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Abstract— This work outlines two approaches for small
unmanned aerial vehicles (UAVs) performing surveillance with
fixed cameras. Small UAVs present significant control chal-
lenges, due to relatively low-bandwidth actuation and significant
disturbances due to wind. This work features implementations
of a spatial sliding mode controller and a receding-horizon
kinodynamic controller. The spatial sliding mode controller is
designed to follow a desired aircraft path which places the
camera-footprint on the desired locations, while the kinody-
namic controller is designed to directly track a camera-footprint
path. Since our objective is surveillance, we aim to compare
the effectiveness of each controller in tracking a desired sensor
path. Discussion of each controller is followed by simulation
and flight test results.

I. INTRODUCTION

Small UAVs with fixed cameras have become prevalent

in many applications. While gimbaled camera systems are

becoming increasingly popular, the vast majority of UAVs in

use today feature fixed cameras. In this work, we examine

two methods for low-level aircraft control for target sensing

using a fixed, downward-pointing camera. These controllers

function in a control architecture in which desired vehicle

paths are developed from a receding horizon path planning

scheme. Receding horizon, or model predictive, path plan-

ning has been featured recently in many works, such as [1],

[2], and [3]. In many receding horizon schemes, a high-level

trajectory optimization routine is coupled with a low-level

path following controller. The high level path planner uses

a simplified model, and develops paths at a relatively low

rate. A low-level controller is necessary to track the path

developed by the planner.

In this work, a high-level planner develops paths to max-

imize information collection. Fundamentally, the planner is

optimizing an objective function over the space of expected

sensor placements. The sensor placement is determined from

the vehicle location and attitude. A four dimensional path is

developed, assuming constant altitude and pitch, that speci-

fies the desired vehicle state. Additionally, the projection of

the camera footprint on the ground plane is computed and

given to the controller.

Two different low-level control approaches are used and

their performances are compared. The first is a spatial sliding

mode controller that attempts to minimize the difference be-

tween the desired and actual aircraft positions. Sliding mode
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control is known for its robustness with respect to model

uncertainties and disturbances and has been applied ubiq-

uitously in the field of trajectory tracking for autonomous

vehicles. An overview of sliding mode control may be found

in [4]. Spatial sliding mode control for UAVs was first

introduced in [5]. It is used for the cases in which the desired

path is described as a function of a spatial coordinate rather

than time. A spatial sliding surface is defined as a stable

differential operator, with respect to a defined spatial variable

as opposed to time in the temporal sliding control, that acts

on the error. The performance of the spatial sliding mode

controller can be analyzed similarly to the temporal one.

The second controller studied is a probabilistic receding-

horizon kinodynamic controller. This controller attempts to

minimize the error between the camera projection on the

ground and the desired camera projection. The kinodynamic

controller is based on the work by [6]. It has many ad-

vantages over other existing control methods with respect

to finding feasible paths through obstacles. Probabilistic

arguments have been used to guarantee its optimality. In this

experiment, it is used primarily for path tracking. However,

we anticipate flights in cluttered or dynamic environments in

future experiments.

The two control algorithms aim to minimize different

errors: the sliding mode controller is minimizing aircraft

path error and the receding-horizon controller is minimizing

sensor footprint path error. However, at the higher path-

planner level, the control objectives are both based on the

same desired sensor path. The respective control actions

try to achieve the same result: placing the sensor on a

desired trajectory. Results from the two controllers are then

comparable in terms of sensor path average error and vari-

ance. Controlling sensor’s line-of-sight has gained increasing

interest due to increasing use of sensors mounted on moving

vehicles to track paths or dynamic targets [7]. In the results

section, we also discuss the effect of explicitly modeling

the sensor footprint path in the control strategy–a topic of

interest for mobile robotics applications where the end goal

is to aim the sensor as opposed to the vehicle.

II. CONTROLLER FORMULATION

The controllers featured in this work exist in a larger

system designed for multi-UAV cooperative sensing. A

receding-horizon path planner, designed to maximize an

information-based objective function, is used to develop

aircraft paths over some short planning horizon. The path

planner minimizes a cost J(x, y, ψ, φ) subject to the system
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dynamics. Here, position of the UAV in the plane is repre-

sented by (x, y) as shown in Fig. 1. The vehicle velocity

is denoted by V , and ψ, φ denote the yaw and roll angles

respectively. We represent the components of wind velocity

by Wx and Wy. The equations of motion of the unicycle

model are given by:

Fig. 1. Unicycle Model

ẋ = V cos(ψ) + Wx (1)

ẏ = V sin(ψ) + Wy

ψ̇ = u

|u| ≤ ψ̇max.

In addition, the algebraic equation relating yaw rate and

roll angle are calculated from the coordinated turn assump-

tion as follows:

φ = − arctan

(

V ψ̇

g

)

(2)

Equation (1) is discretized, and then used to calculate

a path, using the control input u. The output of the path

planner is the optimal input ud along with the optimal path

characterized by xd, yd, ψd, φd. Here, subscript d is used to

denote desired path. Additionally, the desired sensor path

(xs
d, y

s
d), defined by projecting a vector perpendicular to the

camera image plane onto the ground plane, as shown in Fig.

1, is calculated and is available for the controller. The sensor

path (xs, ys) is related to the UAV path (x, y) through:

xs = x − h tan(φ) sin(ψ) (3)

ys = y + h tan(φ) cos(ψ),

where h is the altitude of the UAV. Using relation (2) between

yaw rate and roll angle in the sensor path (3) results in:

xs = x − cψ̇ sin(ψ) (4)

ys = y + cψ̇ cos(ψ),

where c = −hV
g

. Since there is no bound on the turn

acceleration in the unicycle model, the desired camera path

may be discontinuous. A thorough discussion of the path

planner may be found in [2].

Due to disturbances, modeling, and measurement uncer-

tainties, open loop control of the aircraft, using the output

of the path planner, is undesirable. Two low-level controllers

that run at a much faster rate than the path planner steer

the aircraft on the desired path. The control architecture is

shown in Fig. 2.

Fig. 2. Control Architecture Diagram.

The spatial sliding mode controller uses the unicycle

model described above. The input to the controller is the

desired UAV path (xd, yd). This controller attempts to steer

the UAV path (x, y) to the desired path (xd, yd). We an-

ticipate that this controller will result in good tracking of

(xd, yd). However, it is possible that this approach may result

in poor sensor footprint tracking, as the controller does not

directly account for the sensor. For this reason, we have

also designed the kinodynamic controller, which explicitly

accounts for control of the sensor footprint. In the next

section we describe the design of the sliding mode controller

in more detail.

A. Spatial Sliding Mode Controller

Let yd = f(x) be a continuous path to be followed by the

UAV with continuous first and second derivatives. Assuming

that the curvature of the path is lower than the achievable

curvature determined from the UAV input bound, one can

design the control so that perfect path tracking is attained

given perfect initial condition and no disturbances. In order

to have robustness with respect to the wind disturbance and

the deviations from the path we consider a spatial sliding

mode controller as proposed in [5]. The spatial sliding mode

controller is derived similarly to the well-known temporal

sliding mode controller. It can be applied in cases where the

vehicle needs to track a path rather than a trajectory. The

spatial term refers to the fact that the derivatives of the error

are taken with respect to one of the spatial coordinates rather

than time.

Since the desired path is given as a function of the x-

coordinate, we choose x as the spatial variable. We define

the error as e = y − f(x). We use ′ to denote derivatives

with respect to the x-coordinate. For this derivative to exist,

x needs to be monotonically increasing or decreasing. The

path planner defines the positive direction of x as the

desired direction of travel and generates paths such that x is

monotone along each path segment [5]. We define the sliding

surface as s = e′+λe which is a curve in the (x, y) plane. On

the sliding surface, s = 0, the error dynamics are governed

by a stable first-order ordinary differential equation. Hence,

on this surface, the error converges to zero exponentially.

In order to ensure the UAV reaches the sliding surface in

finite time from anywhere in the (x, y) plane, we choose the

control such that the sliding condition:

ss′ < −η|s| (5)
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is satisfied everywhere in the plane. Here, η is a positive

constant whose magnitude governs the speed of convergence

to the sliding surface.

We express the UAV dynamics given in (1) with respect

to the spatial variable

x′ = 1 (6)

y′ =
V sin(ψ) + Wy

V cos(ψ) + Wx

ψ′ =
u

V cos(ψ) + Wx

.

We make the following assumptions on the wind distur-

bance: Wx = W̄x+δWx, Wy = W̄y+δWy , Ẇx = ¯̇Wx+ ˙δWx

and Ẇy = ¯̇Wy + ˙δWy . Here, W̄x, W̄y, ¯̇Wx, ¯̇Wy are our

estimates of the wind speed and acceleration components.

We assume that the unknown terms have known bounds:

|δWx| ≤ αx, |δWy| ≤ αy, | ˙δWx| ≤ α̇x, | ˙δWy| ≤ α̇y . From

(6) we find the spatial derivative of the sliding surface as:

s′ = au + b + c, (7)

where we define a, b, and c for notational convenience as

follows:

a =
(V 2

g + V 2 − W 2)

2ẋ3
(8)

b =
ẋẆy − ẏẆx

ẋ3

c = −f ′′(x) + λ(y′ − f ′(x)).

In the above, Vg = (ẋ2 + ẏ2)
1

2 and W = (Wx
2 + Wy

2)
1

2

are the ground and wind speed respectively. Given that the

controller has access to ẋ, ẏ, f ′(x), f ′′(x), the value of c is

known while a and b are not exactly known as they contain

uncertain wind velocity and acceleration terms. Define ā and

b̄ as our mean estimates of a and b:

ā =
(V 2

g + V 2 − W̄ 2)

2ẋ3
(9)

b̄ =
ẋ ¯̇Wy − ẏ ¯̇Wx

ẋ3
.

We then choose

u =
−b̄ − c − Ksgn(s)

ā
, (10)

where K is a positive constant. The resulting sliding surface

derivative is given by

s′ = (1 −
a

ā
)(b̄ + c) −

a

ā
Ksgn(s) + δb, (11)

δb =
ẋδẆx − ẏδẆy

ẋ3
.

To achieve sliding condition stated in (5) we choose

K = max |(
ā

a
− 1)(b̄ + c) +

ā

a
δb| + η, (12)

where η is a positive constant that guarantees sliding in the

case of worst disturbances. The maximization in the above

equation is taken over δWx, δWy , δW ′

x, and δW ′

y . It can be

calculated analytically. The resulting K is time-varying and

is a function of ẋ, ẏ, f ′(x), f ′′(x), λ.

As with the temporal sliding mode controller, the above

controller results in chattering near the sliding surface. To

prevent chattering, as we get close enough to the switching

surface, |s| < φ for some φ > 0, we approximate the discon-

tinuous term sgn(s) by s/φ. Hence, using this controller, we

approach the boundary layer, |s| < φ, in finite time. Once

inside this boundary layer, we remain inside it.

In practice, we observed that K can be chosen as a

constant whose value needs to be tuned. Both K and λ
should be chosen small to avoid oscillations in the input

and to achieve the threshold bound on the input.

Next, we consider applying the spatial sliding mode tech-

nique to design a controller that ensures tracking of sensor

path. Recall that the sensor path is related to the UAV path

as stated in equation (4). In the unicycle model, it is assumed

that the yaw rate is set directly by the control input. Hence,

the control input appears directly in the sensor path equations

(4). In order to control the sensor path, we need to consider

a more accurate model of the UAV dynamics which accounts

for time delay in control of the yaw rate. For this reason, the

aircraft model in this controller has been extended beyond

unicycle model to include the kinematic constraints of the

vehicle.

The detailed model assumes that the lateral component of

the lift force, fr, is due to the centripetal acceleration of the

UAV performing a coordinated turn:

fr =
mV 2

r
= mV ψ̇. (13)

The derivative of the lateral force on the aircraft is governed

by the lower level roll dynamics of the UAV. These dynamics

are given by a first order approximation of the roll rate of

the UAV, based on experimental results as:

ḟr = k
(

u − ψ̇
)

. (14)

By taking the derivative of fr in (13) and setting it equal

to (14), we obtain the roll dynamics:

ψ̈ =
k

mV

(

u − ψ̇
)

(15)

Hence, the fourth-order model of the UAV dynamics is given

by:

ẋ = V cos ψ + Wx (16)

ẏ = V sin ψ + Wy

ψ̈ =
k

mV

(

u − ψ̇
)

In order to apply the spatial sliding mode to control the

sensor path, assume that the desired sensor path is given by

ys
d = f(xs

d). Consider choosing xs as the spatial coordinate.

Differentiating xs with respect to time we find:

ẋs = b1(ψ, ψ̇) + b2(ψ)u, (17)
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where b1 = V cos(ψ) + Wx + hV
g

(ψ̇ cos(ψ) − k
mV

sin(ψ)),

and b2 = hk
gm

sin(ψ). From above, we see that ẋs depends

on the input u and in particular, we cannot guarantee that

xs would be monotone. Consequently, xs cannot be taken as

a spatial variable. The same result holds for considering ys

as the independent variable. This motivates applying other

control techniques for keeping the sensor path error small.

In the next section we consider a receding horizon controller

to address this problem.

B. Kinodynamic Receding Horizon Controller

The second control algorithm is based on a random-

ized kinodynamic motion planner described in [6] and [8].

The motion planner allows for the possibility of restricted

airspace, moving obstacles and moving targets. It is intended

for environments where it may be difficult to find a feasible

solution, much less an optimal solution. Though this paper

only focuses on the controller’s tracking performance, we

chose to use this controller because it provides the basis for

future work that will include more dynamic environments.

Hsu’s trajectory planning algorithm randomly and uni-

formly samples the control space of the vehicle in order to

generate many potential vehicle trajectories. It is shown that

this planner is probabilistically complete, i.e. as the number

of random samples increases, the probability of finding a

feasible solution exponentially increases to one. In our case,

a feasible solution is defined as a trajectory that ends with

the aircraft’s sensor footprint on the desired sensor path. By

generating many sample trajectories, many feasible solutions

are likely to occur. The controller chooses the solution with

the lowest associated cost, where the definition of the cost is

followed. The validity of the potential trajectories is entirely

dependent on the accuracy of the aircraft model. Hence, we

use the fourth-order model developed in previous section

(16).

The controller presented here differs from a more tra-

ditional rapidly-expanding random tree motion planner in

two ways. The first is that it uses a receding horizon

approach. The unmodeled dynamics of both the aircraft and

the environment make it extremely difficult to accurately

calculate the cost of trajectories that extend too far into the

future. Rather than trying to calculate the exact cost of every

trajectory that ends with the aircraft’s sensor footprint on the

desired sensor path, the controller uses a receding horizon

approach that calculates the exact cost of the first n steps of

each feasible solution. It then uses a heuristic to estimate the

remaining cost of each trajectory. The number of steps the

receding horizon calculates into the future can be chosen to

match the extent of the aircrafts knowledge of the future.

The second difference, is how the controller calculates its

search tree. Rather than uniformly sampling the configuration

space, it creates a vector of n uniformly sampled control

actions, which defines a complete trajectory from the initial

configuration to final configuration of the aircraft. Though

this process reduces the efficiency of the RRT algorithm,

experimental results show that increasing the speed of our

controller beyond 10hz does not significantly increase the

controller’s performance.

The control algorithm can be broken into two main parts:

the random trajectory generator and the cost function that

defines the optimal solution.

The control space of the aircraft is defined as the set of

turn rates ranging from ψ̇min to ψ̇max radians per second.

The trajectory generator uniformly samples the control space

to create a vector of n turn rates, which represent n seconds

of potential flight.

U = [u1, u2, . . . , un] (18)

Several trajectories are generated that sample the entire

configuration space of the aircraft. By sampling the entire

configuration space, rather than performing a traditional

gradient-descent optimization, the controller is able to avoid

local minima in the configuration space. Several other tra-

jectories are generated by adding small random variations to

the controller’s last optimal solution. By using the previous

output of the controller as a starting point, the controller

is more likely to improve the solution with every run. In

addition to these random vectors, several canonical paths are

added; for example, a hard left turn, a hard right turn, and a

straight path. Random sampling is unlikely to generate these

canonical trajectories, but in many circumstances they will

have the lowest associated costs.

Let the sensor error be defined as the distance between

desired sensor path and the actual sensor path:

et =

∥

∥

∥

∥

[

xs
t

ys
t

]

−

[

xs
d

ys
d

]
∥

∥

∥

∥

. (19)

The cost associated with each trajectory is equal to the sum

of the sensor errors at every second along the potential

trajectory. It is given by:

C =
n

∑

t=1,2

[

e2

t (1 + (ut − ut−1)
2)

]

+ Cinf (20)

Cinf = ken

(en

V
+ 1

)

The controller chooses the trajectory with the lowest associ-

ated cost and sends the first turn rate of that trajectory, u1,

to the lower level turn rate controller.

III. RESULTS

A. Hardware-in-the-Loop Results

The system was tested hardware-in-the-loop (HIL) to

verify controller performance prior to flight. In the tests,

both controllers attempt to fly a specified sinusoidal path.

The results are presented below.

For the sliding mode controller, the average aircraft path

error was 1.3 meters, while the average sensor path error was

4.0 meters.

For the kinodynamic controller, the average aircraft path

error was 3.7 meters, while the average sensor path error

was 6.1 meters. Both controllers demonstrate the ability to

track the specified path. It is difficult to truly assess the

relative performance of the two controllers with simulation.

Comparative data is presented in the flight test results.
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Fig. 3. Spatial sliding mode controller aircraft and sensor paths.
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Fig. 4. Kinodynamic controller aircraft and sensor paths.

B. Flight Results

Flight tests were performed at Camp Roberts, CA, in

February of 2008. All experiments were conducted on our

Sig Rascal 110 platform [9]. We examine the results of

the spatial sliding mode controller followed by the receding

horizon controller. Then, we compare the performance of the

two controllers. The high-level planning algorithm develops

paths at 2 second intervals, with a 10 second planning hori-

zon. These paths are piecewise continuous, with piecewise

continuous first and second derivatives. The paths generated

by the planning algorithm are feasible with respect to the

vehicle kinetic constraints and current mean wind values;

the path generated at time t0 starts at (x(t0), y(t0)) and is

parallel to the aircraft velocity vector.

Fig. 5 shows desired and actual sensor and vehicle paths

for a sample trajectory, using the spatial sliding mode con-

troller. While ten second paths are computed by the planner,

only two seconds of each desired path are shown.

The kinodynamic controller runs in two modes: path

generation, and optimal path selection. In the path generation

stage, the first iteration generates 300 paths randomly and

uniformly sampled from the configuration space. The optimal

path in this set is perturbed slightly in the second iteration of

250 300 350 400 450 500 550 600 650 700 750
0

100

200

300

400

500

600

Desired Aircraft Path

Desired Sensor Projection

Aircaft Path

Sensor Projection

Fig. 5. Sample path and aircraft trajectory.

the controller, generating 200 new paths. The kinodynamic

controller was also run at 10 Hz with a receding horizon of

9 seconds.

For the sliding mode controller, average sensor path error

was 9.2 meters with a standard deviation of 7.2 meters. For

the kinodynamic controller, the average sensor path error

was 7.5 meters, with a standard deviation of 7.2 meters.

From the current experiments, we observed that the tracking

performance of the sliding mode controller is comparable to

that of the receding horizon controller. One may expect a

controller that attempts to place a sensor footprint without

explicitly accounting for roll dynamics not to perform well.

However, at the path planner level and in the context of the

unicycle model, the position coordinates are deterministically

related to roll and yaw. Therefore, by minimizing spatial

error, the sliding mode controller indirectly attempts to place

the sensor footprint on the desired trajectory, while the

receding horizon controller achieves this directly.

In the case of both controllers, the standard deviation

of the tracking error is relatively large. This is directly

related to the effects of wind on both controllers. Plots

show that upwind tracking performance is significantly better

than downwind performance, simply because higher true

airspeed results in greater control authority. Additionally,

continuously updated estimates of the average wind speed

are taken into account in both controllers, but large wind

gusts that existed during both flight tests resulted in poor

tracking.

IV. CONCLUSIONS AND FUTURE WORK

The goal of this experiment was to design control algo-

rithms for tracking a desired sensor footprint and to compare

the effectiveness of the proposed algorithms in real-world

framework. A sliding mode controller and a kinodynamic

receding horizon controller were developed and flight tested.

The sliding mode controller has strong advantages with

respect to robustness and ease of computation. The kino-

dynamic controller presents advantages with respect to flight

constraints, such as obstacle avoidance, at the expense of

heavy computation. More significantly, for this experiment,
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the kinodynamic controller can explicitly account for track-

ing a desired sensor footprint. In the flight tests, the current

forms of both controllers display the ability to accurately

place the sensor on a desired trajectory in the presence of

model uncertainty and wind uncertainty. Advances in on-

board computation make the kinodynamic controller a more

appealing choice. While the advantages of the kinodynamic

controller are not on display in this experiment, a metric of

basic tracking performance is necessary for future work.

In future flight experiments, we plan to better compare

the performance of the two controllers by tracking the same

path and in similar wind conditions. We will also fly the same

flight path in HIL simulations to better quantify the deviation

from ideal performance for each controller. We hope to gain

better performance by incorporating a more accurate aircraft

and wind model in both the path planner and sliding mode

controller. We also would like to develop model predictive

control for sensor path tracking and compare the results to

the other control algorithms developed.
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