relations between our work and information
theoretic approaches that have been developed to capture the
distance between HMMs [7].

In summary, the contribution of this paper in the frame-
work of maximum likelihood diagnosis is two-fold: (i) we
propose a measure of diagnosis capability by quantifying the
a priori probability that the diagnoser makes an incorrect
decision, (ii) we calculate a bound on the probability that
the diagnoser makes an incorrect decision, and necessary and
sufficient conditions for the bound to go to zero exponentially
with the number of observation steps.

II. PRELIMINARIES

A. FSM, Markov Chain, and Hidden Markov Model Notation

A finite state machine (FSM) can be described by (Q, X,
δ, q0), where Q = {0, 1, 2, ..., |Q|−1} is the set of states; X
is the finite set of inputs; δ is the state transition function; and
q0 is the initial state. The FSMs we consider here are event-
driven and we use n to denote the time epoch between the
occurrence of the nth and (n+1)st input. The state Q[n+1]
of the FSM at time epoch n+1 is specified by its state Q[n]
at time epoch n and its input X [n+1] via the state transition
function δ as Q[n + 1] = δ(Q[n], X [n + 1]).

We denote a time homogeneous Markov chain by
(Q, X, ∆, π[0]), where Q = {0, 1, 2, ..., |Q| − 1} is the
set of states; X is the set of inputs; π[0] is the initial
state probability distribution vector; and ∆ captures the state
transition probabilities, i.e., ∆(q, xi, q

′) = P (Q[n + 1] =
q′ | Q[n] = q, X [n + 1] = xi), for q, q′ ∈ Q, xi ∈ X .
If we denote the state transition probabilities by ajk =
P{(Q[n + 1] = j) | (Q[n] = k)}, the state transition matrix
of the Markov chain associated with the given system is
A = (ajk)j,k=0,1,...,|Q|−1. (To keep the notation clean, the
rows and columns of all matrices are indexed starting from
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0 and not 1.) The state transition matrix A captures how
state probabilities evolve in time via the evolution equation
π[n + 1] = Aπ[n]. Here, π[n] is a |Q|-dimensional vector,
whose jth entry denotes the probability that the Markov
chain is in state j at step n.

An HMM is described by a five-tuple (Q, Y, ∆, Λ, ρ[0]),
where Q = {0, 1, 2, ..., |Q|− 1} is the set of states; Y is the
set of outputs; ∆ captures the state transition probabilities; Λ
captures the output probabilities associated with transitions;
and ρ[0] is the initial state probability distribution vector.
More specifically, for q, q′ ∈ Q, xi ∈ X , and σ ∈ Y ,
the state transition probabilities are given by ∆(q, xi, q

′) =
P (Q[n + 1] = q′ | Q[n] = q, X [n + 1] = xi) and
the output probabilities associated with transitions are given
by Λ(q, σ, q′) = P (Q[n + 1] = q′, λ(Q[n], X [n + 1]) =
σ | Q[n] = q, X [n + 1] = xi), where λ denotes the
output function that assigns output σ to the transition from
state Q[n] under input X [n + 1]. We define the |Q| × |Q|
matrix Aσ , associated with output σ ∈ Y of the HMM,
as follows: an entry at the (j, k)th position of Aσ captures
the probability of a transition from state k to state j that
produces output σ. Note that

∑

σ∈Y Aσ = A, i.e., a matrix
whose (j, k)th entry denotes the probability of taking a
transition from state k to state j. The joint probability of the
state at step n and the observation sequence y[1], . . . , y[n] is
captured by the vector ρ[n] where the entry ρ[n](j) denotes
the probability that the HMM is in state j at step n and
the sequence yn

1 = y[1], . . . , y[n] has been observed. More
formally, ρ[n](j) = P (Q[n] = j, Y n

1 = yn
1 ) (note that ρ is

not necessarily a probability vector).

B. Likelihood Calculation

Given the observation sequence Y L
1 = yL

1 =< y[1],
y[2], ..., y[L] >, the priors, and the initial state probabil-
ity distributions for two candidate models, the diagnoser
implements the maximum a posteriori probability (MAP)
rule, by comparing P (S1 | yL

1 ) >
< P (S2 | yL

1 ) ⇒
P (yL

1 | S1)

P (yL
1 | S2)

>
<

P2

P1
, and deciding in favor of S1 (S2) if

the left (right) quantity is larger. For candidate HMM Si,
i = 1, 2, we can update ρi recursively as ρi[n + 1] =
Ai,y[n+1] ρi[n], n = 0, 1, ..., L − 1. If L is the last step,
the probability that the observation sequence was produced
by FSM Si is equal to the sum of the entries of ρi[L], i.e.,
P (yL

1 | Si) =
∑|Q|−1

j=0 ρi[L](j). This recursive algorithm
is the standard forward algorithm that is used to solve the
evaluation problem in HMMs.

III. PROBABILITY OF ERROR

We start by conditioning on a given observation sequence
and we compute online the conditional probability that the
diagnoser makes the incorrect decision as follows:

P (error at L | yL
1 ) = P (decide S2 at L, S1 | yL

1 )+
P (decide S1 at L, S2 | yL

1 )
= P (decide S2 at L | S1, yL

1 ) · P (S1 | yL
1 )+

P (decide S1 at L | S2, yL
1 ) · P (S2 | yL

1 )
= min{P (S2 | yL

1 ), P (S1 | yL
1 )}.

Since both posteriors are already computed (for use in
the MAP rule comparison), the probability of error given
the observation sequence yL

1 as a function of L can be
easily computed online along with the maximum likelihood
decision. At each step, the diagnoser chooses the model with
the larger posterior and makes an error with probability equal
to the posterior of the other model (of course, the posteriors
are normalized so that they sum up to one).

Our goal is to find a measure of the diagnosis
capability of our diagnosis scheme a priori, i.e.,
before any observation is made. The probability
of error at step L is given by P (error at L) =
∑

yL
1

(

P (yL
1 ) · min{P (S2 | yL

1 ), P (S1 | yL
1 )}

)

. To perform
such computation, we need to find each possible observation
sequence yL

1 , along with its probability of occurring, and use
it to compute the posterior of each model conditioned on this
observation sequence. To avoid the possibly prohibitively
high computational complexity (especially for large L) we
will focus on obtaining an easily computable upper bound
and then show that, under certain conditions, this bound on
the probability of error decays exponentially to zero with
the number of observation steps L.

A diagnoser that uses the MAP rule necessarily chooses
model S1 (S2) if the observation sequence cannot be pro-
duced by S2 (S1), with no risk of making an incorrect
decision. However, if the observation sequence can be pro-
duced by both models, the diagnoser chooses the model with
the highest posterior, thereby risking to make an incorrect
decision. The bound we obtain considers the worst case
scenario where, when both models are consistent with the
observation sequence yL

1 (i.e., when P (Si | yL
1 ) > 0 for

i = 1 and 2), the diagnoser always makes the incorrect
decision, and is given by

P (error at L)

=
∑

yL
1

min{P (S1 | yL
1 ), P (S2 | yL

1 )} · P (yL
1 )

= 1 −
∑

yL
1

max{P (S1 | yL
1 ), P (S2 | yL

1 )} · P (yL
1 )

= 1 −
∑

yL
1

:P (Si|y
L
1

)=0

for i=1 or 2

P (yL
1 )−

∑

yL
1

:P (Si|y
L
1

)>0

for i=1 and 2

max{P (S1 | yL
1 ), P (S2 | yL

1 )} · P (yL
1 )

≤ 1 −
∑

yL
1

:P (Si|y
L
1

)=0

for i=1 or 2

P (yL
1 ) −

1

2

∑

yL
1

:P (Si|y
L
1

)>0

for i=1 and 2

P (yL
1 )

= 1 −
∑

yL
1 :P (Si|y

L
1 )=0

for i=1 or 2

P (yL
1 ) −

1

2

(

1 −
∑

yL
1 :P (Si|y

L
1 )=0

for i=1 or 2

P (yL
1 )

)

= 1
2

(

1 −
∑

yL
1

:P (Si|y
L
1

)=0

for i=1 or 2

P (yL
1 )

)

= 1
2

(

1 − P1

∑

yL
1 :S2

incons.

P (yL
1 | S1) − P2

∑

yL
1 :S1

incons.

P (yL
1 | S2)

)

.

In the previous formulas we used the fact that, when both
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S1 and S2 are consistent with the observations, then the
maximum of their posteriors is greater than half.

Interestingly enough, given that the actual system is S1, to
compute the bound on the probability of error as a function
of the observation step, all we need to compute is the prob-
ability that the posterior of S2 is equal to zero conditioned
on the actual system being S1 (i.e., the probability that the
underlying system is S1 and it has generated a sequence that
is inconsistent with S2).

IV. CALCULATION OF BOUND ON PROBABILITY OF
ERROR

Initially, our objective is to capture the set of observation
sequences that are consistent with S1 but not with S2, i.e., to
capture the set of output sequences that can be produced by
S1 but not by S2. Once we have identified this set of output
sequences, we need to find its probability of occurring. First,
we construct the Markov chain S12|1 (respectively MC S12|2)
to help us compute the bound on the probability that S2

(respectively S1) becomes inconsistent with the observations
given that the actual model is S1 (respectively S2). In
particular, we explain how to construct MC S12|1 starting
from HMMs S1 and S2 in the following five steps (a similar
procedure can be followed to construct MC S12|2).

Step 1. Construct FSMs S1ND and S2ND from HMMs S1

and S2 respectively.
The set of input sequences that SiND accepts is the set of
output sequences that Si is capable of producing (where
i = 1, 2). Recall that HMM Si, is denoted by (Qi, Y,
∆i, Λi, ρi[0]) (without loss of generality1 we assume that
Y1 = Y2 = Y ). Ignoring the transition probabilities of HMM
Si, we build the possibly nondeterministic FSM SiND which
has the same set of states as Si and its set of inputs is equal to
the set of outputs of Si. The state transition functionality of
SiND is determined by the output functionality of Si which
is captured by Λi (although the probabilities are not impor-
tant at this point). More formally, FSM SiND is denoted by
SiND = (QiND , XiND, δiND , qiND0), where QiND = Qi;
XiND = Y ; qiND0 = {j s.t. ρi[0](j) > 0} (i.e., qiND0

includes all states of Si with nonzero initial probability);
and δiND(qiND , σ) = q′iND if Λi(qiND , σ, q′iND) 6= 0.

Step 2. Construct FSMs S1D and S2D from FSMs S1ND

and S2ND respectively.
We can think of FSM SiD as an observer for Si because
each state of SiD contains the set of states that Si may
be in given the observation sequence. The number of states
of SiD , i.e., the deterministic version of SiND could be as
many as 2|QiND|. Although this may raise complexity issues,
it is very common in practical scenarios for SiD to have
roughly the same number of states as SiND [10]. Following
the procedure of subset construction [10] we use SiND to
build the deterministic, equivalent machine SiD = (QiD,
XiD, δiD , qiD0), where QiD contains subsets of states in
the set Qi (recall that QiND = Qi); the set of inputs are the

1We can always redefine Y = Y1∪Y2 to be the output of both machines
if Y1 and Y2 are different.

same as the set of inputs of SiND, i.e., XiD = Y (recall that
Xi = Y ); qiD0 = qi0; and δiD is determined from SiND by
the procedure of subset construction, i.e., for QS ⊂ Qi and
σ ∈ Y , δiD(QS , σ) =

⋃

k s.t. δiND(j,σ)=k for j∈QS
k.

Step 3. Construct FSM S2DNC from FSM S2ND.
Next, we append the inconsistent state NC to S2D to obtain
FSM S2DNC . As mentioned earlier, FSM S2D accepts all
sequences that can be produced by S2. FSM S2DNC accepts
not only the sequences that can be produced by S2, but
also all other sequences (that cannot be produced by S2).
In fact, all sequences that cannot be produced by S2 will
lead S2DNC to its inconsistent state NC. More specifically,
S2DNC = (Q2DNC , X2DNC , δ2DNC , q2DNC0), where
Q2DNC = Q2D ∪ {NC}; X2DNC = Y ; q2DNC0 = q2D0

and δ2DNC is given by δ2DNC(q2D , σ) =
{

δ2D(q2DNC , σ), if q2DNC 6= NC, δ2D(q2DNC , σ) 6= ∅,
NC, otherwise.

Step 4. Construct FSM S1D2DNC from FSMs S1D and
S2DNC .
To capture the set of observations that can be produced
by S1 but not by S2, we need to build the product
FSM S1D2DNC . FSM S1D2DNC accepts all sequences that
can be produced by S1; from all of these sequences,
the ones that cannot be produced by S2 lead S1D2DNC

to a state of the form {q1D, NC}. More specifically,
S1D2DNC = S1D × S2DNC , i.e., S1D2DNC = (Q1D2DNC ,
X1D2DNC , δ1D2DNC , q0,1D2DNC), where Q1D2DNC =
Q1D × Q2DNC ; X1D2DNC = Y (recall that X1D =
X2DNC = Y ), q0,1D2DNC = q0,1D × q0,2DNC ; and
δ1D2DNC is given by δ1D2DNC({q1D, q2DNC}, σ) =
{δ1D(q1D, σ), δ2DNC(q2DNC , σ)}, σ ∈ Y. Note that
δ1D2DNC({q1D, q2DNC}, σ) is undefined if δ1D(q1D , σ) is
undefined.

Step 5. Construct MC S12|1 from FSM S1D2DNC or from
S1, S1D, and S2D.
To compute the probabilities of the sequences captured
by S1D2DNC we construct the Markov chain S12|1 =
(Q12|1 X12|1, ∆12|1, ρ12|1[0]), where Q12|1 = Q1 ×
Q1D2DNC ; X12|1 = Y ; ρ12|1[0]({q1, q0,1D2DNC}) =

ρ1[0](q1), for every q1 ∈ Q1 and zero otherwise;2

and ∆12|1 is given by ∆12|1 ({q1, q1D, q2DNC}, σ,
{q′1, δ1D(q1D , σ), δ2DNC(q2DNC , σ)}) = Λ1(q1, σ, q′1)
for all σ ∈ Y s. t. δ1D(q1D , σ) 6= ∅. We group all states
of the form {q1, q1D, NC} in one new state and call it NC;
we also add a self-loop at state NC with probability one.

Alternatively we can build MC S12|1 from S1, S1D, and
S2D as follows: S12|1 = (Q12|1, X12|1, ∆12|1, ρ12|1[0]),
where Q12|1 = Q1 × Q1D × Q2D; X12|1 = Y ;
ρ12|1[0]({q1, q1D, q2D}) = ρ1[0](q1), for every q1 ∈
Q1, q1D ∈ Q1D, and q2D ∈ Q2D; and ∆12|1

is given by ∆12|1({q1, q1D, q2DNC}, σ, {q′1, δ1D(q1D, σ),
δ2DNC(q2DNC , σ)}) = Λ1(q1, σ, q′1), for all σ ∈

2Abusing notation, we use ρ12|1 [0]({q1, q1D2DNC}) to denote the
entry of ρ12|1[0] that corresponds to state {q1, q1D2DNC}; of course,
ρ1[0](q1) denotes the entry of ρ1[0] that corresponds to state q1.
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Fig. 1. State transition diagrams of (i) HMM S1, (ii) FSM S1D , and (iii) FSM S1DNC of Example 1.
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Fig. 2. State transition diagrams of (i) HMM S2, (ii) FSM S2D , and (iii) FSM S2DNC of Example 1.

Y s. t. δ1D(q1D , σ) 6= ∅ and δ2D(q2D, σ) 6= ∅
or ∆12|1 ({q1, q1D, q2DNC}, σ, {q′1, δ1D(q1D, σ), NC}) =
Λ1(q1, σ, q′1), for all σ ∈ Y s. t. δ1D(q1D, σ) 6= ∅ and
δ2D(q2D , σ) = ∅. As mentioned before, we group all states
of the form {q1, q1D, NC} in one new state and call it NC;
then we add a self-loop at state NC with probability one.

Notice that any path in S12|1 that ends up in state NC
represents a sequence that can be produced by S1 but not
by S2; the probability of such path is easily computed
using the Markovian property. Recall that our objective
is to calculate the probability that HMM S2 is incon-
sistent with the observations given that the observations
are produced by S1 (i.e.,

∑

yL
1 :S2

incons.

P (yL
1 | S1)). Therefore,

we are interested in the probability of S12|1 being in the
inconsistent state NC as a function of the observation
step given by P (S12|1 in state NC at L) = π12|1[L](NC),
where π12|1[L](NC) denotes the entry of π12|1[L] that
captures the probability that S12|1 is in the inconsistent state
NC at L. Note that π12|1[L] = AL

12|1π12|1[0], where A12|1

is the matrix that captures the transition probabilities for MC
S12|1 and π12|1[0] = ρ12|1[0].

Proposition 1: The probability of error as a function of
the observation step is given by

P (error at L) ≤
1
2

(

1 − P1 ·
∑

yL
1 :S2

incons.

P (yL
1 | S1) − P2 ·

∑

yL
1 :S1

incons.

P (yL
1 | S2)

)

= 1
2 − 1

2P1 · π12|1[L](NC) − 1
2P2 · π12|2[L](NC),

where π12|1[L](NC) captures the probability of S12|1 being

in state NC at step L, π12|2[L](NC) captures the probability
of S12|2 being in state NC at step L, and P1 and P2 denote
the priors of S1 and S2. 2

Example 1: We consider two candidate HMMs S1 and
S2 with Q1 = Q2 = {0, 1, 2}, Y1 = Y2 = {a, b},
initial state {0}, and transition functionality, as shown in
Figures 1.(i) and 2.(i), where each transition is labeled by
pi | σ, i.e., the probability of the transition and the output it
produces. Following the procedure of subset construction we
construct the deterministic FSMs S1D and S2D as shown in
Figures 1.(ii) and 2.(ii), respectively (notice that we include
states {1} and {2} in the state transition diagram of S1D for
completeness although they are not reachable from the initial
state {0}). Adding the inconsistent state for each machine we
get FSMs S1DNC and S2DNC as shown in Figures 1.(iii)
and 2.(iii), respectively. Then, we construct MCs S12|1 and
S12|2 with state transition diagrams as shown in Figures 3
and 4, respectively. For example, the sequence < a a b a >
can be produced by S1 but not by S2 (hence, given that this is
the observation sequence, the probability that the diagnoser
makes an incorrect decision is zero). In fact, all sequences
in S12|1 that end up in state NC can be produced by S1 but
not by S2. 2

V. PROPERTIES OF BOUND ON PROBABILITY OF ERROR

The inconsistent state NC in MC S12|1 is an absorbing
state by construction. Therefore, the probability that S12|1

is in state NC does not decrease as a function of the
observation step; the same property holds for S12|2. From
Proposition 1 it is clear that the bound on the probability of
error is a nonincreasing function of the observation step.
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Fig. 3. State transition diagram of MC S12|1 of Example 1.
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Fig. 4. State transition diagram of MC S12|2 of Example 1.

Proposition 2: The bound on the probability of error
given by Proposition 1 is a nonincreasing function of the
number of observation steps. 2

In fact, if MCs S12|1 and S12|2 have a unique absorbing
state each, i.e., state NC, then the bound goes to zero as the
number of observation steps increases. The expected number
of steps to absorption, given that the initial state is the
0th state of S12|1, can be calculated using the fundamental
matrix of the absorbing Markov chain S12|1 [11]. If AT12|1

is the substochastic transition matrix of S12|1 that captures
the transitions among all transient states (all but NC) then
the fundamental matrix is given by

∑∞
i=0 AT12|1

i = (I −
AT12|1)

−1 and its (j, k)th entry captures the expected num-
ber of transitions from state k to state j before absorption.
The expected number of steps to absorption, given that the
initial state is state {0}, is equal to the sum of the elements
of the 0th column of the fundamental matrix. In fact, the
rate of convergence to absorption depends on the largest
eigenvalue of the substochastic matrix AT12|1 (because the
rate of convergence of matrix Am

T12|1 is captured by the rate
of convergence of λm

12|1, where λ12|1 is the largest eigenvalue
of AT12|1 and m denotes the number of steps [11]).

Let us now consider the scenario where neither S12|1 nor
S12|2 includes the inconsistent state NC in their set of states.
Then the bound on the probability of error will not go to zero;
in fact, it will always be equal to half, thereby providing us

with no useful information. This scenario corresponds to the
case where all output sequences that can be produced by S1

can also be produced by S2 and vice versa. For this to be
true, S1 and S2 need to be equivalent, i.e., generate the same
regular language (i.e., the same set of output sequences). Of
course, although the set of output sequences is the same
for both models, the probabilities associated with an output
sequence could be different for each model. The posteriors
of the candidate models in this case would be strictly greater
than zero for any observation sequence; hence the error in
the MAP decision will always be nonzero. We can check
whether S1 and S2 are equivalent using standard approaches
with complexity O((|Q1D | + |Q2D|)2) [10]. We can also
easily check equivalence by using S1D2DNC and S1DNC2D

which we have already constructed: if the inconsistent state
in either S1D2DNC or S1DNC2D (and consequently S12|1 or
S12|2) can be reached starting from the initial state, then the
two models are not equivalent.

If MC S12|1 has no absorbing state and MC S12|2 has
only the state NC as an absorbing state, then the bound
on the probability of error goes to the value P1

2 . This case
corresponds to the language generated by S1 being a subset
of the language generated by S2, i.e., the set of output
sequences that can be produced by S1 can also be produced
by S2. To check for this scenario, we can check whether the
inconsistent state in S1D2DNC is reachable from the initial
state. We formalize the above discussion in the following
proposition.

Proposition 3: For two HMMs S1 and S2, the upper
bound on the probability of error for the diagnosis decision

• tends to zero exponentially with the number of obser-
vation steps, if (and only if) each of FSMs S1D2DNC

and S1DNC2D has a unique absorbing state, namely the
inconsistent state;

• tends to the value P1/2 exponentially with the number
of observation steps, if FSM S1D2DNC has no incon-
sistent state and FSM S1DNC2D has a unique absorbing
state, i.e., the inconsistent state;

• tends to the value P2/2 exponentially with the number
of observation steps, if FSM S1D2DNC has no incon-
sistent state and FSM S1DNC2D has a unique absorbing
state, i.e., the inconsistent state;

• is equal to 1/2, if (and only if) FSMs S1D2DNC and
S1DNC2D have no inconsistent states. 2

Example 1 (continued): As shown in Figures 3 and 4,
each of S12|1 and S12|2 have NC as the unique absorbing
state. Assuming equal priors P1 = P2 = 0.5, the bound on
the probability of error can be calculated; as expected, it goes
to zero exponentially as the observation time increases (see
Figure 5). After running simulations, half with the actual
model being S1 and the other half with the actual model
being S2, we obtain the empirical probability of error given
S1 (and given S2) by recording the fraction of simulations
for which the diagnoser incorrectly decided S2 (and S1,
respectively). The empirical probability of error as a function
of the observation step is shown in Figure 5. The expected
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Fig. 5. Plot of the bound on the probability of error (solid) and the empirical
probability of error obtained via simulations (dashed) in Example 1, as
functions of the observation step.
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Fig. 6. State transition diagram of (i) HMM S1 and (ii) HMM S3 of
Example 2.

time to absorption for S12|1 is calculated to be 6.8 steps and
the expected time to absorption for S12|2 is 6.3 steps; hence,
for equal priors, the mean number of steps for the probability
of error to become zero is 6.55 steps. 2

Example 2: We consider HMM S1 of Example 1 and
HMM S3 as shown in Figure 6, and we assume equal priors.
Notice that any output sequence that can be produced by S3

can also be produced by S1; thus, there is no inconsistent
state in S13|3 and the probability

∑

yL
1 :P (S1|yL

1 )=0 P (yL
1 | S3)

is always equal to zero. On the other hand, S13|3 has a unique
absorbing inconsistent state. According to the proposition,
we expect the bound on the probability of error to go
to P1/2 = 0.25. ¿From Figure 7 we see that, although
the bound on the probability of error goes to 0.25, the
simulations show that the empirical probability of error goes
to zero as the number of steps increases; for this set of
candidate models, the bound is not tight, even as the number
of observation steps goes to infinity. 2

VI. CONCLUSIONS

In this paper we consider a formulation of failure di-
agnosis as a maximum likelihood classification problem.
Given candidate HMMs along with their priors, a diagnoser
determines which candidate model has most likely produced
the observation sequence of the system under diagnosis. We
are interested in the a priori probability that the diagnoser
makes an incorrect decision as a function of the observation
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Fig. 7. Plot of the bound on the probability of error (solid) and the
empirical probability of error obtained by simulation (dashed) in Example 2,
as functions of the observation step.

step. Since the complexity for calculating the exact proba-
bility of error can be prohibitively high, we find an upper
bound on this probability, as well as necessary and sufficient
conditions for the bound to go exponentially to zero as the
number of observation steps increases. These bounds can be
used to bound the similarity/dissimilarity between HMMs
and can therefore find applications in many areas where
HMM classification is used, including pattern recognition
applications and bioinformatics.
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