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Abstract— This paper deals with analysis of fundamental
limitations in tracking control problems. In the existing results,
the fundamental limitations are analyzed based on detailed
assumptions of reference signals such as the step, the trigono-
metrical signals and so on. On the other hand, we define
a class of reference signals in a general manner. For the
general class of reference inputs, we give the analysis of the
tracking performance limitations. The obtained results extend
the existing ones and give a uniform description. Moreover, the
analysis results clearly separate the contributions of the plant
and the reference characteristics. The results are illustrated by
examples.

I. INTRODUCTION

In the history of control theory, much attention has been

paid to analysis of fundamental limitations in control system

design. Recently, many results have been report [1], [2], [3],

[4], [5], [6], [7], [8]. These papers derive explicit expressions

of the achievable optimal H2 performance described in terms

of plant parameters such as unstable zeros/poles and so on.

This kind of analysis results not only enable us to understand

the relationship between the parameters and the achievable

performance, but also they can be used to design a ’good’

plant when we can change some parts of the plant. Of cource,

the optimal performance level itself can be calculated shortly

by using numerical techniques such as the LMIs, the Ricatti

equations and so on. However, those a posteriori results

hardly provide information about what kind of changes in

plants will improve the performance.

Other than the optimal H2 performance, the analysis has

been done for the tracking control problems [2], [3], [4],

[5]. In [2], the performance limitations for the step reference

input have been analyzed for control systems with one and

two degree of freedom (DOF). In addition to the tracking

error, magnitude of control inputs is also treated in [3]. The

results for trigonometrical functions are given in [4], [5].

The above results provide us useful information about

the relationship between the control performance and the

plant characteristics. However, since these results are derived

based on the specific definitions of the reference signals, the

contributions of the plant and the reference to the perfor-

mance limitations are not separated clearly. This prevents us

to obtain a clear insight about the essential sources of the

performance limitations.
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This paper aims to find the tracking performance limita-

tions for a class of reference inputs. Specifically, we define

the class of the reference inputs in a general manner; Even

unstable poles of reference inputs are not specified. Based

on the definitions of the reference inputs, we will give the

performance limitations on the tracking control problems.

Both the one and the two DOF control systems are dealt

with. The obtained optimal performance indices describe the

contribution of the plant and the reference inputs separately.

This paper is organized as follow: The problem formula-

tion is defined in Section II. The analysis results for the

2DOF system are given in Section III, while those for

the 1DOF system are in Section IV. The given results are

illustrated by using examples in Section V.

Notation is standard. We denote the Laplace transform of

u(t) as û(s). L∞ is the space of signals defined by

L∞ =

{

e(t) : sup
t

|e(t)| < ∞

}

.

For signal e(t), ‖e‖2 represents the L2 norm

‖e‖2 =

(∫ ∞

0

|e(t)|2dt

)
1

2

.

On the other hand, for Laplace transform û(s), ‖û‖2 is the

L2 norm of û(jω), i.e,

‖û‖2 =

(

1

2π

∫ ∞

−∞

û(−jω)û(jω)dω

)
1

2

.

If û(s) is a rational function that is analytic in the closed

right half plane, ‖û‖2 can be called the H2 norm. S is set

of functions that are proper real rational and analytic in the

closed right half plane.

II. PROBLEM FORMULATION

We consider the tracking control problem for a SISO

plant given by a real rational transfer function P (s). We

assume that P (s) has ℓp and mp number of unstable poles

p1, . . . , pℓp
and unstable zeros z1, . . . , zmp

, respectively. The

relative degree of P (s) is hp. To keep derivations simple, we

further assume that all the unstable poles and zeros lie in the

open right half plane and distinct, i.e.

zi �= zj ∀i �= j, Re(zi) > 0 ∀i,

pk �= pl ∀k �= l, Re(pk) > 0 ∀k.
(1)

We assume that the reference signal is given by its Laplace

transform and that it belongs to the following set:

R = { r̂ ∈ N : L−1[r̂] ∈ L∞ } (2)
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where N is the set of strictly proper real rational functions. R
is the set of real rational functions whose inverse transforms

are bounded. The following lemma is given in [9]:

Lemma 1: Let r̂ ∈ N be given. Then, r̂ ∈ R holds, iff

all the poles of r̂(s) lie in the closed left half plane and the

multiplicity of the pure imaginary poles is at most one.

r̂ ∈ R can be any linear combination of the Laplace

transforms of the trigonometric functions, the step function

and the decaying exponential functions e−αt where α > 0.

We assume that r̂ ∈ R has mr number of unstable zeros

zmp+1, . . . , zmp+mr
and that the relative degree of r̂ is hr.

Moreover, all the unstable zeros of P (s) and r̂(s) are distinct,

i.e. (1) holds, even if the unstable zeros of r̂(s) are taken

into account. In the sequel, we denote the total number of

the unstable zeros and the relative degree as ma and ha

respectively, i.e.

ma = mp + mr, ha = hp + hr.

Moreover, we assume that there is no unstable pole/zero

cancellation between r̂(s) and P (s).
For the tracking control, we deal with control systems with

one and two degree of freedom (DOF) depicted in Figs. 1

and 2, respectively. In Fig. 1, r and y are the reference input

and the control output, respectively. C1(s) is the feedback

controller, while G1(s) is the closed-loop system from r to

y. In Fig. 2, C2(s) is the feedback controller, while G2(s)
and P (s)−1G2(s) are the feedforward controllers. Note that

the structure in Fig. 2 does not lose any generality [11].

The aim of this paper is to analyze the performance

limitations in the tracking control problem. The precise

problem formulation is as follows:

Problem 1: Let P (s) and r̂(s) be given. Then, for each of

the 1DOF and the 2DOF control systems, find J = inf ‖e‖2
2,

where e(t) = y(t) − r(t) is the error signal.

Note that J depends on both P (s) and r̂(s). In the sequel,

the infima in Problem 1 will be denote by J1 and J2 for the

P(s)
+

-

G1(s)

C1(s)
r y

Fig. 1. 1DOF control system

+

-

P (s)−1
G2(s)

C2(s)G2(s) P (s)
r y

Fig. 2. 2DOF Control system

one and the two DOF control systems, respectively.

The performance limitations have been analyzed for the

several cases of reference inputs and control structures.

Most of those results are given by assuming fine details

of reference inputs. On the other hand, we do not assume

details of the reference input and allow the fairly general

class R of the reference inputs. In particular, we do not

assume any details of the unstable poles of r̂(s) other than

r(t) is bounded.

Most of the existing results have been derived based

on the parameterization of all the stabilizing controllers.

However, this approach would not be easy for the above

problem, since there is few assumptions on the unstable

poles of r̂(s). Insteadly, for each of the control structures,

we parametrize set of all the outputs that are produced by

internally stable control systems and that track the reference

signal asymptotically. The sets are denote by Y1 and Y2 for

the one and the two DOF cases, respectively. Based on the

parameterizations, we analyze J1 and J2.

III. ANALYSIS FOR THE 2DOF SYSTEM

A. Achievable sets of outputs

We first deal with the 2DOF control system in Fig. 2. The

transfer characteristics from the reference input r̂(s) to the

output ŷ(s) is written by

ŷ(s) = G2(s) r̂(s). (3)

Note that G2(s) is independent of the feedback controller

C2(s). Hence, under the assumption that C2(s) internally

stabilizes the closed-loop part of the system, the whole

system is stable, iff the following conditions hold:

G2 ∈ S, P−1G2 ∈ S. (4)

Therefore, Y2 is given by the set of ŷ(s) such that (3), (4)

and the following condition hold for some G2(s):

lim
t→∞

r(t) − y(t) = 0. (5)

A more concrete characterization of Y2 can be given as

follows:

Lemma 2: Let P (s) and r̂(s) be the given plant and the

given reference signal. Then, ŷ ∈ Y2 holds, iff the following

conditions hold:

• ŷ − r̂ ∈ S holds.

• The relative degree of ŷ(s) is greater than or equal to

ha.

• The following equations hold:

ŷ(zi) = 0 ∀ i = 1, . . . , ma. (6)

Proof: (Necessity) Suppose that ŷ ∈ Y2 holds. Then,

(5) leads to ŷ− r̂ ∈ S. (3) implies that the relative degree of

ŷ is greater than or equal to ha, since the relative degree of

G2 must be greater than or equal to hp due to (4). Similarly,

(3) and (4) also imply (6).

(Sufficiency) Suppose that ŷ satisfies the conditions. ŷ −
r̂ ∈ S leads to (5). We here define G2(s) as follows:

G2(s) =
ŷ(s)

r̂(s)
.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC16.5

3695



Obviously, (3) holds. The above G2(s) can be written by

G2(s) =
ŷ(s) − r̂(s)

r̂(s)
+ 1.

Since ŷ − r̂ ∈ S is assumed and (6) implies that ŷ(zi) −
r̂(zi) = 0 holds for i = mp+1, . . . , ma. Moreover, owing to

the conditions on ŷ, the relative degree of G2(s) is greater

than or equal to hp. Then, G2 ∈ S holds. On the other

hand, since all the unstable zeros are assumed to be distinct,

G2(zi) = 0 holds for i = 1, . . . , mp. The relative degree of

P−1G2 is greater than or equal to 0. Therefore, P−1G2 ∈ S
holds and G2 satisfies (4). Thus, ŷ ∈ Y2 is proven.

The conditions in Lemma 2 characterize Y2. By using

those conditions, we will characterize Y2 more explicitly.

However, rather than dealing with Y2, it is technically easier

to deal with the set E2 of the error signals

ê(s) = ŷ(s) − r̂(s). (7)

Hence, we will find an explicit expression of E2. If it is given,

then Y2 is given explicitly by

Y2 = r̂ + E2.

Since ê is defined by (7) and the set of ŷ(s) is character-

ized by Lemma 2, the set E2 is characterized by the following

conditions:

• ê ∈ S
• The relative degree of r̂(s) + ê(s) is greater than or

equal to ha.

• r̂(zi) + ê(zi) = 0 holds for all i = 1, . . . , ma

Then, the explicit expression of E2 can be given directly by

the results in [9] as follows:

Theorem 3: Let P (s) and r̂(s) be the given plant and the

reference input assumed in this paper, respectively. More-

over, let a > 0 be an arbitrary given positive real number.

Then, the following equivalence holds:

E2 = U2 + V2 S (8)

where U2(s) and V2(s) are given by the following recursion:

U2(s) = K(ha)(s), V2(s) = L(ha)(s) (9)

K(k+1)(s) = K(k)(s) + αkL(k)(s) (10)

L(k+1)(s) =
1

s + a
L(k)(s) (11)

αk = − lim
s→∞

(

sk(r̂(s) + K(k)(s))
)

(12)

K(0)(s) = −

mp
∑

i=1

Hi(s) r̂(zi) (13)

Hi(s) =

(

zi + a

s + a

)ma−1 ma
∏

j=1,j �=i

s − zj

zi − zj

(14)

L(0)(s) =

∏ma

i=1(s − zi)

(s + a)ma
(15)

Theorem 3 gives the explicit parameterization (8) of E2.

The parameterization is given by the set of the proper stable

real rational functions, which is similar to the case of the

KYJB parameterization of internally stabilizing controllers

[10]. While the KYJB parameterization characterizes the set

of controllers, (8) parameterize the set of signals.

The initial functions K(0)(s) and L(0)(s) correspond to

the constraints on the unstable zeros. Note that the sum-

mation in K(0)(s) is carried out for i = 1, . . . , mp, since

r(zi) = 0 holds for i = mp +1, . . . , ma. On the other hand,

the recursion (10) and (11) corresponds to the constraint on

the relative degree. Notice that αk in (12) is bounded by

the constructions of K(k)(s). Although Theorem 3 assumes

that a is independent of k, it can depend on k, provided that
1

s+ak
is a stable transfer function.

B. L2 optimal ê(s)

Based on Theorem 3, we further consider the minimization

problem of the L2 norm of e(t). Owing to the Parseval’s

equality, the L2 norm of e(t) is equal to the H2 norm of ê(s).
Thus, we consider the following minimization problems:

minimize ‖ê‖2 subject to ê ∈ E2. (16)

We denote the minimizer of (16) as follows:

êopt(s) = arg inf
ê∈E2

‖ê‖2. (17)

The minimization problem (16) is equivalent to the fol-

lowing problem:

minimize ‖U2 + V2 Q‖2 subject to Q ∈ S. (18)

(18) is a standard model-matching problem, since U2 ∈ S
and V2 ∈ S hold by their constructions. Moreover, (18) is

solvable, since U2(s) is strictly proper. The solution of the

standard model matching problem (18) is known well. In

fact, the minimizer and the infimum of (18) are given as

follow [10]:

Qopt(s) = −W (s)−1 (Θ(s)−1U2(s))st, (19)

inf
Q∈S

‖U2 + V2Q‖2 = ‖(Θ−1U2)anst‖2. (20)

where Θ(s) and W (s) are the inner and the outer factors

of V2(s), respectively. Moreover, (Θ(s)−1U2(s))anst and

(Θ(s)−1U2(s))st are the anti-stable and the stable parts of

Θ(s)−1U2(s), respectively. Note that the norm on the right

hand side of (20) is the L2 norm of (Θ(s)−1U2(s))anst|s=jω,

while the left hand side is the H2 norm.

Since U2(s) and V2(s) are given explicitly in Theorem 3,

the optimal quantities (19) and (20) can be also given

explicitly as the following theorem:

Theorem 4: Let P (s) and r̂(s) be the given plant and

the reference input. Moreover, U2(s) and V2(s) are the real

rational functions defined in Theorem 3. Let Θ(s) be the

inner factor of V2(s). Then, the following equations hold:

(Θ(s)−1U2(s))anst = −

mp
∑

i=1

qi r̂(zi)

s − zi

, (21)

J2
2 = ‖(Θ−1U2)anst‖

2
2 = ρ∗M2 ρ, (22)
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ê
opt
2 (s) = −

mp
∑

i=1

H
opt
i (s) r̂(zi), (23)

where

qi =

∏ma

j=1(zi + zj)
∏ma

j=1,j �=i(zi − zj)
, (24)

(M2)ij =
qi qj

zi + zj

, (25)

ρ =
[

r̂(z1) · · · r̂(zmp
)

]T
, (26)

H
opt
i (s) = qi

∏ma

j=1,j �=i(s − zj)
∏ma

j=1(s + zj)
. (27)

Theorem 4 gives the explicit form of the optimal tracking

error (23) and the optimal norm (22) for the general class

of the reference input. In particular, (22) clarifies the way

how J2 depends on P (s) and r̂(s); J2 is composed of the

matrix M2 and the vector ρ, where M2 is a function of

the unstable zeros, while ρ is composed of the values of

r̂(s) at the unstable zeros zi. Thus, (22) clearly separates

the contributions of P (s) and r̂(s).
If P (s) has an unstable zero z near an unstable pole of

r̂(s), r̂(z) has a large magnitude. Then, J2 can be also large

and the resultant tracking performance would be quite poor.

This result coincides with our intuition. On the contrary,

if P (s) has an unstable zero z near an unstable zero of

r̂(s), magnitude of r̂(z) is small. Moreover, if P (s) has no

unstable zeros other than z, J2 can be also small. It follows

that high tracking performance may be achieved, even though

P (s) has the unstable zero.

The matrix M2 depends on the unstable zeros of both

P (s) and r̂(s). If we are allowed to choose more suitable

input signals in Fig. 2 than r(t), the optimal norm is given

by replacing ma in (22) with mp [9]. The obtained M2 is

independent of r̂(s). This is also true in the case that r̂(s) has

no unstable zeros. We may consider that this M2 describes

the essential performance limitation attained by P (s), since

it depends only on P (s) and is independent of r̂(s).
If r̂(s) is given by the step or the sinusoidal functions,

J2 in Theorem 4 coincides with the existing results [2], [4],

[5]. Even in those cases, Theorem 4 present new informa-

tion, since it describes the contributions of r̂(s) and P (s)
separately.

IV. ANALYSIS FOR THE 1DOF SYSTEM

In this section, the analysis will be conducted for the

1DOF system, i.e. the unity feedback system depicted in

Fig. 1. The output of the system is described by

ŷ(s) = G1(s) r̂(s) (28)

where G1(s) is the closed-loop system in Fig. 1, i.e.

G1(s) =
P (s)C1(s)

1 + P (s)C1(s)
. (29)

Conversely, if G1(s) is given, the controller C1(s) satisfying

(29) is given as follows:

C1(s) =
G1(s)

P (s)(1 − G1(s))
. (30)

Hence, C1(s) and G1(s) have one-to-one correspondence. In

the sequel, we consider the problem mainly based on G1(s)
rather than C1(s).

The analysis is based on the set Y1 of the outputs, as in

the case of the 2DOF system. We first consider the internal

stability of the closed-loop system. All the transfer functions

defining the internal stability can be written by using G1(s)
as follow:

P (s)

1 + P (s)C1(s)
= P (s) (1 − G1(s)), (31)

1

1 + P (s)C1(s)
= 1 − G1(s), (32)

C1(s)

1 + P (s)C1(s)
=

G1(s)

P (s)
, (33)

P (s)C1(s)

1 + P (s)C1(s)
= G1(s). (34)

Consequently, C1(s) in (30) is an internally stabilizing

controller, iff the following conditions hold:

G1 ∈ S, P−1 G1 ∈ S, P (1 − G1) ∈ S. (35)

Then, the output set Y1 is given by the set of ŷ such that

(5), (28) and (35) hold for some G1(s). Compared (35) with

(4), we see that the difference is the stability requirement for

P (s) (1 − G1(s)) = P (s)
1+P (s)C1(s)

.

Although we have derived the conditions based on the set

Y1 of the output signals, the obtained results are consistent

with the internal model principle. Let ŷ ∈ Y1 be given and

p be an unstable pole of r̂(s). Note that P (p) �= 0 has been

assumed. Then, ŷ ∈ Y1 implies r̂ − ŷ = (1 − G1) r̂ ∈ S.

Hence, 1 − G1(s) must have the unstable zero at s = p,

i.e. 1 − G1(p) = 0 or equivalently G1(p) = 1 �= 0. As

a consequence, C1(s) in (30) must have the same unstable

poles as r̂(s).
Similar to Lemma 2, a more concrete characterization of

Y1 can be given as follows:

Lemma 5: Let P (s) and r̂(s) be the given plant and the

given reference signal. Then, ŷ ∈ Y1 holds, iff ŷ ∈ Y2 and

the following equations hold:

ŷ(pi) − r̂(pi) = 0 ∀ i = 1, . . . , ℓp (36)

where ŷ ∈ Y2 can be examined by Lemma 2.

Proof: (Necessity) Suppose that ŷ ∈ Y1 holds, i.e. (5),

(28) and (35) hold for some G1(s). By comparing (35) with

(4), ŷ ∈ Y2 obviously holds. Since G1(s) can be written by

G1(s) = ŷ(s)
r̂(s) , the following condition must hold:

P (1 − G1) =
P

r̂
(r̂ − ŷ) ∈ S

By assumption, r̂(s) do not share any unstable poles with

P (s). Hence, r̂ − ŷ have to satisfy (36).

(Sufficiency) Suppose that ŷ ∈ Y2 and (36) hold. Define

G1(s) by
ŷ(s)
r̂(s) , and obviously (28) holds. Moreover, due

to the definition of Y2 and Lemma 2, (5), G1 ∈ S and

P−1 G1 ∈ S hold. Hence, 1 − G1 = r̂−ŷ
r̂

∈ S holds. Since

r̂(s) is assumed to have no zeros at s = pi, (36) yields

1 − G1(pi) = 0. It follows that P (1 − G1) ∈ S holds.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC16.5

3697



Lemma 5 reveals that Y1 is obtained by giving the

additional constraint (36) to Y2. Consequently, if P (s) has

an unstable pole, Y1 is a proper subset of Y2. On the other

hand, if P (s) is stable, Y1 = Y2 holds. In other words, if

P (s) is stable, the unity feedback control system can attain

the same tracking performance as the 2DOF systems.

If we define the set of the error signals as E1, Y1 is written

by

Y1 = r̂ + E1.

Moreover, due to Lemma 5, E1 is given by the set of ê(s)
such that the following conditions hold:

• ê ∈ E2 holds.

• The following equations hold:

ê(pi) = 0 ∀ i = 1, . . . , ℓp. (37)

An explicit characterization of E1 is given by the following

theorem:

Theorem 6: Let P (s) and r̂(s) be the given plant and the

reference input, respectively. Let b > 0 be an arbitrary given

positive real number. Then, the following equivalence holds:

E1 = U1 + V1 S (38)

where U1(s) and V1(s) are real rational functions given by

the following recursive equations:

U1(s) = K̃(ℓp)(s), V1(s) = L̃(ℓp)(s)

K̃(k+1)(s) = K̃(k)(s) + βk L̃(k)(s) (39)

βk = −
K̃(k)(pk+1)

L̃(k)(pk+1)
(40)

L̃(k+1)(s) =
s − pk+1

s + b
L̃(k)(s) (41)

K̃(0)(s) = U2(s) (42)

L̃(0)(s) = V2(s) (43)

U2(s) and V2(s) are defined in Theorem 3.

By using Theorem 6, J1 and the optimal error can be given

explicitly as follows:

Theorem 7: Let P (s) and r̂(s) be the given plant and

the reference input. Moreover, U1(s) and V1(s) are the real

rational functions defined in Theorem 6. Let Θ̃(s) be the

inner factor of V1(s). Then, (Θ̃(s)−1U1(s))anst and ê
opt
1 (s)

can be written as follows:

(Θ̃(s)−1U1(s))anst = −

mp
∑

i=1

qi wi r̂(zi)

s − zi

, (44)

J2
1 = ‖(Θ̃−1U1)anst‖

2
2 = ρ∗M1 ρ (45)

ê
opt
1 (s) = −





ℓp
∏

j=1

s − pj

s + pj





mp
∑

i=1

H
opt
i (s)wi r̂(zi). (46)

where

wi =

ℓp
∏

j=1

zi + pj

zi − pj

, (47)

(M1)ij =
wi qi qj wj

zi + zj

. (48)

Moreover, H
opt
i (s), qi and ρ are defined in Theorem 4.

Theorem 7 gives the explicit form of the optimal tracking

error (46) and the optimal norm (45) for the general class

of the reference input. The obtained results are similar to

those of Theorem 4. In particular, (45) separately describes

the contribution of r̂(s) from that of P (s). Moreover, the

result is obtained simply by multiplying wj to qj , where

wj is defined by using the unstable poles of P (s). Hence,

if there is an unstable zero near the unstable poles pj , wj

has a quite large magnitude and so is J1. Again, this result

coincides with our intuitions.

V. NUMERICAL EXAMPLES

This section illustrates the results in this paper by using

numerical examples.

Suppose ma = mp = 1 and ℓp = 1. Then, Theorems 4

and 7 yield the followings:

J1 = 2 z

(

z + p

z − p

)2

r̂(z)2,

J2 = 2 z r̂(z)2,

where z > 0 and p > 0 are the unstable zero and pole of

P (s), respectively. Note that J1 depends on p, while J2 is

independent of p. More specifically, J1 is larger than J2 by

the factor of
(

z+p
z−p

)2

. Note that this factor is irrelevant to

choices of r̂(s).

We consider another example. Suppose that P (s) is stable

and has an unstable zero z1, while r̂(s) has an unstable zero

z2. In this case, J2 is given by

J2
2 = 2 z1

(

z1 + z2

z1 − z2

)2

r̂(z1)
2.

If we can use a suitable input instead of r(t) for the system

in Fig. 2, the performance limitation can be improved as

J2
2o = 2 z1r̂(z1)

2.

In fact, if z1 tends to z2, J2 tends to a positive number

while J2o tends to zero. This comparison suggests that the

configuration in Fig. 2 is not perfect and its performance can

be improved by replacing the input r(t) with other signals,

when r̂(s) has an unstable zero. For example, when z1 = 1
and

r̂(s) =
s − 2

s2 + 1

are given, J2
2 = 4.5 and J2

2o = 0.5 can be obtained. The

optimal outputs are shown in Fig. 3. The responses in red

and blue are corresponding to J2o and J2, respectively. The

response in black represents the reference. We see that the

response corresponding to J2o results in better performance.
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Fig. 3. Optimal Outputs

VI. CONCLUSION

The limitation on the tracking performance has been

analyzed for the 1DOF and the 2DOF control systems.

We have first characterize the sets of the admissible output

signals and parameterize those based on the set of the stable

proper real rational functions. Using the parameterization, we

have derived the optimal errors and the corresponding norms

explicitly. The obtained formula clarifies how the optimal

norm depends on the plant and the reference input.
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