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Abstract— For any strict feedforward system that is feedback
linearizable we provide (following our earlier results) an algo-
rithm, along with explicit transformations, that linearizes the
system by change of coordinates and feedback in two steps:
first, we bring the system to a newly introduced Nonlinear
Brunovský canonical form (NBr) and then we go from (NBr)
to a linear system. The whole linearization procedure includes
diffeo-quadratures (differentiating, integrating, and composing
functions) but not solving PDE’s. Application to feedback
stabilization of strict feedforward systems is given.

I. INTRODUCTION

Consider a smooth nonlinear single-input control system

Ξ : ż = F (z, u), z ∈ Z ⊆ Rn, u ∈ R,

where z ∈ Z, an open subset of Rn. Assume that it is, via a
smooth change of coordinates x = ϕ1(z), equivalent to the
strict feedforward form, shortly (SFF )-form,

(SFF )


ẋ1 = G1(x2, . . . , xn, u)

· · ·
ẋn−1 = Gn−1(xn, u)
ẋn = Gn(u).

If the system Ξ is feedback linearizable, then (as it is well
known, see, e.g. [2], [4], [12]) it takes, in some coordinate
system y = ϕ2(x), the feedback form, shortly (FB)-form:

(FB)


ẏ1 = Ḡ1(y1, y2)

· · ·
ẏn−1 = Ḡn−1(y1, . . . , yn)
ẏn = Ḡn(y1, . . . , yn, u).

If Ξ takes in some x-coordinates the (SFF )-form and in
some y-coordinates the (FB)-form, then a natural question
arises whether there exist coordinates w = ϕ3(z) in which
Ξ would take simultaneously both the (SSF )-form and the
(FB)-form. Comparing (SFF ) and (FB), that are dual with
respect to each other, we see that in w-coordinates (if they
exist), Ξ would take the following nonlinear generalization
of the Brunovský canonical form:

(NBr)


ẇ1 = Ĝ1(w2)

· · ·
ẇn−1 = Ĝn−1(wn)
ẇn = Ĝn(u).

Recall that the Brunovský canonical form is the following
linear control system on Rn (consisting of a chain of n
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integrators):

(Br)


˙̃w1 = w̃2

· · ·
˙̃wn−1 = w̃n

˙̃wn = ũ.

One of the main results of this paper asserts that the answer
to the above question is indeed positive: if a system is
via (different, in general) changes of coordinates equivalent
to the (SFF )-form and to the (FB)-form, then it is also
equivalent to the above Nonlinear Brunovský canonical form
(NBr), which is simultaneously (SFF ) and (FB).

A similar question arises if we assume that Ξ is equivalent
to the (SFF )-form and, instead of supposing feedback
linearizability, we assume that it is linearizable via a change
of coordinates only. Then we would like to know whether
the system can be put into a linear form that would simul-
taneously be (SFF ). This question was answered positively
in our previous paper [19], inspired by that of Krstic [7],
where we provided an algorithm, along with necessary and
sufficient conditions, to linearize (via a change of state
coordinates) a strict feedforward system.

Let us recall that strict feedforward systems and their
stabilization were first investigated by Teel in his pioneering
papers [20], [21]. Since then, it has been followed by a
growing literature [1], [5], [6], [7], [8], [9], [10], [11],
[13], [14], [15], [17], [18]. Recently, Krstic [7] addressed
the problem of linearizability of nonlinear systems in strict
feedforward form, and provided two classes (type I and
type II) that are linearizable by change of coordinates.
By providing linearizing changes of coordinates in some
examples, Krstic mentioned the lack of a systematic way
of finding those changes of coordinates. We addressed this
problem in [19] and provided an efficient algorithm to find
linearizing transformations for strict feedforward systems
that are linearizable by change of state coordinates. The aim
of this paper is to study the class of feedback linearizable
strict feedforward systems in its full generality.

The problem of transforming a control system into a
linear controllable system via change of coordinates and
feedback was solved in the early eighties in [2] and [4],
where necessary and sufficient geometric conditions, ex-
pressed in terms of involutivity of certain distributions (see
Theorem IV.4 below), were obtained (see also [3], [12]).
Those conditions are easy to check but if they are satisfied,
then finding linearizing coordinates and feedback transfor-
mations requires, in general, solving a system of partial
differential equations (whose solvability is guaranteed by
the involutivity). For strict feedforward systems, however,
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finding linearizing coordinates and feedback turns out to be
much easier: our algorithm can be performed using at most
n(n−1)

2 steps, quadratures, each involving composition and
integration of functions only (but not solving PDEs) followed
by a sequence of n derivations. That ”simplest possible” way
of calculating linearizing feedback transformations (using
diffeo-quadratures only which is crucial for applications)
for any strict feedforward system shows importance of the
presented algorithm. Moreover, if the system is not feedback
linearizable, the algorithm fails after a finite number of steps,
which thus provides a simple way of testing the feedback
linearizability of strict feedforward systems.

The paper is organized as follows. In Section II we give
some basic notations. In Section III we formulate our main
result on F -linearizable strict feedforward systems. Then we
show that the constructed transformations are, indeed, diffeo-
quadratures in Section IV and discuss applications to the
stabilization problem in Section V. Finally, the proof of the
main result, together with the Algorithm, form Section VI.

II. DEFINITIONS AND NOTATIONS

Throughout the paper, the word smooth will always mean
C∞-smooth. We assume, except otherwise stated, that Ξ is
affine in control, i.e., ∂2F

∂u2 = 0, and we denote it by Σ.
Consider two control systems

Σ : ż = f(z) + g(z)u, z ∈ Z ⊆ Rn, u ∈ R,

where f and g are smooth vector fields on Z, an open subset
of Rn, and

Σ̃ : ˙̃z = f̃(z̃) + g̃(z̃)ũ, z̃ ∈ Z̃ ⊆ Rn, ũ ∈ R,

where f̃ and g̃ are smooth vector fields on Z̃, an open subset
of Rn. They are called state equivalent, shortly S-equivalent,
if there exists a smooth diffeomorphism ϕ : Z → Z̃, such
that

ϕ∗f = f̃ and ϕ∗g = g̃;

(we take u = ũ). Recall that for any smooth vector field f
on Z and any smooth diffeomorphism z̃ = ϕ(z) we denote

(ϕ∗f)(z̃) = Dϕ(z) · f(z), with z = ϕ−1(z̃).

Two control systems Σ and Σ̃ are called feedback equiv-
alent, shortly F-equivalent, if there exist a smooth diffeo-
morphism ϕ : Z → Z̃ and smooth R-valued functions α, β,
satisfying β(·) 6= 0, such that

ϕ∗(f + gα) = f̃ and ϕ∗(gβ) = g̃.

A control-affine system that is strict feedforward takes the
following affine strict feedforward form

(ASFF )


ż1 = f1(z2, . . . , zn) + g1(z2, . . . , zn)u
· · ·

żn−1 = fn−1(zn) + gn−1(zn)u
żn = fn + gnu,

where fn, gn ∈ R and z ∈ Z, an open subset of Rn.
Throughout the paper we assume that the drift f has an

equilibrium which, without loss of generality, is taken to be
0 ∈ Rn, that is f(0) = 0. In particular, fn = 0 in (ASFF ).

III. MAIN RESULT: F-LINEARIZABLE (SFF)-SYTEMS

In this section we will give our main result on F -
linearizable strict feedforward systems.

Theorem III.1 Assume that a control-affine system Σ is S-
equivalent to the (ASFF )-form. Then the following condi-
tions are equivalent:

(i) Σ is F -equivalent to a linear controllable system;
(ii) Σ is S-equivalent to the following Affine Nonlinear

Brunovský form:

(ANBr)


ẇ1 = Ĝ1(w2)

· · ·
ẇn−1 = Ĝn−1(wn)
ẇn = u.

Remark III.2 The above theorem holds both locally and
globally. More precisely, assume that Σ is, locally at 0 ∈
Z ⊂ Rn, S-equivalent to the (ASFF )-form. Then (i) and
(ii) are equivalent locally around z0. Now assume that Σ is
globally S-equivalent to the (ASFF )-form on Rn, then (i),
satisfied locally around any point z0 ∈ Z, is equivalent to
the global S-equivalence to (ANBr) on Rn.

Proof of this Theorem, together with the Algorithm on
which it is based, is given in Section VI. Of course, if Σ is
F -linearizable (that is, if (i) of the above theorem holds), then
it is F -equivalent to the Brunovský (Br)-form. Our result
states, that F -linearizable systems that are S-equivalent to
the affine strict feedforward (ASFF )-form exhibit also a
nice form under a change of coordinates only. Namely, they
are S-equivalent to the affine nonlinear Brunovský (ANBr)-
form.

If we consider a general nonlinear system Ξ and assume
that it is S-equivalent (locally or globally) to the (SFF )-
form, then the above theorem remains valid (locally or
globally) with the form (ANBr) replaced by (NBr), that
is, the equation ẇn = u in (ii) replaced by ẇn = Ĝn(u).

IV. CALCULATING NORMALIZING AND LINEARIZING
TRANSFORMATIONS

In this section we will examine the class of state and
feedback transformations that bring (ASFF )-systems to the
(ANBr)-form and to the linear Brunovský form (Br). Let
us start with the following result of the authors [19], where
we studied strict feedforward systems that are S-linearizable.

Theorem IV.1 Assume that Σ is S-equivalent to the
(ASFF )-form. Then the following conditions are equiva-
lent:

(i) Σ is S-equivalent to a linear controllable system;
(ii) Σ is S-equivalent to the Brunovský form (Br).

This result was proved (in a slightly different context) in
[19] in a constructive way that gives the linearizing dif-
feomorphism in an explicit form calculated via integrations
and compositions of functions only. We will formalize this
important property as follows.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB01.1

2500



We will say that a transformation is calculated by quadra-
tures if it is defined by a finite sequence consisting of
elementary operations, composing functions and calculating
integrals. We say that a transformation is calculated by diffeo-
quadratures if it is defined by a finite sequence consisting
of elementary operations, composing functions, calculating
integrals, and differentiating.

We say that two systems are S-equivalent by bi-
quadratures if there exists a diffeomorphism ϕ conjugating
them so that ϕ and ϕ−1 are calculated by quadratures.

Proposition IV.2 Consider a control-affine system Σ in the
affine strict feedforward (ASFF )-form. If the system is
S-linearizable, then it is S-equivalent to the Brunovský
canonical form (Br) by bi-quadratures.

For systems in affine strict feedforward (ASFF )-system
that are F -linearizable, described by Theorem III.1, the
picture is slightly different.

Proposition IV.3 Consider a control system Σ in the affine
strict feedforward (ASFF )-form. If the system is F -
linearizable, then it is S-equivalent to the affine nonlinear
Brunovský form (ANBr) by bi-quadratures. Moreover, it is
F -transformable to the Brunovský canonical form (Br) (and
thus F -linearizable) by a transformation that is calculated
by diffeo-quadratures.

Proof. The proof of the first statement follows directly from
the Algorithm given in Section VI which provides explicit
formulas for the components of the diffeomorphism w =
ϕ(z) transforming (ASFF ) into (ANBr). Those formulas
involve, indeed, compositions, elementary operations, and
integrations only. Notice that at the first glance we can
suspect that in order to find ϕl(z) (see the general substep of
the general step of Algorithm) we have to integrate bl and in
order to know bl we have to calculate derivatives since bl =
∂fl

∂zi
(∂fi−1

∂zi
)−1. It is crucial to observe that there exists another

way to calculate bl as bl = (fi−1(zi))−1(fl(zl+1, . . . , zi) −
f(zl+1, . . . , zi−1, 0)) which involves composition and ele-
mentary operations only. Now, consider the (ANBr)-form
and denote

f(w) = Ĝ1(w2)
∂

∂w1
+· · ·+Ĝn−1(wn)

∂

∂wn−1
, g(w) =

∂

∂wn
.

It is well known (see, e.g., [3] and [12]) that in order to
transform (via feedback) (ANBr) into (Br) we use the
following finite sequence of derivations

(LF )


w̃1 = h(w),

w̃i = Li−1
f h(w), i = 2, . . . , n,

ũ = Ln
fh(w) + (LgL

n−1
f h(w))u,

where h(w) = w1. �
Notice that we do not claim that Σ is F -equivalent to a lin-

ear system (to the Brunovský form (Br) , for instance) by bi-
diffeo-quadratures. Indeed, calculating the inverse feedback
transformation (actually both, the inverse of the linearizing

diffeomorphism and the inverse of control transformation)
involves compositions, integrations, and inverting nonlinear
functions.

A few comments are to be given. Consider a (control-
affine, for simplicity) single-input nonlinear system

ż = f(z) + g(z)u,

which is not necessarily in the (ASSF )-form. We attach to Σ
the sequence of nested distributions D1 ⊂ D2 ⊂ · · · ⊂ Dn:

Dk = span
{
g, adfg, . . . , ad

k−1
f g

}
, k = 1, 2, . . . , n,

with ad0
fg = g, and inductively, adk−1

f g = [f, adk−2
f g].

Necessary and sufficient conditions for feedback linearization
obtained in [2], [4] (see also [3] and [12]) are as follows:

Theorem IV.4 A control-affine system Σ : ż = f(z)+g(z)u
is locally equivalent, via a change of coordinates w̃ = ϕ(z)
and feedback ũ = α̃(z) + β̃(z)u, to a linear controllable
Brunovský canonical form (Br) if and only if
(F1) dim Dn(z) = n

(F2) Dn−1 is involutive.

As it is well known (see, e.g., [2], [3], [4], [12]), in order
to F -linearize Σ we have to find a linearizing output, that
is a function h whose differential dh does not vanish and
annihilates the involutive distribution Dn−1. Then h defines
the linearizing coordinates and linearizing feedback by the
formula (LF ) given in the proof of Proposition IV.3. In order
to find h we have to solve the system of first order PDE’s

LgL
i−1
f h = 0, 1 ≤ i ≤ n− 1, LgL

n−1
f h 6= 0.

This system admits a solution (assured by involutivity of
Dn−1) but its solvability is, in general, a highly nontrivial
task. A partial corollary of Proposition IV.3 is that for F -
linearizable systems Σ that are in the (ASFF )-form, the
problem of finding a linearizing output h can by solved by
quadratures. Indeed, the first statement of Proposition IV.3
asserts that we can find, by quadratures (of the components
fi(z) and gi(z)), the diffeomorphism w = ϕ(z) that trans-
forms Σ into the Affine Nonlinear Brunovsky canonical form
(ANBr). A linearizing output is now the first component
w1 = ϕ1(z) of that diffeomorphism (compare the second
part of the proof of Proposition IV.3 to see this).

V. STABILIZATION OF F-LINEARIZABLE
(ASFF)-SYSTEMS

It is well known that any F -linearizable system is (locally)
asymptotically stabilizable by a state feedback that is linear
with respect to the linearizing coordinates, see, e.g., [3].
The difficulty of implementing this result resides on the
fact that the linearizing coordinates and feedback law are
not always easy to find. For F -linearizable system that are
in the (ASFF )-form, our algorithm provides, however, an
easy way of finding the linearizing transformations and, as a
consequence, a stabilizing controller via diffeo-quadratures.
Namely, Proposition IV.3 implies the following result:
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Proposition V.1 Consider a system Σ : ż = f(z)+g(z)u in
(ASFF )-form, locally around 0 ∈ Rn (resp. globally on Rn)
that is F -linearizable locally at 0 ∈ Rn (resp. locally at any
z ∈ Rn). Let w = ϕ(z) be the coordinates change (given
by the Algorithm) that takes Σ into the (ANBr)-form, and
w̃ = ψ(w), ũ = α̃(w)+ β̃(w)u, given by (LF) in the proof of
Proposition IV.3, be the feedback transformation that maps
the (ANBr)-form into the (Br)-form. Then the feedback law

u = −
α̃(ϕ(z)) +

n∑
i=1

kiψi(ϕ(z))

β̃(ϕ(z))
, (1)

where the polynomial p(λ) = λn +
∑n−1

i=0 λ
iki+1 is Hurwitz,

locally (resp. globally on Rn) asymptotically stabilizes the
origin 0 ∈ Rn. Moreover, this stabilizing control law can be
calculated by diffeo-quadratures (in terms of the components
fi(z) and gi(z) of the original system Σ).

Proof. The proof is a direct consequence of Proposi-
tion IV.3 and stabilizability of feedback linearizable systems.
Indeed, applying the controller (1) yields the closed loop
linear system ˙̃w = Aw̃, where w̃ = Φ(z) = ψ ◦ ϕ(z), and
A is Hurwitz. Thus, by Proposition IV.3, the components
Φi of Φ are calculated by diffeo-quadratures in terms of the
components fi(z) and gi(z) of the original system Σ. �

It is interesting to observe that the Lyapunov function V
can also be calculated by diffeo-quadratures (in terms of the
components of the original system). Indeed, let P be the
positive definite symmetric matrix solution of the Riccati
equation A>P + PA = −I . Then V (z) = Φ>(z)PΦ(z).

To illustrate this result we consider the following example.

Example V.2 Let us consider the system (ASFF )
ż1 = sin(z2 + zn−1)− 2(z2 + zn−1) sin z3,
ż2 = sin z3 − sin zn,
żi = sin zi+1, 3 ≤ i ≤ n− 1
żn = u,

which is control-normalized, i.e., g(z) =
(
0, . . . , 0, 1

)>
.

The change of coordinates (see Example V.2-bis below)

w = ϕ(z) ,

 w1 = z1 + (z2 + zn−1)2,
w2 = z2 + zn−1,
wi = zi, 3 ≤ i ≤ n

transforms the system into the (ANBr)-form{
ẇi = sinwi+1, 1 ≤ i ≤ n− 1
ẇn = u,

where (w1, . . . , wn) ∈ (−π, π) × · · · × (−π, π). It is thus
feedback linearizable by w̃ = ψ(w), ũ = α̃(w) + β̃(w)u :

ψ1 = w1, ψ2 = sinw2
∂ψ1

∂w1
, . . . , ψn =

n−1∑
i=1

sinwi+1
∂ψn−1

∂wi
,

ũ =
n−1∑
i=1

sinwi+1
∂ψn

∂wi
+
∂ψn

∂wn
u.

Since
∂ψi

∂wi
= coswi

∂ψi−1

∂wi−1
, i = 2, . . . , n, then

∂ψn

∂wn
= coswn

∂ψn−1

∂wn−1
= · · · = coswn coswn−1 · · · cosw2,

and thus for any 0 < ε < π/4, the feedback law

u = −

n−1∑
i=1

sin zi+1
∂ψn

∂zi
(ϕ(z)) +

n∑
i=1

kiψi(ϕ(z))

cos(z2 + zn−1) cos z3 · · · cos zn

locally asymptotically stabilizes the system on (−ε, ε)n.

VI. PROOF OF THEOREM III.1
(i)⇒(ii). It is clear that a system in (ANBr)-form is F -
linearizable by the change of coordinates and feedback (LF ).
(ii)⇒(i). We show that an F -linearizable (ASFF )-form, can
be taken, via a (local) diffeomorphism, to the (ANBr)-form.
Algorithm. Assume that Σ is control-normalized (see [19]). It
is well known that the involutivity of Dn−1 (see (F2) of The-
orem IV.4) implies that of all distributions Dk, 1 ≤ k ≤ n.
Step 1. The involutivity of D2 implies

[g, adfg] = γ1adfg + γ0g,

where γ1 and γ0 are smooth functions. Because

f(z) =
n−1∑
j=1

fj(zj+1, . . . , zn)∂zj
and g = ∂zn

,

it follows that γ0 = 0 and γ1 = γ1(zn). Above, ∂zj
= ∂

∂zj
.

Thus the involutivity of D2 reduces to the condition

(Fn)
∂2fj

∂z2
n

= γ1(zn)
∂fj

∂zn
for all 1 ≤ j ≤ n− 1.

Condition (Fn) is necessary for F -linearization, i.e., if it
fails (γ1 depends on other variables than zn or γ1 is not
the same for all components fj) then the algorithm stops. If
(Fn) holds, we can simplify the system using n−2 substeps.

Let j = n − 1 in (Fn). Since fn−1 = fn−1(zn), we get
f ′′n−1(zn) = γ1(zn)f ′n−1(zn), which gives γ1 uniquely as
γ1 = f ′′n−1(zn)/f ′n−1(zn). Two successive integrations yield

fn−1(z) =
∫ zn

0

an−1 exp
(∫ t

0

γ1(s)ds
)

dt,

with an−1 ∈ R∗ = R \ 0.
Substep 1. Take j = n−2 in (Fn) and denote hn−2 = ∂fn−2

∂zn
.

We obtain after integration

hn−2(zn−1, zn) = an−2(zn−1) exp
(∫ zn

0

γ1(s)ds
)

which implies, after a second integration, that

fn−2(zn−1, zn) = cn−2(zn−1) + fn−1(zn)bn−2(zn−1),

for some smooth functions cn−2 and bn−2 = an−2/an−1.
The diffeomorphism x = ϕ(z) whose components are

z̃j = ϕj(z) = zj , j 6= n− 2

z̃n−2 = ϕn−2(z) = zn−2 −
∫ zn−1

0

bn−2(s)ds
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transforms the system, by quadratures, into the form

Σ̃ : ˙̃z = f̃(z̃) + g̃(z̃)u, z̃ ∈ Rn,

with g̃(z̃) = (0, . . . , 0, 1)> and

f̃(z̃) =
n−3∑
j=1

f̃j(z̃j+1, . . . , z̃n)∂z̃j

+ f̃n−2(z̃n−1)∂z̃n−2 + f̃n−1(z̃n)∂z̃n−1 .

General Substep. Assume that for some 1 ≤ i ≤ n − 2,
a sequence of quadratures exists whose composition has
brought the original system into (we keep the z-notation)

Σ : ż = f(z) + g(z)u, z ∈ Rn,

with g(z) = (0, . . . , 0, 1)> and

f(z) =
i∑

j=1

fj(zj+1, . . . , zn)∂zj

+
n−2∑

j=i+1

fj(zj+1, . . . , zn−1)∂zj + fn−1(zn)∂zn−1 .

Taking j = i in the condition (Fn) we have

∂2fi

∂z2
n

= γ1(zn)
∂fi

∂zn
.

Denoting hi(zi+1, . . . , zn) = ∂fi

∂zn
, we obtain

hi = ai(zi+1, . . . , zn−1) exp
(∫ zn

0

γ1(s)ds
)

and after a second integration

fi = ci(zi+1, . . . , zn−1) + fn−1(zn)bi(zi+1, . . . , zn−1),

for some smooth functions ci and bi = ai/an−1.
The diffeomorphism x = ϕ(z) whose components are

z̃j = ϕj(z) = zj , j 6= i

z̃i = ϕi(z) = zi −
∫ zn−1

0

bi(zi+1, . . . , zn−2, s)ds

transforms the system, by quadratures, into the form

Σ̃ : ˙̃z = f̃(z̃) + g̃(z̃)u, z̃ ∈ Rn,

with g̃(z̃) = (0, . . . , 0, 1)> and

f̃(z̃) =
i−1∑
j=1

f̃j(z̃j+1, . . . , z̃n)∂z̃j

+
n−2∑
j=i

f̃j(z̃j+1, . . . , z̃n−1)∂z̃j
+ f̃n−1(z̃n)∂z̃n−1 .

Notice that, at each substep, the inverse ψ of the diffeomor-
phism x = ϕ(z) is easily computable as

zj = ψj(z̃) = z̃j , j 6= i

zi = ψi(z̃) = z̃i +
∫ z̃n−1

0

bi(z̃i+1, . . . , z̃n−2, s)ds.

Moreover, for any 1 ≤ j ≤ n− 2, we have

f̃j(z̃j+1, ..., z̃n−1) = fj(ψj+1(z̃j+1, ..., z̃n−1), ..., ψn−1(z̃n−1)).

The original system is thus brought, via n− 2 substeps, to

Σ : ż = f(z) + g(z)u, z ∈ Rn,

with g = (0, . . . , 0, 1)> and

f(z) =
i∑

j=1

fj(zj+1, . . . , zn)∂zj

+
n−2∑

j=i+1

fj(zj+1, . . . , zn−1)∂zj
+ fn−1(zn)∂zn−1 .

This ends the first step of the algorithm. We will denote
by ϕ1 the composition of the diffeomorphisms of step 1.
General Step. For simplicity, we skip the tildes. Assume
that Σ has been brought, via quadratures, to the form

Σ : ż = f(z) + g(z)u, z ∈ Rn,

where g = (0, . . . , 0, 1)> and for some 3 ≤ i ≤ n− 2

f(z) =
i−2∑
j=1

fj(zj+1, . . . , zi)∂zj
+

n−1∑
j=i−1

fj(zj+1)∂zj
.

We will show that Σ can be brought, via quadratures, to
Σ̃ : f̃(z̃) + g̃(z̃)u, where g̃ = (0, . . . , 0, 1)> and

f̃(z̃) =
i−3∑
j=1

f̃j(z̃j+1, . . . , z̃i−1)∂z̃j
+

n−1∑
j=i−2

f̃j(z̃j+1)∂z̃j
.

We deduce from above that for any 1 ≤ i ≤ k ≤ n− 1

adn−k
f g = µk(zk+1, . . . , zn)∂zk

+ ϑk(z),

where the vector field ϑk ∈ Dn−k = span {∂zk+1 , . . . , ∂zn
}

and µk is a smooth function. In particular for k = i we have

adn−i
f g = µi(zi+1, . . . , zn)∂zi

+ ϑi(z),

from which, and the expression of f , we deduce that

adn−i+1
f g =

i−1∑
j=1

µj(zj+1, . . . , zn)∂zj + ϑi−1(z),

where ϑi−1 ∈ ∆n−i+1 and for any 1 ≤ j ≤ i− 1

µj(zj+1, . . . , zn) = −µi(zi+1, . . . , zn)
∂fj

∂zi
.

A simple calculation shows that[
adn−i+1

f g, adn−i
f g

]
= µ2

i ·
i−1∑
j=1

∂2fj

∂z2
i

∂zj
+ ϑ̃i−1(z),

where ϑ̃i−1 ∈ Dn−i+1 = span {∂zi
, . . . , ∂zn

}.
The involutivity of Dn−i+2 implies that[
adn−i+1

f g, adn−i
f g

]
=

n∑
k=i−1

γn−kad
n−k
f g

= γn−i+1ad
n−i+1
f g + ϑ̂i−1

for some smooth functions γ0, γ1, . . . , γn−i+1.
Comparing the two Lie brackets it follows that

(µi)2 ·
i−1∑
j=1

∂2fj

∂z2
i

∂zj = −(µi)γn−i+1 ·
i−1∑
j=1

∂fj

∂zi
∂zj ,
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that is, the condition

(Fi)
∂2fj

∂z2
i

= γ̃n−i+1
∂fj

∂zi
, 1 ≤ j ≤ i− 1.

For j = i − 1 we get f ′′i−1(zi) = γ̃n−i+1(z)f ′i−1(zi) which
determines γ̃n−i+1 = f ′′i−1(zi)/f ′i−1(zi) uniquely in terms
of zi. The components fi−1 and γ̃n−i+1 are related by

fi−1(zi) =
∫ zi

0

ai−1 exp
(∫ t

0

γ̃n−i+1(s)ds
)

dt, ai−1 ∈ R∗.

General Substep. Let us assume that the original system has
been brought, via quadratures, to the form

Σ : ż = f(z) + g(z)u, z ∈ Rn,

where g = (0, . . . , 0, 1)> and for some 2 ≤ l < i ≤ n− 2

f(z) =
l∑

j=1

fj(zj+1, . . . , zi)∂zj
+

n−1∑
j=l+1

fj(zj+1)∂zj
.

Taking j = l in (Fi) and denoting hl = ∂fl

∂zi
we have

hl = al(zl+1, . . . , zi−1) exp
(∫ zi

0

γ̃n−i+1(s)ds
)

and after integration

fl(zl+1, ..., zi) = cl(zl+1, ...., zi−1)+fi−1(zi)bl(zl+1, ..., zi−1),

for some smooth functions cl and bl = al/ai−1.
The new coordinates x = ϕ(z) whose components are

z̃j = ϕj(z) = zj , j 6= l

z̃l = ϕl(z) = zl −
∫ zi−1

0

bl(zl+1, . . . , zi−2, s)ds

transforms the system, by quadratures, into the form

Σ̃ : ˙̃z = f̃(z̃) + g̃(z̃)u, z̃ ∈ Rn,

where g̃ = (0, . . . , 0, 1)> and

f̃(z̃) =
l−1∑
j=1

f̃j(z̃j+1, . . . , z̃i)∂z̃j +
n−1∑
j=l

f̃j(z̃j+1)∂z̃j .

This ends the general step. Denote by ϕi the composition
of the coordinates changes for the i-th step. Thus the
composition ϕn−2 ◦ · · · ◦ ϕ1 defines the coordinates change
taking Σ into the (ANBr)-form, which completes the proof
of Theorem III.1.
Example V.2-bis. Reconsider Example V.2. Then (Fn) holds
with γ1 = − tan zn. For 3 ≤ i ≤ n− 1, the decomposition

fi(z) = ci(zi+1, . . . , zn−1) + fn−1(zn)bi(zi+1, . . . , zn−1)

yields bi = 0 and ci = sin zi+1 because fi(z) = sin zi+1.
Moreover, b2 = −1 and c2 = sin z3 since fn−1(z) = sin zn

and f2(z) = sin z3 − sin zn. The transformation

z̃j = zj , j 6= 2

z̃2 = z2 −
∫ zn−1

0

(−1)ds = z2 + zn−1

brings the system into the form
˙̃z1 = sin z̃2 − 2z̃2 sin z̃3,
˙̃zi = sin z̃i+1, 2 ≤ i ≤ n− 1
˙̃zn = u.

Next, we apply the last step (Step n− 3) with

(F3)
∂2f̃j

∂z̃2
3

= γ̃n−2(z̃)
∂f̃j

∂z̃3
, 1 ≤ j ≤ 2,

which holds for γ̃n−2 = − tan z̃3. The decomposition of

f̃1(z̃) = c̃1(z̃2) + f̃2(z̃3)b̃1(z̃2)

yields c̃1(z̃2) = sin z̃2 and b̃1(z̃2) = −2z̃2. Hence

wj = z̃j , j 6= 1

w1 = z̃1 −
∫ z̃2

0

(−2s)ds = z̃2 + z̃2
2

The composition gives the linearizing coordinates system.
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