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Abstract— We consider a discrete-time dynamical system
with Boolean and continuous states, with the continuous
state propagating linearly in the continuous and Boolean
state variables, and an additive Gaussian process noise,
and where each Boolean state component follows a simple
Markov chain. This model, which can be considered a
hybrid or jump-linear system with very special form,
or a standard linear Gauss-Markov dynamical system
driven by a Boolean Markov process, arises in dynamic
fault detection, in which each Boolean state component
represents a fault that can occur.

We address the problem of estimating the state, given
Gaussian noise corrupted linear measurements. Computing
the exact maximum a posteriori (MAP) estimate entails
solving a mixed integer quadratic program, which is
computationally difficult in general, so we propose an
approximate MAP scheme, based on a convex relaxation,
followed by rounding and (possibly) further local optimiza-
tion. Our method has a complexity that grows linearly in
the time horizon and cubicly with the state dimension, the
same as a standard Kalman filter. Numerical experiments
suggest that it performs very well in practice.

I. INTRODUCTION

In this paper we present an efficient state estima-

tion method for a special class of hybrid discrete-time

systems. Specifically, our method deals with discrete-

time dynamical systems with continuous and Boolean

state variables, and an additive Gaussian process noise.

The continuous state component propagates linearly with

respect to the continuous and Boolean state variables.

The Boolean state variables evolve as simple Markov

chains, which are independent of each other as well as

of the continuous state process noise. In this sense the

Boolean state can be thought of as an exogenous input

to a linear dynamical system.

We consider the problem of estimating the state trajec-

tory of such a system, given continuous measurements,
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by finding the sequence that maximizes the posterior

probability. This can be done easily in special cases,

such as where there are only continuous states (or the

Boolean states are known), using Kalman filtering, and

if there are only discrete states, using a variation on

Viterbi decoding. In general, however, this problem is

hard and for this reason we have to resort to heuristics,

i.e., we must settle for finding a state trajectory with

large, if not always largest, posterior probability.

The method that we present in this paper is one such

heuristic. It is based on relaxing the problem of finding

the most probable state sequence into a convex problem

and (approximately) solving the resulting relaxation. We

then round the relaxed solution and carry out some

local optimization to further improve the quality of

the resulting integer solution, as measured by posterior

probability. This method is not guaranteed to find the

state trajectory with maximum posterior probability; but

numerical studies suggest that it does a good enough

job to give excellent performance in terms of estimation

quality.

The complexity of our method scales linearly in

the time horizon and cubicly in the (continuous and

Boolean) state dimension, which is the same as a stan-

dard Kalman filter. This makes this method scalable to

very large problems. At the same time, our simulation

results suggest that this method performs very well,

compared to both the true globally optimal solution, as

well as other methods suggested for this problem.

1) Previous and related work: The algorithm that we

present in this paper is in essence a low-complexity

suboptimal observer for a hybrid system of special

form. The design of hybrid observers has been studied

extensively in the literature [1], [2], [3]. In many cases

the problem of state estimation in hybrid system can

be cast as a mixed-integer convex problem, such as a

mixed-integer quadratic program (MIQP).

Our problem can also be considered a special case

of state estimation in jump Markov linear systems

[4]. These are linear systems whose parameters evolve
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according to a finite state Markov chain. Some recent

algorithms that have been developed to tackle this more

general problem include Markov chain Monte Carlo

(MCMC) methods [5], methods based on simulated an-

nealing [6], and particle filtering [7]. While these meth-

ods can be proven to globally asymptotically converge

to the global optimum of the related MAP estimation

problem, they are computationally expensive.

The particular problem that we consider is very well

suited to modelling a fault diagnosis system, in which

the Boolean variables represent faults that are either

present or not at each time step. Several authors have

used a similar modelling framework for fault detection

systems [8], [9]. Our approach of relaxing the resulting

mixed-integer problem to a convex problem is very

similar to the technique used in [10].

The dual problem of optimal control with Boolean in-

puts has also been studied in the literature. The problem

is often cast as a mixed-integer convex problem [11]

and solved using branch and bound methods [12], [13].

Several authors have proposed methods for improving

the efficiency of the branch and bound or other global

optimization methods. For example in [14] the authors

attempt to improve upon the tightness of the lower

bounds resulting from the convex relaxation of the

original optimal control problem. In [15] the authors

consider a number of possible convex relaxations that

are applicable to this problem and propose efficient ways

to solve them.

The idea of using convex relaxation as the basis for

a heuristic for solving a combinatorial problem is quite

old. Some recent examples include compressed sensing

[16] and sparse decoding [17]. Other applications that

use convex relaxations include portfolio optimization

with transaction costs [18], controller design [19], circuit

design [20], and sensor selection [21]. In our previous

work [22] we used a convex relaxation technique for

the problem of fault identification in a static setting.

We should note that the convex relaxation used in this

paper is the simplest possible one; far more sophisticated

relaxations can also be employed; see, e.g., [23, Chap.

2].

2) Outline: In §II we describe the system setup in

detail. We describe maximum a posteriori (MAP) state

estimation in §III, including several methods for com-

puting the MAP estimate exactly and approximately. In

§IV, we describe our proposed method, which consists

of forming and solving a convex relaxation, followed by

rounding and (possibly) local optimization. We illustrate

the method on several numerical examples in §V.

II. SYSTEM AND MEASUREMENT MODEL

We consider a discrete-time linear dynamical system

of the form

x(t + 1) = Ax(t) + Bz(t) + w(t), t = 0, . . . , T − 1,
(1)

where x(t) ∈ Rn is the continuous state, z(t) ∈ {0, 1}b

is the Boolean state, and w(t) ∈ Rn is the process

noise, at time period t. The process noises are IID, with

N (0,W ) distribution. The initial continuous state x(0)
is random, with x(0) ∼ N (x̄0,Σ0).

Each Boolean state (component) zi(t) evolves as an

independent Markov chain on {0, 1}, with transition

probabilities

p(zi(t + 1) = 1|zi(t) = 0) = pup
i (2)

p(zi(t + 1) = 0|zi(t) = 1) = pdown
i , (3)

for i = 1, . . . , b, t = 0, . . . , T − 1. The initial Boolean

states zi(0) are independent, with p(zi(0) = 0) = p0
i .

The initial continuous state, Boolean state, and process

noises are independent.

Evidently (x(t), z(t)) is a Markov chain on Rn ×
{0, 1}b (but with a very special form). We can also think

of our system (1), (2), and (3) as a linear dynamical

system with a Gaussian process noise, driven by a

set of Boolean Markov chain inputs. Another way to

view this system is as a special case of a jump linear

system [4]. Systems of this form arise in dynamic fault

identification, in which zi(t) = 1 means that (hard, i.e.,

Boolean) fault i occurs at time t. In this context, pup
i

is the probability of onset of fault i, and pdown
i is the

probability of fault i clearing, at each time t. In our

model each fault occurs independently of the others, and

independently of the continuous state.

We note that when n = 0, our system reduces to a set

of b independent Boolean Markov chains. When b = 0,

our system reduces to the standard Gauss-Markov linear

dynamical model.

Our measurement model has the form

y(t) = Cx(t) + Dz(t) + v(t), t = 0, . . . , T, (4)

where y(t) ∈ Rm is the measurement vector, and

v(t) ∈ Rm is the measurement noise, at time t. These

measurement noises are IID with N (0, V ) distribution,

independent of the initial states and process noise (and

therefore also independent of all x(t) and z(t)).
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III. MAXIMUM A POSTERIORI STATE ESTIMATION

A. The MAP problem

Let x, z, and y denote the continuous state, Boolean

state, and measurement trajectories,

x = (x(0), . . . , x(T )) ∈ Rn(T+1),

z = (z(0), . . . , z(T )) ∈ {0, 1}b(T+1),

y = (y(0), . . . , y(T )) ∈ Rm(T+1).

Our goal is to estimate the state trajectories x and z,

given the measurement trajectory y.

Let l : Rn(T+1) × {0, 1}b(T+1) → R be the log-

posterior density of x and z, given y. We can express l
as

l(x, z) = lproc(x, z) + lmeas(x, z)+

ltrans(z) + linit(x(0), z(0)) + ν,

where ν is a constant and

lproc(x, z) = −(1/2)

T−1
∑

t=0

‖x(t+1)−Ax(t)−Bz(t)‖2
W

(5)

is the contribution due to the process noise,

lmeas(x, z) = −(1/2)

T
∑

t=0

‖y(t)−Cx(t)−Dz(t)‖2
V (6)

is the measurement noise contribution,

ltrans(z) = −
b
∑

i=1

T−1
∑

t=0

φi(zi(t), zi(t + 1)) (7)

is the Boolean state transition term, and

linit(x(0), z(0)) = −(1/2)‖x(0)− x̄0‖2
Σ0

+λT z(0) (8)

is the initial state term, with λi = log(p0
i /(1−p0

i )). Here

we use the notation ‖u‖A =
√

uT A−1u, where A is

positive definite. The function φi : {0, 1}2 → R, which

gives the loss associated with an estimated transition of

zi(t), is given by

φi(u1, u2) =















− log pup
i , u1 = 0, u2 = 1

− log(1 − pup
i ), u1 = 0, u2 = 0

− log pdown
i , u1 = 1, u2 = 0

− log(1 − pdown
i ), u1 = 1, u2 = 1.

(9)

The maximum a posteriori (MAP) estimate of x and

z, given the measurement trajectory y, is found by max-

imizing l(x, z) over x and z, given the measurement y,

i.e., as the solution of the MAP estimation optimization

problem

maximize l(x, z) (10)

with variables x ∈ Rn(T+1) and z ∈ {0, 1}b(T+1). The

objective in (10) is concave quadratic in x, for any

z, and so is readily maximized (indeed, by solving a

set of linear equations). But in general, the b(T + 1)
Boolean variables make the problem (10) difficult to

solve exactly.

B. Global solution methods and special cases

The MAP estimation problem (10) can in principle be

solved by enumeration over the Boolean variables, i.e.,

by maximizing l over x, for each of the 2b(T+1) possible

Boolean state trajectories. Each such maximization can

be carried out with O(Tn3) operations (which can be

reduced to Tn2 after the first maximization) so the total

complexity of direct enumeration is O(Tn22b(T+1)),
which evidently makes it impractical except when b and

T are very small.

The MAP estimation problem (10) can be reformu-

lated as an MIQP, and global optimization methods

such as branch-and-bound [12], [13], branch-and-cut,

and others can be used to solve it. (These reduce to direct

enumeration in the worst-case.) But the large number

of Boolean variables will generally make this approach

infeasible in practice, unless b and T are small.

The MAP estimation problem (10) can be solved

efficiently in special cases. If b = 0, i.e., when there are

no Boolean states, MAP estimation reduces to classical

weighted least-squares smoothing, and the MAP estima-

tion problem reduces to maximizing a concave quadratic

function of x with (block) banded structure. This can be

done very efficiently by exploiting the banded structure

of the problem [24], or by special purpose algorithms

(e.g., Kalman filter, Riccati recursion [25, §3.1], [26],

[27], [28]), that have complexity O(Tn3). These same

methods can be used to compute the continuous state

trajectory for the general case, if we fix the Boolean

state trajectory, with complexity O(Tn3).
When n = 0, i.e., there are no continuous states, the

MAP problem reduces to estimating the trajectory of a

Markov chain that evolves on 2b states, given noise-

corrupted measurements. (Even though the individual

states bi(t) evolve independently, they become coupled

in the estimation problem.) This can be solved using

a dynamic programming algorithm, similar in spirit to

Viterbi decoding [29, §2.2.2]. To do this, we evaluate

the minimum cost to go functions Jt : {0, 1}b → R for

t = 1, . . . , T − 1, defined as

Jt(z) =
1

2
‖y(t) − Dz‖2

V +

min
z′∈{0,1}b

(

b
∑

i=1

φi(zi, z
′
i) + Jt+1(z

′)

)

.
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The terminal cost function JT is

JT (z) =
1

2
‖y(T ) − Dz‖2

V ,

and the initial cost function J0 is

J0(z) =
1

2
‖y(0) − Dz‖2

V + λT z+

min
z′∈{0,1}b

(

b
∑

i=1

φi(zi, z
′
i) + J1(z

′)

)

.

We compute these recursively, starting from JT and

working backwards to J0. Finding the MAP value of

z corresponds to finding the minimum cost binary se-

quence, which is easy once Jt have been evaluated. Each

function evaluation requires 2b operations of complexity

O(22b), so the cost of evaluating all cost to go functions,

and solving the MAP problem for this special case, is

therefore O(T23b).

C. Local solution methods

A wide variety of methods can be used to find a

locally optimal, or even just a “good” value z (the corre-

sponding optimal value of x is then readily computed).

Such points can be found with far less computational

effort, and, as we shall see in examples, can yield state

estimation performance that is close to that obtained

with global MAP estimation.

A general local search method starts with some

Boolean state trajectory z, and the associated continuous

state trajectory x optimal for z, and considers a set

of tentative changes to z, typically in one or a small

subset of the entries in z. For each proposed change, the

associated optimal continuous trajectory is computed,

and among the candidates, the one that yields the largest

increase in l is accepted as the new value of z (if one

of the proposed changes results in an increase in l).
This process is repeated, with different selections of

candidate changes, until a maximum iteration limit is

reached, or one cycle through all possible candidate sets

yields no improvement. The optimization over x that

must be carried out at each step can be done with effort

Tn2, once an initial Cholesky factorization (which costs

Tn3) is computed. A local search method can, and does,

converge to different points (with different values of l),
depending on the initial z chosen. A typical strategy is

to run the local method several (or many) times, taking

the best final result found as the estimate of z.

In the simplest version, we cycle over Boolean state

index i and the time t, and consider only one candidate

change: replacing zi(t) with 1 − zi(t). This change is

accepted if it increases l. This is continued until an

iteration limit is reached, or until no change of any one

bit in z results in an increase in l (at which point we

have a locally optimal, or 1-OPT, approximate solution).

A more sophisticated version, called batch coordinate

ascent, was described in [5, §IV.A]. In this method we

cycle over the time index t. For each t, we consider all

2b possible values of z(t), and accept the one that leads

to the largest increase in l (if one exists). This requires

a filtering operation (i.e., maximizing l over x) for each

of the 2b possible tentative values of z(t), for each

t. A naı̈ve implementation has complexity O(T 2n22b)
per pass over the whole time horizon; the authors of

[5] show that this can be reduced to O(Tn22b). The

complexity of this method is exponential in b, but clearly

we can limit the number of bits tentatively flipped at

each step, to obtain an algorithm with lower complexity

in b (with the extreme case being the simple local search

method described above).

IV. RELAXED MAP STATE ESTIMATION

In this section we describe a heuristic method for ap-

proximately solving the MAP state estimation problem

(10). The complexity of our method is O((n + b)3T ),
so it grows linearly with T , like Kalman filtering or the

Viterbi algorithm. Its growth in n is the same as the

Kalman filtering method; but its growth in b is cubic,

as opposed to exponential. Our method is heuristic (like

the local optimization methods described above) since

it need not, and sometimes does not, find the globally

optimal solution of the MAP problem.

Our method is based on forming a convex relaxation

of the MAP problem, by extending the functions φi

to convex, piecewise-linear functions defined on [0, 1]2,

and relaxing the constraints zi(t) ∈ {0, 1} to bi(t) ∈
[0, 1]. This resulting problem can be solved efficiently,

and gives an upper bound on the optimal log-likelihood

function as well as approximate values of zi(t) (which,

however, need not have Boolean values). We then round

these relaxed values of the estimated Boolean states,

and carry out a smoothing step for x (i.e., maximizing

l(x, z)) with the estimated Boolean values fixed. We can

then (optionally) use any local optimization method to

(possibly) further improve this estimate.

Of course, our method need not (and often does not)

find the global solution of the MAP estimation problem.

But our simulations suggest that our method gives very

good estimation performance, even when it fails to find

the global MAP solution. We should also note that our

method should not be considered as a competitor to, or

substitute for, local search methods. Indeed, our method

is complementary: It can be considered a fast method

to find a rather good starting point for any local search

method.
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A. Relaxed MAP problem

We start by replacing the constraint zi(t) ∈ {0, 1}
with zi(t) ∈ [0, 1]. With the exception of the Boolean

transition term (7), every term in l makes sense for

relaxed (i.e., continuous) values of z. Indeed, except for

the Boolean transition term, l is a concave quadratic

function of x and z.

We will show in the next section how the transition

function φi, defined in (9) for (u1, u2) ∈ {0, 1}2, can be

extended to a function φ̄i, defined for (u1, u2) ∈ [0, 1]2,

which moreover is convex. Replacing φi(zi(t), zi(t+1))
with φ̄i(zi(t), zi(t + 1)) in l we obtain the relaxed log-

posterior function l̄ : R(m+n)(T+1) × Rb(T+1) → R,

which is concave, and which agrees with l when zi(t) ∈
{0, 1}. We can then form the relaxed MAP estimation

problem,

maximize l̄(x, z)
subject to 0 ≤ zi(t) ≤ 1,

(11)

with variables x ∈ Rn(T+1) and z ∈ Rb(T+1). This is a

convex optimization problem, since l̄ is concave and the

constraints are a set of 2b(T + 1) affine inequalities.

Since the feasible set of the relaxed MAP estimation

problem (11) contains the feasible set for the MAP

estimation problem, and the objective functions coincide

on the feasible set for the MAP estimation problem, we

conclude that the optimal value of the relaxed MAP

estimation problem (11) is an upper bound on the

optimal value of the MAP estimation problem (10). It

follows that if the relaxed MAP estimation problem has

a solution (x, z), with zi(t) ∈ {0, 1}, then this point is

a global solution of the MAP estimation problem.

B. Convex envelope of transition function

In this section we drop the index i from φi, to

simplify notation. We will form the convex envelope φ̄
of φ, which is the largest convex function which is an

underestimator of φ, i.e., satisfies

φ̄(u1, u2) ≤ φ(u1, u2) for u1, u2 ∈ {0, 1}.

(See, e.g., [30, §I.4].) For this particular case, we will

in fact have

φ̄(u1, u2) = φ(u1, u2) for u1, u2 ∈ {0, 1},

i.e., φ̄ is a convex extension of φ.

We can succintly characterize the convex envelope of

φ as

epi φ̄ = conv epiφ,

where epi denotes the epigraph of a function and conv

denotes the convex hull of a set (see e.g., [31, Chap. 3]).

0

0.5

1

0

0.5

1
0

0.5

1

1.5

2

u1u2

φ

Fig. 1: Graph of convex envelope φ̄ (shaded planes) and φ
(the four points shown as balls) for pup = 0.15 and pdown =
0.2. This corresponds to the first case described below, since
[q00, q11] lies below [q01, q10].

The graph of φ consists of 4 points in R3:

q00 = (0, 0,− log(1 − pup)) ,

q01 = (0, 1,− log(pup)) ,

q10 =
(

1, 0,− log(pdown)
)

,

q11 =
(

1, 1,− log(1 − pdown)
)

.

The epigraph of φ consists of these points, plus (under

set addition) (0, 0, R+), where R+ denotes the nonneg-

ative reals. Thus, epiφ consists of four vertical rays,

above the points (0, 0), (0, 1), (1, 0), and (1, 1). The

convex hull of this set is polyhedral, defined by the

inequalities 0 ≤ ui ≤ 1, and two additional inequalities.

Each of the four points q00, q01, q10, and q11 is an

extreme point of the set, which means that φ̄ is an

extension of φ.

It follows that φ̄ is a piecewise affine convex function

that passes through these points, with a crease along

the line segment [q00, q11] or the line segment [q01, q10]
(depending on which line segment lies above the other).

This is illustrated in figure 1.

First suppose that [q00, q11] lies below [q01, q10], i.e.,

− (1/2) log(1 − pup) − (1/2) log(1 − pdown) ≤
− (1/2) log(pup) − (1/2) log(pdown),

which is equivalent to

pup + pdown ≤ 1.

In this case the crease in the graph of φ̄ is along

[q00, q11]. We can describe φ̄ as the maximum of the

affine function that interpolates the points q00, q01, and

q11, and the one that interpolates q00, q10, and q11.
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If, instead, we have [q00, q11] lies above [q01, q10],
the crease in the graph of φ̄ lies along the segment

[q01, q10]. In this case φ̄ is the maximum of the affine

that interpolates the points q00, q01, and q10, and the one

that interpolates q01, q10, and q11.

In either case we can express φ̄ as

φ̄(u1, u2) = max
j=1, 2

(αju1 + βju2 + γj) ,

where αj , βj , and γj are readily found from the data

pup, pdown via the interpolation conditions.

C. QP formulation of relaxed MAP problem

By introducing epigraph variables for the piecewise

affine terms in φ̄i, we can express the relaxed MAP

estimation problem (11) as a (convex) quadratic program

(QP):

maximize lproc(x, z) + lmeas(x, z)+

linit(x(0), z(0)) −∑b
i=1

∑T
t=0 si(t)

subject to 0 ≤ zi(t) ≤ 1
αi

jzi(t) + βi
jzi(t + 1) + γi

j ≤ si(t),
(12)

with variables x, z, and s.

The QP (12) can be efficiently solved by a variety

of methods, such as primal-dual interior-point methods

[31], [32], [33]. The system of linear equations that

needs to be solved in each iteration has a (block)

banded form, which can be solved in O(T (n + b)3)
operations. Since the number of iterations of an interior-

point method is in practice always between 20 and 50
or so, it follows that the QP (12) can be solved with a

complexity of O(T (n + b)3).
A further reduction in solution time (but not com-

plexity) can be obtained by solving the QP only ap-

proximately, for example by fixing the parameter in the

barrier term, and using Newton’s method to solve the

resulting smooth convex equality constrained problem.

As observed in [22], and in a somewhat different con-

text in [34], such an approximate solution of the QP

(12) yields the same quality of estimation as an exact

solution. This is not surprising, since the solution of the

QP will be rounded to 0 or 1 in next step, described

below; in particular, as long as the approximate solution

of z rounds to the same value as the exact solution, the

performance will be exactly the same.

D. Rounding and filtering

We can obtain an estimate of z for the original state

estimation problem (10) by rounding each entry of z⋆,

the solution of the relaxed MAP problem (12), to 0 or

1, using a threshold. We then compute x̂ by maximizing

l(x, ẑ).

In the simplest method we use the rounding threshold

0.5; we can also try a number of different thresholds. For

each threshold, we maximize l over x, with the rounded

value of z. We then use as our estimate the one with

largest value of l.
1) Local optimization: We can further improve our

estimate of x and z by performing local optimization

over z, as described above, starting from ẑ, the Boolean

variable estimate obtained after rounding z⋆. (This is

proposed in [22], [21].) We have found that simple

entrywise local optimization can give some improvement

in the quality of the estimate, as measured both by

increase in l, as well as in estimation error on simulated

examples. The improvement in the estimate obtained

with simple local optimization depends (somewhat) on

the order in which the candidate bits are considered. Our

simulations suggest that a good strategy is to order the

bits in increasing distance to the rounding threshold, so

we first examine those bits that were most ambiguous

(i.e., far from 0 or 1) in the relaxed problem. We also

found that there is no need to cycle over all elements of

z; we only need to look at the ones which are close to

the rounding threshold.

We emphasize that local optimization is, like vari-

able threshold rounding, entirely optional, and can only

improve our estimate (in terms of l). Our simluations

show that it can give a modest, but significant, increase

in log-posterior density l, and a corresponding modest

improvement in estimation quality.

E. Computational complexity

We briefly summarize the computational complexity

of our proposed method. Whether we use an interior-

point method to solve the relaxed MAP problem in QP

form, or a Newton method to solve it approximately,

each iteration costs O(T (n + b)3). In either case, the

number of such iterations is approximately constant

(several tens in the first case, and typically under ten

in the second case). Thus the complexity of solving the

relaxed problem (exactly or approximately) is O(T (n+
b)3).

Once we round z⋆, we need to find the associated

most likely x. This also involves solving a banded

positive definite linear system of size Tn and bandwidth

n. We do this by computing the Cholesky factorization

of the corresponding matrix, which cost O(Tn3) opera-

tions, and then performing back substitution, which costs

O(Tn2) operations. If we store the Cholesky factor, we

can carry out subsequent maximizations over x, with

different values of z (as occurs if we carry out local

optimization), with cost O(Tn2). Local optimization

typically converges in a few passes over the entries of
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z (and in any case we can set a iteration limit on the

order of n), so the total cost of local optimization does

not exceed O(T (n + b)3).

V. NUMERICAL EXAMPLES

In this section we present two numerical examples

to illustrate the performance of our proposed method.

In each example, we generated the entries in the data

matrices A, B, C, and D randomly from an N (0, 1)
distribution, and then scale A so that its spectral radius

is 0.99. We take W = σ2
wI and V = σ2

vI .

For each example we generate a number of realiza-

tions of x, z, and y. For each realization, we carry

out one or more methods of estimation, and for each

one, we measure the estimation performance by two

measures. To measure the error in estimating z, we

use the average fraction of misclassified bits, which we

call the error rate. We judge the error in estimating the

continuous state trajectory using the relative root-mean-

square (RMS) error,

Emse =
‖x − x̂‖2

2

‖x‖2
2

.

For each realization, we also compute the relative RMS

error obtained using the true value of z. Each of these

measures is averaged over the realizations to obtain an

average performance measure.

A. Boolean example

Our first example is one with n = 0 and b = 5, i.e.,

no continuous states and 5 Boolean variables, m = 5
measurements, and horizon T = 50. The initial state

probabilities are p0
i = 0.1, for all i, and the transition

probabilities are pup
i = pdown

i = 0.1 for all i. For this

example we can compute the true MAP estimate using

the dynamic programming method described in §III-B,

so we can compare our approximate MAP method with

exact MAP estimation.

We vary σv from 0.1 to 10; for each value we generate

1000 realizations and for each realization and each

method we record the number of incorrectly identified

elements of z. The average performance results are

shown in figure 2. We can see that the estimation perfor-

mance of our approximate MAP method is essentially

the same as that of the exact MAP estimate. When the

noise level is small, our approximate method almost

always computes the exact MAP estimate, and therefore

has the same performance; when the noise level is larger,

our method often does not find the exact MAP estimate,

but nevertheless has similar estimation performance.
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Fig. 2: Average error rate as a function of σ for the RMAP
estimate (solid) and the true MAP estimate (dashed).
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Fig. 3: Average error rate in z for the RMAP estimate with
(dashed) and without (solid) local optimization.

B. Mixed state estimation

Our next example has n = 10 continuous states, b =
20 Boolean states, m = 20 measurements, and horizon

T = 100. The process noise has covariance σw = 2. The

initial state probability for z is p0
i = 0.7, for all i. The

state transition probabilities for z are pup
i = 0.15 and

pdown
i = 0.2 for all i. For this example, computing the

exact MAP estimate, or carrying out batch coordinate

ascent, is not practical.

We vary σv from 0.1 to 10; for each value we generate

200 realizations. The results are shown in figures 3 and

4. Our method does a good job of predicting the Boolean

state sequence z. In fact, figures 3 and 2 look quite

similar. Our method also does quite well in predicting

x, at least compared to the case when z is known

beforehand.
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Fig. 4: Relative mean squared error in x for the RMAP
estimate with (dashed) and without (solid) local optimization
and for the prescient solution (dashdot).
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