
Cauchy Estimation for Linear Scalar Systems

Moshe Idan∗

Mechanical and Aerospace Engineering

University of California, Los Angeles

Los Angeles, California 90095–1597

Email: moshe.idan@ucla.edu

Jason L. Speyer

Mechanical and Aerospace Engineering

University of California, Los Angeles

Los Angeles, California 90095–1597

Email: speyer@seas.ucla.edu

Abstract—An estimation paradigm is presented for scalar
discrete linear systems entailing additive process and measure-
ment noises that have Cauchy probability density functions
(pdf). For systems with Gaussian noises, the Kalman filter has
been the main estimation paradigm. However, many practical
system uncertainties that have impulsive character, such as radar
glint, are better described by stable non-Gaussian densities, for
example, the Cauchy pdf. Although the Cauchy pdf does not have
a defined mean and does have an infinite second moment, the
conditional density of a Cauchy random variable, given its linear
measurements with an additive Cauchy noise, has a conditional
mean and a finite conditional variance, both being functions of
the measurement. For a single measurement, simple expressions
are obtained for the conditional mean and variance, by deriving
closed form expressions for the infinite integrals associated with
the minimum variance estimation problem. To alleviate the
complexity of the multi-stage estimator, the conditional pdf is
represented in a special factored form. A recursion scheme is
then developed based on this factored form and closed form
integrations, allowing for the propagation of the conditional
mean and variance over an arbitrary number of time stages.
In simulations, the performance of a newly developed scalar
discrete-time Cauchy estimator is significantly superior to a
Kalman filter in the presence of Cauchy noise, whereas the
Cauchy estimator deteriorates only slightly compared to the
Kalman filter in the presence of Gaussian noise. Remarkably, this
new recursive Cauchy conditional mean estimator has parameters
that are generated by linear difference equations with stochastic
coefficients, providing computational efficiency.

I. INTRODUCTION

Many engineering applications entail random processes

or noises that have significant deviations not captured by

commonly assumed Gaussian probability distributions. For

example, atmospheric and underwater acoustic noises, that are

the governing noise types in radar and sonar applications,

are non-Gaussian and have a very impulsive character [1].

The class of probabilistic models used to represent impulsive

noises is called stable non-Gaussian or symmetric alpha-stable

(Sα-S) distributions (see [2] for a comprehensive treatment

of Sα-S densities). In this class, the Gaussians correspond to

the α=2 case, whereas α=1 leads to the Cauchy probability

density function (pdf).

It has been shown that a Cauchy pdf better characterizes

such impulsive types of sensor noise than the Gaussian. For
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example, a Sα-S pdf was used to detect a radar signal in clut-

ter, showing that the in-phase component of radar clutter time

series agree extremely well with a Sα-S pdf with α=1.7 [3].

In that study both the maximum likelihood Gaussian (MLG)

and Cauchy (MLC) detectors were developed. The result is

that for all α∈[1, 2] the MLC is very close to the Cramer-

Rao bound, whereas the MLG deviates significantly as α goes

from 2 to 1. Similar results for a multi-user communication

network are reported in [4]. There it is noted that the Gaussian

and Cauchy detectors have similar complexities and there is

no computational advantage in preferring one over the other.

In addition it was observed that the Cauchy receiver is robust

in the entire class of Sα-S noises, while the Gaussian receiver

degrades very quickly even if the Gaussian assumption is only

slightly violated. Moreover, this performance degradation is

more serious at low probabilities of false alarm, at which any

realistic detector would work.

The above observations about the nature of the impulsive

noises and the robustness characteristics of the Cauchy detec-

tors motivated the development of sequential estimators for

linear systems with additive Cauchy noises presented in this

study. Such heavy tailed pdf does not posses well defined

and/or finite moments of any order [5], which make the

associated estimation problem significantly more challenging

compared to the Gaussian case.

There are many surprises when determining the properties

of the conditional pdf for linear system dynamics with addi-

tive Cauchy random variables. The first surprise is that the

conditional pdf of the state given the measurement is not

Cauchy and has a finite mean and variance. Secondly, the

usual difficulty in the implementation of the recursion for

the conditional pdf is the evaluation of the infinite integrals

required in the time propagation and normalization in the

measurement update [6]. However, when formulated in a

particular factored form, it is shown that these integrals can be

determined in closed form by using, for example, the Cauchy

residual theorem [7]. Therefore, the conditional pdf as well

as the conditional mean and variance can be propagated with

computational ease, which is remarkable for a pdf other than

the Gaussian.

The paper is organized as follows. The problem is formu-

lated in section II. In section III a single measurement update

and time propagation are determined in a simple analytic form.
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Section IV presents a special factorization, used to derive a

recursion for generating the conditional pdf and to compute

the infinite integrals of the conditional mean and variance. For

a particular dynamic system, the recursion is implemented and

the results are presented in section V. The performance of this

estimator in the presence of heavy tailed Cauchy measurement

and process noises is examined over a large number of sample

times, demonstrating its superiority over the classical Kalman

filter. In section VI we conclude.

II. PROBLEM STATEMENT

We consider a scalar linear, discrete, time invariant dynamic

system given by

x(k + 1) = Φx(k) + Γu(k) + w(k) (1)

z(k) = Hx(k) + v(k) (2)

where x, u and z are, respectively, the state, known input,

and measurement. w and v are uncorrelated, white process

and measurement noises, with Cauchy probability density

functions (pdf) given by

fWk

(

w(k)
)

=
β/π

w2(k) + β2
(3)

fVk

(

v(k)
)

=
γ/π

v2(k) + γ2
(4)

β and γ are known Cauchy scaling parameters. The initial

condition of x is assumed to be also Cauchy distributed with

fX0

(

x(0)
)

=
α/π

(

x(0) − x̄0

)2
+ α2

(5)

with a known positive scaling parameter α and median x̄0.

The goal is to design an optimal, minimum variance esti-

mator of x(k) given measurements z(i), i = 0, 1, . . . , k.

III. ONE STEP UPDATE

To better understand the Cauchy estimator, one measure-

ment update followed by a time propagation step is examined.

A. Measurement Update

Given the initial distribution of x(0), Eq. (5), and a mea-

surement z(0), the minimum variance estimate of x(0) is the

conditional expectation, E
[

x(0)|z(0)
]

, determined from the

conditional density function fX0|Z0

(

x(0)|z(0)
)

, constructed as

fX0|Z0

(

x(0)|z(0)
)

=
fX0,Z0

(

x(0), z(0)
)

fZ0

(

z(0)
) (6)

The joint probability fX0,Z0

(

x(0), z(0)
)

, computed using

measurement Eq. (2) and noise pdf of Eq. (4), is

fX0,Z0

(

x(0), z(0)
)

= fX0

(

x(0)
)

fV0

(

z(0) − Hx(0
)

(7)

The marginal probability fZ0

(

z(0)
)

is obtained by

fZ0

(

z(0)
)

=

∞
∫

−∞

fX0,Z0

(

x(0), z(0)
)

dx(0) (8)

Solving analytically the above integral yields

fX0|Z0

(

x(0)|z(0)
)

= (9)

αγ/π

|H|α + γ

(

z(0) − Hx̄0

)2
+

(

|H|α + γ
)2

[

(

x(0) − x̄0

)2
+ α2

] [

(

z(0) − Hx(0)
)2

+ γ2

]

Examining the conditional pdf of Eq. (9) reveals that

although the original pdf in Eq. (5) had no well defined mean

and an infinite second moment, the former has two computable

finite moments. This implies that a minimum variance estimate

of x(0) given the measurement z(0) can be determined as

x̂(0) = E
[

x(0)|z(0)
]

=

∞
∫

−∞

x(0)fX0|Z0

(

x(0)|z(0)
)

dx(0) (10)

After a lengthy analytical manipulation, the conditional

mean computation results in a strikingly simple relation

x̂(0) = x̄0 +
α sign(H)

|H|α + γ

(

z(0) − Hx̄0

)

(11)

Similarly, one can determine the minimum variance of the

estimation error x̃(0) = x(0) − x̂(0) as

E
[

x̃2(0)|z(0)
]

=
αγ

|H|

[

(

z(0) − Hx̄0

)2

(

|H|α + γ
)2

+ 1

]

(12)

Note that the estimate is linear in the measurement, resem-

bling a measurement update equation of the Kalman filter,

with a different gain multiplying the difference z(0)−Hx̄0.

Contrary to the Kalman filter, the variance in the Cauchy case

depends on the measurement: it is proportional to the square of

the difference between the measurement z(0) and its median

value Hx̄0 that would have been attained with no measurement

noise and a median value x̄0 for x(0). In particular, a large

variance would be obtained when z(0)−Hx̄0 is large.

Furthermore, fX0|Z0

(

x(0)|z(0)
)

of Eq. (9) has a fourth

order denominator with two pairs of complex conjugate

roots at x̄0±jα and z(0)/H±jγ/|H|, while the initial pdf

fX0

(

x(0)
)

of Eq. (5) had only one pair at x̄0±jα. This implies

that a measurement update increases the order of the pdf

denominator by two, adding to it a conjugate pair of roots

with measurement dependent values z(0)/H±jγ/|H|. This

fact is exploited in the subsequent derivations.

A measurement updated pdf is shown in Fig. 1 for parameter

values stated on the plot. It is interesting to note that unlike in

the Gaussian, the conditional pdf fX0|Z0

(

x(0)|z(0)
)

is non-

symmetric and non-unitary, the extent of which is determined

by the size of the difference z(0)−Hx̄0.

B. Time Propagation

In the time propagation step we construct the conditional

pdf of the state at time k=1 given the measurement z(0), i.e.,
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Fig. 1. One step measurement update.

fX1|Z0

(

x(1)|z(0)
)

. Using the Chapman-Kolmogorov equa-

tion, this conditional pdf can be computed by

fX1|Z0

(

x(1)|z(0)
)

=
∞
∫

−∞

fX1|X0

(

x(1)|x(0)
)

fX0|Z0

(

x(0)|z(0)
)

dx(0) (13)

In this expression, fX0|Z0

(

x(0)|z(0)
)

is given in Eq. (9).

fX1|X0

(

x(1)|x(0)
)

is computed using the dynamics Eq. (1)

and the process noise pdf of Eq. (3):

fX1|X0

(

x(1)|x(0)
)

= fW0

(

x(1) − Φx(0) − Γu(0)
)

(14)

Substituting Eqs. (3), (9) and (14) into Eq. (13) and inte-

grating yields the conditional pdf

fX1|Z0

(

x(1)|z(0)
)

=

A
(

x(1) − B
)2

+ C2

[

(

x(1) − x̄11

)2
+ α2

1

] [

(

x(1) − x̄12

)2
+ α2

2

] (15)

where

x̄11 = Φx̄0 + Γu(0) α1 = |Φ|α + β (16a)

x̄12 =
Φ

H
z(0) + Γu(0) α2 =

∣

∣

∣

∣

Φ

H

∣

∣

∣

∣

γ + β (16b)

and A, B and C are complicated functions of the various

system parameters and the signals z(0) and u(0). Since the

exact expressions do not provide valuable information or

insight, they are not detailed in this exposition.

Note that this time propagated pdf has a fourth order denom-

inator, similar to the pdf we obtained after the measurement

update in Eq. (9). Two major difference can be observed

though. First, the values of the denominator roots have been

changed to x̄1i±jαi, i=1, 2. Second, the numerator of the

pdf in Eq. (15) is second order in x(1), indicating that this

pdf, similar to a Cauchy pdf, has an undefined mean and

an infinite second moment. This implies that contrary to the

Gaussian case, one cannot compute a prior to measurement

z(1) estimate of the state x(1) given z(0) only.

Carrying out an additional measurement update with z(1)
when starting with the propagated fourth order pdf of Eq. (15)

proved extremely complex and unpractical. Therefore, we

have adopted an alternative approach, that builds on the facts

learned from the one step measurement update and time

propagation presented above.

IV. THE CAUCHY ESTIMATOR

A. pdf Factorization

Motivated by the structure of the rational pdfs encountered

during the one step measurement update and time propagation

process, for the derivation of a sequential estimator, at step

k, just before the update using the measurement z(k) is

performed, we represent the conditional pdf of x(k) given

past data y(k−1) in a factored form given by

fXk|Y
k−1

(

x(k)|y(k−1)
)

=

k+1
∑

i=1

ai(k|k−1)x(k) + bi(k|k−1)
(

x(k) − σi(k|k−1)
)2

+ ω2
i (k|k−1)

(17)

where y(k−1) denotes the measurement history from time

step 0 to k−1, i.e., y(k−1)=[z(0) · · · z(k−1)]. At k=0,

the above pdf represents the a-priori distribution of x(0)
given in Eq. (5). Hence at k=0 there is only one term in

the sum, with a1(0|−1)=0, b1(0|−1)=α/π, σ1(0|−1)=x̄0,

and ω1(0|−1)=α. In the consequent steps, the parameters

ai(k|k−1), bi(k|k−1), σi(k|k−1), and ωi(k|k−1) will be

functions of the measurements y(k−1) as is detailed below.

This pdf changes during measurement update and time prop-

agation steps, as presented in section III. Each measurement

update increases the pdf denominator order by two, adding a

pair of complex measurement dependent roots to it. This is

represented by an additional term in the pdf sum of Eq. (17),

while the rest of the pdf poles remains unchanged. All the

numerator parameters ai(k|k−1) and bi(k|k−1) will change

during the measurement update. The time propagation does

not change the number of terms in the pdf sum, but affect all

its parameters.

B. Measurement Update

Following the steps in section III-A, we compute

fXk|Yk

(

x(k)|y(k)
)

=
fXk,Zk|Yk−1

(

x(k), z(k)|y(k−1)
)

fZk|Yk−1

(

z(k)|y(k−1)
) (18)

The density function in the above numerator is computed as

fXk,Zk|Yk−1

(

x(k), z(k)|y(k−1)
)

= fXk|Yk−1

(

x(k)|y(k−1)
)

fVk

(

z(k) − Hx(k)
)

=

k+1
∑

i=1

ai(k|k−1)x(k) + bi(k|k−1)
(

x(k) − σi(k|k−1)
)2

+ ω2
i (k|k−1)

×

γ/π
(

z(k) − Hx(k)
)2

+ γ2
(19)
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Using partial fraction expansions on the terms in the above

sum, we obtain

fXk,Zk|Yk−1

(

x(k), z(k)|y(k−1)
)

=

k+2
∑

i=1

āi(k|k)x(k) + b̄i(k|k)
(

x(k) − σi(k|k)
)2

+ ω2
i (k|k)

(20)

σi(k|k)=σi(k|k−1), ωi(k|k)=ωi(k|k−1), i=1, . . . , k+1 rep-

resent the unchanged roots of the pdf denominator, while

σk+2(k|k)=z(k)/H and ωk+2(k|k)=γ/|H| represent its new

complex measurement dependent roots. āi(k|k) and b̄i(k|k)
are computed from the partial fraction expansions as
{

āi(k|k)

b̄i(k|k)

}

= Fi(k)

{

ai(k|k−1)

bi(k|k−1)

}

, i = 1, . . . , k + 1 (21)

where

Fi(k) =
1

∆i(k)
×











δi(k) −
σ(k|k)
ω(k|k)

θi(k) − 1
ω(k|k)

θi(k)

σ2(k|k) + ω2(k|k)
ω(k|k)

θi(k) δi(k) +
σ(k|k)
ω(k|k)

θi(k)











(22)

δi(k) =
(

σk+2(k|k) − σi(k|k)
)2

+ ω2
k+2(k|k) − ω2

i (k|k) (23a)

θi(k) = 2ωi(k|k)
(

σi(k|k) − σk+2(k|k)
)

(23b)

∆i(k) =
πγ

ω2
k+2(k|k)

(

δ2
i (k) + θ2

i (k)
)

(23c)

Note that the matrices Fi(k), i=1, . . . , k+1 are not functions

of the numerator parameters ai(k|k+1) and bi(k|k+1), gener-

ating a linear, time-dependent, stochastic update equation (21).

The numerator parameters of the new term in the pdf sum are

āk+2(k|k) =
k+1
∑

i=1

āi,k+2(k|k) (24)

b̄k+2(k|k) =
k+1
∑

i=1

b̄i,k+2(k|k) (25)

where for i=1, . . . , k+1
{

āi,k+2(k|k)

b̄i,k+2(k|k)

}

= Fi,k+2(k)

{

āi(k|k)

b̄i(k|k)

}

(26a)

and

Fi,k+2(k) = −

[

1 0

2
(

σi(k|k) − σk+2(k|k)
)

1

]

. (26b)

Next, fZk|Yk−1

(

z(k)|y(k−1)
)

is determined by integrating

the pdf in Eq. (20) with respect to x(k). Due to the modular

structure of this pdf, the integral is evaluated analytically as

fZk|Yk−1

(

z(k)|y(k−1)
)

= π

k+2
∑

i=1

āi(k|k)σi(k|k) + b̄i(k|k)

ωi(k|k)

(27)

Finally, the conditional pdf in Eq. (18) is obtained by dividing

the result in Eq. (20) by the one in Eq. (27), yielding

fXk|Yk

(

x(k)|y(k)
)

=

k+2
∑

i=1

ai(k|k)x(k) + bi(k|k)
(

x(k) − σi(k|k)
)2

+ ω2
i (k|k)

(28)

where ai(k|k) and bi(k|k) are obtained by dividing āi(k|k)
and b̄i(k|k) by the results in Eq. (27), i.e., for i=1, . . . , k+2

ai(k|k) = āi(k|k)/fZk|Yk−1

(

z(k)|y(k−1)
)

(29a)

bi(k|k) = b̄i(k|k)/fZk|Yk−1

(

z(k)|y(k−1)
)

. (29b)

Eq. (28) indicates that the pdf structure defined in Eq. (17)

is maintained after a measurement update. Moreover, one

can see the explicit dependence of updated pdf parameters

on the measurement z(k). Firstly, σk+2(k|k)=z(k)/H . In

addition, all the numerator parameters ai(k|k) and bi(k|k),
i=1, . . . , k +2, depend on z(k) though the dependence of the

matrices Fi(k) and Fi,k+2(k) on σk+2(k|k).
The modular form of Eq. (28) allows also an efficient

computation of its first two moments, the former yielding the

state estimate x̂(k|k). Those are given by

x̂(k|k) = π

k+2
∑

i=1

ai

(

σ2
i − ω2

i

)

+ biσi

ωi

(30)

E
(

x2|y(k)
)

= π

k+2
∑

i=1

(

aiσi + bi

) (

σ2
i − ω2

i

)

− 2aiσiω
2
i

ωi

(31)

The error variance is obtained by

E
(

x̃2|y(k)
)

= E
(

x2|y(k)
)

− x̂2(k|k) (32)

Note that in Eqs. (30) and (31) the time tag (k|k) of the pdf

parameters is dropped for simplicity.

C. Time Propagation

Consider the time propagation from step k to step k+1.

Given the conditional pdf in Eq. (28) our goal is to construct

fXk+1|Yk

(

x(k+1)|y(k)
)

. Similarly to the computation in sec-

tion III-B, using the Chapman-Kolmogorov equation we have

fXk+1|Yk

(

x(k+1)|y(k)
)

(33)

=

∞
∫

−∞

fXk+1|Xk

(

x(k+1)|x(k)
)

fXk|Yk

(

x(k)|y(k)
)

dx(k)

where

fXk+1|Xk

(

x(k+1)|x(k)
)

= fWk

(

x(k+1) − Φx(k) − Γu(k)
)

=
β/π

(

x(k+1) − Φx(k) − Γu(k)
)2

+ β2
(34)

Using Eqs. (28) and (34), the integral in Eq. (33) can be

computed for each term in the sum analytically, leading to

fXk+1|Yk

(

x(k+1)|y(k)
)

=

k+2
∑

i=1

ai(k+1|k)x(k+1) + bi(k+1|k)
(

x(k+1) − σi(k+1|k)
)2

+ ω2
i (k+1|k)

(35)
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where for i=1, . . . , k+2

σi(k+1|k) = Φσi(k|k) + Γu(k) (36)

ωi(k+1|k) = |Φ|ωi(k|k) + β (37)
{

ai(k+1|k)

bi(k+1|k)

}

= Gi(k)

{

ai(k|k)

bi(k|k)

}

(38)

with

Gi(k) =







sign(Φ) 0

σi(k|k)β
ωi(k|k)

− sign(Φ)Γu(k)
ωi(k+1|k)
ωi(k|k)






(39)

Again we observe that the factored pdf structure of Eq. (17)

is maintained also after the time propagation in Eq. (35).

D. Discussion

The measurement update and time propagation procedures

presented above can be repeated for any number of steps,

while maintaining the factored form of the pdfs. The mea-

surement updated extends the pdf, increasing the order of

its denominator and thus adding an additional term in the

factored sum. The time propagation modifies the parameters in

the sum, without increasing its size. This type of a recursion

will lead to a constantly increasing number of terms in the

pdf sum. To overcome this continuous growth, we analyze

whether the number of elements in this sum can be truncated,

thus approximating the pdf to within a reasonable accuracy.

E. Finite Dimensional Approximation

We are interested in analyzing the dynamic behavior of

the parameters ai(k|k) and bi(k|k) as a function of time.

Their decay would imply that the pdf sum could be truncated,

leading to a finite dimensional representation and a finite

dimensional estimator. Unfortunately, the division presented in

Eqs. (29) complicates the analysis to a point that no definite

conclusion can be drawn regarding the dynamics of those

parameters.

However, using the same derivation and factorization pre-

sented above, an alternative estimator can be constructed by

propagating the joint (and not the conditional) pdf of the state

x(k) and the measurement history y(k). Specifically, similar

to Eq. (17), prior to the measurement update the joint pdf is

represented by

fXkY
k−1

(

x(k)y(k−1)
)

=

k+1
∑

i=1

àffl i(k|k−1)x(k) + b̃ i(k|k−1)
(

x(k) − σi(k|k−1)
)2

+ ω2
i (k|k−1)

(40)

This pdf is initialized the same way as the one in Eq. (17). A

measurement update leads to

fXkYk

(

x(k)y(k)
)

=
k+2
∑

i=1

àffl i(k|k)x(k) + b̃ i(k|k)
(

x(k) − σi(k|k)
)2

+ ω2
i (k|k)

(41)

obtained using the same computations performed to attain

Eq. (20). Thus, σi(k|k)=σi(k|k−1), ωi(k|k)=ωi(k|k−1) for

i=1, . . . , k+1 represent the unchanged roots of the pdf denom-

inator, while σk+2(k|k)=z(k)/H and ωk+2(k|k)=γ/|H| are

the new roots. The numerator parameters are propagated and

generated exactly as in the conditional pdf case, i.e., through

Eqs. (21)-(26), while replacing (ai, bi) with (àffl i, b̃ i).
The time propagation of this joint pdf is identical to the

one presented in section IV-C. In particular, Eqs. (36), (37)

and (39) are unchanged, and in Eq. (38) (ai, bi) are replaced

by (àffl i, b̃ i).
Propagating the joint pdf changes the computation of the

state estimate and the second moment of the state to

x̂(k|k) =





∞
∫

−∞

x(k)fXkYk

(

x(k)y(k)
)

dx(k)



 /fYk

(

y(k)
)

=
π

fYk

(

y(k)
)

k+2
∑

i=1

àffl i
(

σ2
i − ω2

i

)

+ b̃ iσi

ωi

(42)

E
(

x2|y(k)
)

=

∞
∫

−∞

x2(k)fXkYk

(

x(k)y(k)
)

dx(k)

fYk

(

y(k)
)

=
π

fYk

(

y(k)
)

k+2
∑

i=1

(

àffl iσi + b̃ i

)

(

σ2
i − ω2

i

)

− 2àffl iσiω
2
i

ωi

(43)

where

fYk

(

y(k)
)

=

∞
∫

−∞

fXkYk

(

x(k)y(k)
)

dx(k)

= π
k+2
∑

i=1

àffl i(k|k)σi(k|k) + b̃ i(k|k)

ωi(k|k)
(44)

In Eqs. (42) and (43) the (k|k) dependance of the pdf

parameters is suppressed for presentation brevity.

Note that the time updated parameters ai(k|k) and bi(k|k)
of the conditional pdf discussed in section IV-B can be

computed from those of the joint pdf, àffl i(k|k) and b̃ i(k|k), by

dividing the latter by fYk

(

y(k)
)

of Eq. (44). Obviously, there

is no change in the parameters σi(k|k) and ωi(k|k) between

the conditional and joint pdfs. Consequently, both formulations

lead to the same estimates and error variances.

The advantage of the derivation based on the joint pdf is in

the fact that both the measurement update and time propaga-

tion equations for the pdf parameters are linear. Combining the

measurement update and time propagation, the measurement

updated parameters at steps k and k+1 are related linearly as

σi(k+1|k+1) = Φσi(k|k) + Γu(k) (45)

ωi(k+1|k+1) = |Φ|ωi(k|k) + β (46)
{

àffl i(k+1|k+1)

b̃ i(k+1|k+1)

}

= Fi(k+1)Gi(k)

{

àffl i(k|k)

b̃ i(k|k)

}

(47)
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where matrices Fi(k) and Gi(k) are defined in Eqs. (22) and

(39), respectively.

Eqs. (45) and (46) are simple, decoupled linear equations

that can often be solved analytically for a given sequence u(k).

Eq. (47) is linear in the parameters àffl i(k|k) and b̃ i(k|k), but

is coupled to σi(k|k) and ωi(k|k), that determine the matrix

Fi(k+1)Gi(k). Thus Eq. (47) is a linear, time-dependent,

stochastic difference equation which we wish to analyze. In

particular we wish to determine whether àffl i(k|k) and b̃ i(k|k)
vanish when k→∞.

The characteristic polynomial of Fi(k) in Eq. (22) is

∣

∣λI2 − Fi(k)
∣

∣ = λ2 − 2
δi(k)

∆i(k)
λ +

δ2
i (k) + θ2

i (k)

∆2
i (k)

(48)

where I2 is a two-by-two identity matrix. The eigenvalues of

Fi(k) are

λ1,2 =
δi(k) ± jθi(k)

∆i(k)
(49)

These eigenvalues are a complex conjugate pair when θi(k) 6=
0. They are real and equal when θi(k)=0, i.e., when z(k) =
Hσi(k|k), a probability zero event. In order to determine

whether the eigenvalues of Fi(k) are inside the unit circle,

it is sufficient to test the size of its determinant

det Fi(k) =
δ2
i (k) + θ2

i (k)

∆2
i (k)

=
1

π2γ2
·

1

c4 + 2c2(d2 + 1) + (d2 − 1)2
(50)

where

c =
σi(k|k) − z(k)/H

γ/|H|
, d =

ωi(k|k)

γ/|H|
(51)

The matrix Gi(k) in Eq. (39) is lower triangular. Con-

sequently, the eigenvalues of the matrix Fi(k+1)Gi(k) in

Eq. (47) cannot be easily determined, thus complicating the

analysis of its dynamic characteristics. Nonetheless, it is

possible to analyze its asymptotic behavior.

As explained at the beginning of this section, the element

i in the pdf sum of Eq. (41) is introduced during the mea-

surement update of time step i−1. Therefore, its parameters

at step k>i−1 where propagated m=k−i+1 times through

Eqs. (45)-(47). We will analyze those equation now when k≫i
or equivalently m≫1.

The analysis is different for stable (|Φ|<1), marginally

stable (|Φ|=1), and unstable (|Φ|>1) systems. It also depends

on the sign of Φ. Thus, for simplicity, we will limit our

analysis to the most common case of positive Φ. Moreover,

we will assume a constant input u(k)=uc for all k≥0.

1) Case 1: Φ<1:

Solving Eqs. (45) and (46) analytically, while letting

m→∞, and substituting the results into Eq. (39) yields

σi(k|k) →
Γuc

1 − Φ
, ωi(k|k) →

β

1 − Φ
, Gi(k) → I2 (52)

This implies that the dynamic characteristics of Eq. (47) is

determined entirely by the eigenvalues of Fi(k), or, as stated

earlier, by its determinant, given in Eq. (50), with parameters

c →

(

Γuc

1 − Φ
−

z(k)

H

)

|H|

γ
, d →

|H|β

(1 − Φ)γ
(53)

The parameters àffl i(k|k) and b̃ i(k|k) will decay to zero iff

the eigenvalues of Fi(k+1)Gi(k) are inside the unit circle,

or equivalently in this case, if detFi(k)≪1. The determinant,

given in Eq. (50), is random due to the measurement noise

in z(k) and thus in c. However, detFi(k) is largest when

c=0, or when z(k) = HΓuc/(1 − Φ). Although this is a

zero probability event, a conservative condition for a decay

to zero of àffl i(k|k) and b̃ i(k|k) is that det Fi(k)≪1 when

c=0. Substituting Eq. (53) with c=0 into (50), this sufficient

condition can be stated as
[

β2

γ2

H2

(1 − Φ)
2
− 1

]2

>
1

π2γ2
(54)

It is striking that this deterministic, easily verifiable condition

is sufficient to guarantee the stability of the stochastic, two-

dimensional Eq. (47).

2) Case 2: Φ=1:

In this case, the analytical solutions of Eq. (45) and (46)

for m→∞, and the resulting Gi(k) are

σi(k|k) → mΓuc, ωi(k|k) → mβ, Gi(k) → I2 (55)

Here too, detFi(k)≪1 will guarantee the decay of àffl i(k|k)

and b̃ i(k|k). As in the previous case, c=0, or z(k) = mHΓuc

will lead to a largest det Fi(k), that is given by

detFi(k) =
1

π2γ2
·

1

(d2 − 1)2
→

γ2

π2H4β4
·

1

m4
→ 0 (56)

Hence a decay of àffl i(k|k) and b̃ i(k|k) to zero is ensured in

this case without posing additional convergence conditions.

3) Case 3: Φ>1:

For unstable systems, the parameters σi(k|k) and ωi(k|k)
diverge when m→∞ with dominant terms

σi(k|k) →

(

z(k)

H
−

Γuc

1 − Φ

)

Φm (57a)

ωi(k) →

(

γ

|H|
−

β

1 − Φ

)

Φm (57b)

i.e., they diverge as Φm. The matrix Gi(k) converges to

Gi(k) →







1 0

βz(k) − γΓucsign(H)
γsign(H) + Hβ/(Φ − 1)

Φ






(58)

and det Fi(k+1) → 0. Examining the elements of the matrix

Fi(k + 1) reveals that the entire matrix tends to zero as

1/Φm and faster. Hence we conclude that also in this case

the parameters àffl i(k|k) and b̃ i(k|k) are guarantied to decay to

zero as m→∞.
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The above analysis indicates that the weight of the elements

in the factored pdf representation decay as m becomes large.

Moreover, for i≪n and n≪k, the parameters àffl i(k|k) and

b̃ i(k|k) will be much smaller than àffl n(k|k) and b̃n(k|k).
This suggests that the latter could be neglected, truncating

the elements of the pdf representation. However, before this

truncation can be preformed, one has to examine the weighted

sums where those parameters are used to compute the state

estimate and the estimation error variance, Eqs. (42)-(44).

In Eq. (44), the elements in sum are
[

àffl i(k|k)σi(k|k)

ωi(k|k)

b̃ i(k|k)

ωi(k|k)

]

(59)

Using Eqs. (45)-(47) it is possible to derive a linear difference

equation for the vector of Eq. (59). Following the convergence

analysis steps for àffl i(k|k) and b̃ i(k|k) presented above, iden-

tical convergence results are obtained also for the elements of

the sum in Eq. (44).

Repeating the same procedure for the element of the sum

in Eq. (42)
[

àffl i(k|k)
(

σ2
i (k|k) − ω2

i (k|k)
)

ωi(k|k)

b̃ i(k|k)σi(k|k)

ωi(k|k)

]

(60)

and then for those in Eq. (43)

[

àffl i(k|k)σi(k|k)
(

σ2
i (k|k) − 3ω2

i (k|k)
)

ωi(k|k)

b̃ i(k|k)
(

σ2
i (k|k) − ω2

i (k|k)
)

ωi(k|k)

]

(61)

reveals also a similar decay of those sum elements.

The above analysis implies that the pdf elements i with i≪n
and n≪k can be neglected, leading to an approximate pdf with

a finite number of elements. Due to the linear relation between

the numerator parameters of the conditional and joint pdfs, the

suggested truncation is valid for both approaches. An estimator

with a finite number of elements, i.e., a finite dimensional filter

is desirable for any practical implementation. Based on the

above conclusion it is tantalizing to suggest that there could

be a finite dimensional structure for the Cauchy estimator. This

structure is yet to be revealed!

V. NUMERICAL EXAMPLE

The proposed recursive Cauchy estimation scheme is eval-

uated using a numerical simulation. The parameters used in

this simulation are as follows. For the system model we chose

Φ=0.9, Γu(k)=1, k=0, 1, . . . , 70, i.e., a constant input, and

H=2. The initial condition and noise parameters are: x̄=5,

α=0.5, β=0.02, and γ=0.1. We also compare the performance

of the Cauchy and Gaussian (Kalman) filters when the additive

noises are Cauchy and then when they are Gaussian. For the

Cauchy noise case, the Kalman filter parameters were chosen

to least square fit the respective Cauchy pdf, which leads to

setting the initial condition, process and measurement noise

standard deviations to σx0
=1.4α, σw=1.4β, and σv=1.4γ,
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Fig. 2. Performance of the Cauchy and Kalman filters with Cauchy noises.

respectively. For the Gaussian noise simulations, the latter

values were used to also generate the simulation data.

The simulation results for 70 steps are presented and ana-

lyzed next. The estimation errors of the Cauchy and Kalman

estimators are plotted in Fig. 2(a) together with the computed

estimation error standard deviations for Cauchy process and

measurement noise sequences of Figs. 2(b). Here we can

clearly see how the impulsive nature of the data, seen in

the noise sequences of Figs. 2(b), increase the estimation

inaccuracy. However, contrary to the Kalman filter, the Cauchy

standard deviation of the error also increases, indicating the

abnormal state deviations (due to drastic process noise input)

or measurement deviations. The conditional standard deviation

of the error for the Cauchy filter, plotted in Fig. 2(a), is

minimal. However, the standard deviation of the error plotted

for the Kalman filter is calculated assuming Gaussian noise

variances and thus is neither related to the actual estimation

errors nor it is minimal.

Figure 3(a) presents the estimation errors together with the

computed estimation error standard deviations for the Cauchy

and Kalman estimator when the process and measurement

noise sequences shown in Figs. 3(b) are Gaussian. The error

variance for the Kalman filter is now the minimal, since the

process and measurement noise sequence are Gaussian. It is

remarkable how close the standard deviation of the estimation

error generated from the Cauchy conditional pdf approximates
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Fig. 3. Performance of the Cauchy and Kalman filters with Gaussian noises.
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Fig. 4. Weights of the terms in the pdf sum at time step 50.

that computed from the Kalman filter, demonstrating the

robustness of the former.

Next we examine the characteristics of the growing number

of terms in the conditional pdfs of Eq. (28) for the Cauchy

noise case. Identical results would have been obtained by

analyzing the joint pdf formulation of Eq. (41).

To evaluate the relative importance of the different elements

in the pdf sums of Eq. (28), analyzed in section IV-E, we define

the weight of the i-th term as qi =
√

a2
i (k|k) + b2

i (k|k).
Those weights are plotted for a sample time step number 50

in Fig. 4. It is obvious that out of the 52 terms only the last

few have a significant weight, while the effect of the others is

negligible. Here, the last twelve are significant while the next

term has a weight four orders of magnitude smaller than the

biggest term. If eighteen largest terms were considered, the

next term is 12 orders of magnitude smaller.

This result is in agreement with the analysis carried out

in section IV-E, since for this stable system with the chosen

parameters the convergence conditions in Eq. (54) are satisfied.

This suggests that the pdf sum can be trimmed, with a

negligible affect on the estimation accuracy. This result was

verified numerically: the estimation results with a trimmed pdf

were undistinguishable from those presented in Fig. 2(a).

VI. CONCLUSION

A new estimator for scalar linear discrete system with

additive process and measurement noises characterized by

Cauchy probability density functions (pdf) has been presented.

This Cauchy estimator is characterized by a functional form

of the conditional pdf that remains fixed through time propa-

gation and measurement updates. Although this rational pdf

has growing order, its parameters are propagated through

linear difference equations with stochastic coefficients. The

functional form of the pdf enables an efficient computation of

the state estimate and its error variance, as is demonstrated in

a numerical example. Sufficient conditions and the numerical

study also reveal that the majority of terms in the growing-in-

dimension conditional pdf are negligible, suggesting efficient,

finite-order numerical approximation.

The proposed Cauchy estimator is probably the only known

simple recursive scheme for non-Gaussian pdfs. Moreover, the

proposed methodology and pdf factorization presented in this

work can be easily adopted to a wide range of pdfs that can

be expressed as a class of rational functions of the random

variable, Cauchy pdf being a member of this class. Although

only the scalar dynamic estimation case is considered in

the current work, the extension to the multi-variable case

appears to have the same mathematical structure. Therefore,

the techniques developed for the scalar problem are preserved

in the more general multivariate setting, accompanied though

with a growth in the algorithmic complexity.
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