
On-line Path Planning For an Autonomous Vehicle in an Obstacle
Filled Environment

Jeremy D. Schwartz and Mark Milam

Abstract— The 2007 Darpa Urban Challenge called for a
kinematic vehicle path planning method that could navigate
and park in an obstacle-filled environment with realistic vehicle
constraints. Key capabilities include minimum-time trajectories
with both forward and reverse segments, and obstacle avoid-
ance. An algorithm which generalizes the collocation method
is developed and used to optimally control a differentially flat
parameterization of the kinematic car. The singularity inherent
in the differentially flat formulation is addressed without any
constraints imposed on the state space. Experimental data is
presented showing this algorithm running on Alice, the Caltech
autonomous vehicle. The flexibility of the algorithm developed
in this paper allows it to be applied to a large group of practical
optimal control problems.

I. PRIOR WORK

The problem of vehicle path planning has been widely
studied. Several different methods have been developed that
can get a car-like model from point A to point B. Reeds
et. al. provide the basis for many methods by proving that
the optimal path between any two points (without regard
to obstacles) will always flow from one of 48 general con-
structions [1]. Based on this work, Laumond et. al. develop a
metric based on the shortest possible path for a car-like robot
[2]. Panizza et. al. provide a method for planning a path with
minimum maneuvers (a change of direction defines a new
maneuver) along a narrow road of unknown curvature [6].
Müller et. al. develop a method for determining trajectories
specifically for the parallel parking problem [3].

The concept of using collocation to solve an optimal
control problem by turning it into a nonlinear programming
problem has also been studied extensively. Hargraves et.
al. developed this technique and applied it specifically to
trajectory optimization [7]. This technique has been applied
to a wide variety of problems. Von Stryk et. al. developed
a specialized form of collocation that merged the standard
direct collocation method with an indirect multiple shooting
method to improve accuracy [8].

II. INTRODUCTION

A new algorithm is developed and implemented to solve
the general problem of optimal path planning for a kinematic
car in the presence of obstacles. It is then tested in a variety
of situations, both in simulation and on Alice, the Caltech
autonomous vehicle and entry to the 2007 Darpa Urban
Challenge.

Northrop Grumman Space Technology, Redondo Beach, CA, 90278,
United States

Fig. 1. Picture of Alice, the Caltech Autonomous Vehicle

This algorithm is an on–line path planning algorithm
which computes optimal trajectories in real time. It incorpo-
rates both linear constraints, such as boundary polynomials,
and nonlinear non-convex constraints, such as obstacle ellip-
soids. It also handles higher order constraints on the problem
variables, such as vehicle steering angle and steering rate
constraints.

The algorithm is an enhancement of the Nonlinear Trajec-
tory Generation (NTG) algorithm. This algorithm, denoted
OTG (Optimal Trajectory Generation), improves upon NTG
by changing the independent variable set that is used for
the problem formulation. NTG used the coefficients of the
interpolated B-splines as its independent variable set. OTG
instead uses the sampled values of the flat variables and their
derivatives as its independent variables. This modification
improves ease of use, because constraints can be framed in
terms of the output variables instead of B-spline coefficients.
It also increases on-line computation speed for two reasons:
first, a larger portion of the computation can be calculated
offline; second, the new formulation is able to make use of
the SNOPT solver, which is more computationally efficient
than the NPSOL solver used by NTG.

In this paper, a differentially flat parameterization of
a kinematic car model is utilized. This ensures that the
algorithm produces exact solution trajectories, with zero
integration error between the solution control values and the
predicted paths.

This parameterization introduces problems related to a
singularity when the car’s velocity nears zero. The effects of
this singularity are discussed, and an effective technique for
solving multi-maneuver trajectories in light of the singularity
is introduced and implemented.

Several versions of the algorithm are developed to sep-
arately handle paths that may require both forward and

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

WeB09.4

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 2806



reverse maneuvers. Solutions that involve one, two, or three
different maneuvers are mathematically distinct from each
other when using the flat parameterization. Handling logic
is implemented which calls each solver in turn and has
contingencies if no good direct solution is found.

Finally, test data is presented that demonstrates the al-
gorithm running on a fully autonomous car. Multi-segment
planning and obstacle avoidance are demonstrated in a real-
world environment.

III. OPTIMAL TRAJECTORY GENERATION ALGORITHM

The algorithm designed in this paper, called OTG, is a
modification of the Nonlinear Trajectory Generation (NTG)
algorithm. As described in [9], the NTG algorithm is de-
signed to solve an Optimal Control Problem (OCP) by
transforming it into a NonLinear Programming problem
(NLP) and solve that NLP using a Sequential Quadratic
Programming (SQP) solver – in that case, the NPSOL solver.
OTG uses the same technique, but because of the change of
variable set, it is able to generate a sparse NLP, and thus
make use of SNOPT instead of NPSOL. SNOPT is specially
designed to solve sparse NLP’s, and is computationally faster
than the more general NPSOL.

A classical (nonlinear) OCP takes the following form:

min
u

∫ T
0
f(x(t),u(t)) dτ + g(x(T )) (1)

subject to: ẋ(t) = g(x(t),u(t)),
x(0) = x0

lb0 ≤ ψ(x(0),u(0)) ≤ ub0,
lbt ≤ S(x(t),u(t)) ≤ ubt.

OTG solves the OCP with three steps. First, a variable or
set of variables which represent the OCP states and controls
is found. The constraints and cost functions of the OCP are
reframed in terms of this variable set. Second, a discrete
time sampling is taken of these continuous variables and
their derivatives, forming a new set of independent variables.
Third, one or more B-spline interpolation curves are created
which are fully defined by this independent variable set.

To accomplish the first step, a variable or set of variables
z must be defined

z = A(x,u,u(1), . . . ,u(s)) (2)

such that (x(t),u(t)) can be determined completely from

(x,u) = F (z, z(1), . . . , z(s)) (3)

and the OCP dynamic constraints can be determined by

0 = c(z, z(1), . . . , z(s)) (4)

where z(i) denotes the ith time derivative of z. Note that if
a flat parameterization [4] is used for z, then the problem is
translated into a lower–dimensional space, and Equation (4)
is satisfied by definition, and does not need to be enforced.

To accomplish the second step, a strictly increasing set of
n times (called breakpoints) is defined:

{t0, t1, ..., tn−1} (5)

where t0 represents the initial time for the problem, and
tn−1 = tf , the final time for the problem. An independent
variable set, z̄, can be constructed by taking the associated
time samples of z:

z̄ = {z̄1, ..., z̄q}, where (6)
z̄j = {zj(t0), zj(t1), ..., zj(tn−1), ..., (7)

z
(ij)
j (t0), z

(ij)
j (t1), ..., z

(ij)
j (tn−1)}

where q is the number of decision variables in z, and ij rep-
resents the number of derivatives of the jth variable required
to satisfy Equation (3) (including the zeroeth derivative).

In order to enforce constraints at times other than the
breakpoints, a B-spline parameterization must be chosen:

z̄1 =
∑p1
i=1 Bi,k1(t)c

1
i

z̄2 =
∑p2
i=1 Bi,k2(t)c

2
i

...
z̄q =

∑pq

i=1 Bi,kq (t)c
q
i

and pj = (n− 1)(kj −mj) +mj

where Bi,kj
(t) is the B-spline basis function defined in

de Boor [5] for the output zj with order kj , c
j
i are the coef-

ficients of the B-spline, n is the number of breakpoints, and
mj is number of smoothness conditions at the breakpoints.
Defining

cj = [cj1 c
j
2 c

j
3 ... c

j
pj

]T (8)

Bj = [B1,kj B2,kj B3,kj ... Bpj ,kj ]kjn×pj (9)

the above expression can be simplified to:

z̄j = Bjc̄j (10)

For this construction, it is ideal if the relationship between
the variable set z̄j and the coefficients c̄j is be one-to-
one and onto. This prevents the need to do a least-squares
approximation of the coefficients given the flat variables.
Therefore, Bj should be square and invertible.

Recall that the entire NLP variable set is denoted z̄j, and
its size is ijn×1, where n is the number of breakpoints and
ij is the number of variable derivatives included for zj at
each breakpoint (including the zeroeth). The coefficients for
the interpolation B-splines are denoted c̄j, which has size 1×
(n−1)(kj−mj)+mj , where kj is the B-spline polynomial
order and mj is the B-spline smoothness. In order to ensure
that Bj is square, the following relationship is required:

(n− 1)(kj −mj) +mj = ijn (11)

If the B-spline smoothness is forced to be equal the
number of included variable derivatives, and the B-spline
polynomial order is forced to be double this number:

mj = ij (12)
kj = 2ij

then Equation (11) holds for all n and ij . Indeed, at this
point collocation can be seen as a specific instance of OTG,

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB09.4

2807



where ij = 2 ∀j, and the resulting polynomials are fourth
order.

It must be noted that x(ti) and x(ti+1) are separate
variables. They are not connected by a time variable, as they
are in the OCP. In order to enforce a relationship between
them, constraints must be added at additional points, called
enforcement points. These enforcement points can now be
defined:

{t0, te1 , ..., tep−1} (13)
ȳ = {ȳ1, ..., ȳq}, where (14)
ȳj = {zj(t0), ..., zj(tp−1), ..., (15)

z
(ij)
j (t0), ..., z

(ij)
j (tp−1)}

Note that the increasing sequence of times in Equation (13)
is different than the sequence of times in Equation (5), but
tep−1 = tf as before. Since all constraints must be placed in
terms of the independant variable set z̄, the values of z(tej )
must be defined in terms of z̄.

Utilizing the same coefficients cj defined in Equation (8),
a new matrix Byj

can be defined such that

ȳj = Byj
c̄j ∀j ∈ {1, ..., q} (16)

Since Bj is invertible, Equation (10) can be expressed:

c̄j = B−1
j z̄j (17)

From Equations 16 and 17, it can be seen that all of the
enforcement points can be put in terms of the independent
variable set:

ȳj = Byj
B−1

j z̄j (18)

Then the problem can be stated as an NLP:

min
z̄∈RM

F (z̄) subject to lb ≤ c(ȳ(z̄)) ≤ ub (19)

where M represents the dimension of z̄ and c(ȳ(z̄)) repre-
sents the constraints from the OCP, rewritten in terms of the
new variable set.

It is worth noting that all of the parameters that define Bj

and Byj
∀j ∈ {1, ..., q} are selected off-line for any partic-

ular problem, and are constant during on-line computation.
Thus these matrices can be calculated off-line to improve
on-line computation speed. This fact outlines the advantage
and major distinction of OTG from NTG. Under the NTG
algorithm, the independent variable set for the NLP is the
set of B-spline coefficients, c̄. OTG, using the construction
above, utilizes the sampled variables and derivatives z̄ as its
independent variable set, and this change allows more of the
computation to be pushed off-line.

A. Collocation as an instance of OTG

In the simplest case, the OCP state variables x and control
variables u themselves can be used as z, and the set of NLP
state variables looks like

z̄ = {x(t0), ...,x(tn), ẋ(t0), ..., ẋ(tn),u(t0), ...,u(tn)}
(20)

In collocation, following the rules defined in Equation
12, the B-spline polynomials for the state variables must be
fourth order, and the control variables have second order
polynomials (i.e. linear interpolations between breakpoints).
In order to enforce the relational constraints described above,
standard collocation necessitates exactly one enforcement
point on each B-spline curve in between the breakpoints.
The midpoint of each curve (i.e. equidistant between each
breakpoint) is usually selected as the enforcement point for
symmetry and ease of derivation.

For a more detailed description of collocation, see [7].

B. Integration Error with Collocation

Collocation attempts to force several variables, all approx-
imated with B-spline polynomial curves, to obey a dynamic
constraint equation along their entire continuous length.
Since dynamic systems generally do not have polynomial
solutions, there is inherent residual approximation error. A
fourth-order polynomial will never be able to exactly repro-
duce higher-order behavior, or behavior that does not have
a polynomial basis, such as an exponential or a sinusoid. If
a collocation solution’s control values are used to propagate
the model from the initial state, then the resulting path does
not exactly match the solution path.

Fig. 2. Integration error created by propagating the collocation solution
control values.

Figure 2 shows the integrated error from many test runs
of the same collocation algorithm with different start and
end points. This version of collocation used 11 breakpoints,
necessitating 10 polynomials and 21 enforcement points. The
error is zero at all the enforcement points, but since the
dynamic constraints for a kinematic car are nonlinear, the
error is nonzero in between these points.

The major advantage of the flat formulation is that dy-
namic constraints are satisfied by definition. This is because
the original state and control variables are defined using
derivatives of the flat variables [4]. The flat formulation of
OTG does not define any separate curves for the original
state and control — rather, they are reconstructed from the
flat variables using Equation (3) after the solution has been
determined.

Note that since the flat formulation also uses polynomial
basis functions, the same polynomial approximation prevents
OTG from producing exactly optimal solutions. Still, though
slightly suboptimal, if the derived control variables are taken

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB09.4

2808



from an OTG solution and propagated in a feed-forward
manner using the dynamic constraints, then they will match
the solved trajectories with zero integration error. Contrast
this with Figure 2.

IV. MODELLING CALTECH’S AUTONOMOUS VEHICLE

A. Optimization Objectives

The 2007 Darpa Grand Challenge was to develop an
autonomous car that could safely navigate an urban environ-
ment. One aspect of this challenge was navigation in zones, a
term used to describe areas without any sort of lane markings
or guiding paths. (A parking lot is a common example of a
zone.) In addition to a lack of lane markings, a zone has
a boundary, and may contain both moving and stationary
obstacles. All of these obstacles must be avoided while the
car executes a maneuver — such as parking — within the
zone in minimum time.

B. Kinematic Car Model

Alice is modelled as a standard kinematic car [1]. This
model has four state variables: x and y position, speed
v, and heading angle θ. In addition, there are two input
variables: acceleration a, and the steering angle φ. The
dynamic equations are:

ẋ(t) = v(t) cos(θ(t))
ẏ(t) = v(t) sin(θ(t))
v̇(t) = a(t)
θ̇(t) = v(t)

L tan(φ(t))

(21)

where L represents the distance between the front and rear
axle.

There are several constraints in this problem. First, there
are upper and lower bounds on velocity, acceleration, and
steering angle:

vmin < v(t) < vmax
amin < a(t) < amax
φmin < φ(t) < φmax

(22)

There are also keep-out constraints which represent ob-
stacles, and keep-in constraints which represent a bounding
zone. In this problem, the keep-out constraints are formed
as ellipses. Given an obstacle location of (h, k), a height a
and a width b, the constraint takes form of a standard ellipse
equation:

(
x(t)− h

a
)2 + (

y(t)− k
b

)2 > 1 ∀t ∈ [0, T ] (23)

The keep-in constraints are simple linear bounds of the
form cy < mx+b, or cx < b for vertical lines. The objective
of this problem is to minimize time.

C. Defining flat variables

x and y can be used as the flat variables for this problem.
Using these variables and their derivatives, the other state
variables can be redefined:

v(t) =
√
ẋ(t)2 + ẏ(t)2

θ(t) = arctan ẏ(t)
ẋ(t)

(24)

The control inputs must also be redefined in terms of the
flat variables:

a(t) = ẋẍ+ẏÿ√
ẋ(t)2+ẏ(t)2

φ(t) = arctan( ẋÿ−ẏẍ
(ẋ2+ẏ2)

3
2
L)

(25)

In order to optimize time, the problem is framed in
normalized timespace, and a time scale factor ξ is used. This
time scale variable is an additional decision variable, and it
is derived from the equation ξτ = t, where τ ranges from 0
to 1. Differentiating this equation gives the relationship:

dt
dτ = ξ
dx
dt = 1

ξ
dx
dτ

(26)

Incorporating ξ, the flat definitions then become:

v(t) = 1
ξ

√
x′(τ)2 + y′(τ)2

θ(t) = arctan y′(τ)
x′(τ)

a(t) = 1
ξ2
x′x′′+y′y′′√
x′2+y′2

φ(t) = arctan( x
′y′′−y′x′′

(x′2+y′2)
3
2
L)

(27)

Additionally, the cost function can be stated simply as:

J(z̄) = ξ (28)

Any boundary constraints on the state variables must be
reframed in terms of the flat variables. In this case, the
bounds shown in Equation (22) must be rewritten as:

vmin < 1
ξ

√
x′(τ)2 + y′(τ)2 < vmax

amin < 1
ξ2
x′x′′+y′y′′√
x′2+y′2

< amax

φmin < arctan( x
′y′′−y′x′′

(x′2+y′2)
3
2
L) < φmax

(29)

Notice that as a result of the flat parameterization, these
constraints are now nonlinear.

D. Singularity

One significant side effect of the flat formulation in the
kinematic car model is a singularity when v = 0. In this
case, θ becomes undefined, and θ̇ →∞ as v → 0 .

Additionally, by definition, the velocity can never be
negative. Indeed, under the flat formulation, changing direc-
tion requires a small but important change in the dynamic
equations, and thus requires a different model.

It is important to note that under the flat parameterization,
the problem where the vehicle is going forward and the
problem where the vehicle is travelling in reverse are distinct
from each other. Specifically, in the reverse case, θ must

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB09.4

2809



be set to the polar opposite of its value for the forward
case. This can be accomplished by adding π to the above
definition of θ, or using the quadrant-sensitive version of
arctan: θrev = arctan 2(−ẏ(t),−ẋ(t)).

This distinction makes it impossible to calculate a multi-
part trajectory using a single path. However, this framework
handles multipath trajectories by handling each path segment
as a separate set of variables for the NLP to optimize.

E. Implementation

1) Single piece trajectory: The simplest solution which
OTG may determine for this problem would be a single-
directional path from the initial point to the final point, obey-
ing all dynamic and obstacle constraints while optimizing
trajectory travel time. x(τ), y(τ), and ξ are used as the basis
for the OTG optimization, and the corresponding control
values are determined as in Equation (25).

2) Multipath trajectories: OTG can calculate multipath
trajectories (trajectories with both forward and reverse seg-
ments) if separate path variables are created for each seg-
ment, and all segments are optimized at once. In this case,
instead of using just x, y, and ξ as the flat variables, the set
includes {x1, y1, ξ1, ...xn, yn, ξn} for n path segments. To
ensure that the path segments form a complete continuous
trajectory, constraints must be added which enforce equality
on the connected boundary states of each path:

x1|τ=1 = x2(0)
y1|τ=1 = y2(0)
v1|τ=1 = v2(0) = ε > 0
θ1|τ=1 = θ2(0)

(30)

The cost function for this compound problem consists of
the sum of all individual costs:

J(z̄) = ξ1 + ξ2 + ...+ ξn (31)

With this construction, OTG not only optimizes each path,
it optimizes the location of the adjoining points (called
‘cusps’) as well. Notice, however, that each new cusp
increases the complexity of the problem by a factor of
n2, where n is the size of the searchable space. Thus,
computation time increases exponentially as cusp points are
added.

Note that each multipath trajectory solver is a distinct
formulation, since variables must be added to the NLP set
in order to formulate the multipath problem.

3) Handling logic: Because the single-piece algorithm
runs much faster than the multipath algorithms, it is prudent
to attempt a single-path solution before resorting to multipath
solutions. In order to manage this, a logic framework was
developed that tries the different OTG algorithms sequen-
tially, based on their complexity and their relevance to the
situation. The benefit of this approach is that calculation can
be terminated as soon as a proper solution to the problem is
discovered.

Once a solution path is found, this path is followed until
a trigger event occurs. When such an event occurs, then

the planner is reset and OTG starts from the beginning
of the logic tree. The most important trigger event is the
introduction of a new obstacle into the planned path. Thus,
if an obstacle moves in an unexpected way and obstructs
the planned path, Alice stops and queries OTG for a new
solution.

The other common trigger event is a change of direction.
Any time Alice reaches the end of a maneuver, rather than
simply following the remaining parts of the existing optimal
trajectory, Alice asks OTG to resolve the problem from the
new position. This design choice was made largely due to
the particulars of the Alice path following architecture, which
only stores one single-directional maneuver at a time. This
design has the positive effect of demonstrating that the OTG
solvers obey the principle of optimality. This effect can be
seen in the results section.

4) Initial guess: As with many solvers, OTG works by
iteratively improving its guess at a solution. As such, it must
be provided with an initial guess to any problem. In the case
of a problem as complex and nonlinear as Alice, the quality
of the initial guess has a significant effect on the speed
and success of the algorithm. Experimental evidence shows
that this sensitivity to the initial guess increases greatly with
multipath trajectories.

For this problem, Reeds–Schepp [1] curves are generated
for the initial guess. For each algorithm, the shortest of
the Reeds–Schepp curves that has the same character as
the solution curve is used: only one-direction Reeds–Schepp
curves are allowed for the single-piece solver, only two-
directional curves are admitted for the two-path solver, and
so on. The time constant for each guess is estimated by
assuming a constant velocity along the initial guess curve,
and dividing the total distance of the initial guess curve by
this velocity.

The curves produced by the Reeds–Shepp algorithm are
very good guesses. However, they do not consider con-
straints. Most importantly, the Reeds–Schepp algorithm dis-
regard the obstacle and boundary constraints. Since OTG
considers all of these factors in its optimization, it often finds
optimal solutions which are very different from the Reeds–
Schepp initial guesses.

Fig. 3. An initial Reeds–Schepp guess at a path, along with the optimal
path solution. This data was generated in simulation.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB09.4

2810



Figure 3 shows just such a situation. The grey lines around
obstacles represent the control boundary on Alice: if the
control point on Alice crosses this line, then some part of
Alice would contact the obstacle. The paths shown are two-
maneuver plans: the first maneuver is a reverse out of a
parking spot, and the second maneuver is a forward drive
to a predetermined exit point. The initial guess impinges
on an obstacle, and would require a very high steering rate
in order to execute the sharp S-curve maneuver at constant
speed. The OTG solution, which was seeded with the initial
guess, determines the optimal trajectory for this scenario.

5) Solution Verification: Since OTG involves a conversion
of a continuous-time problem into a discrete set of variables,
the problem constraints can only be enforced on a finite
number of sample points. In addition, many of the nonlinear
constraints may be very high order and irregular. As a result
of these two factors, it is often possible to produce solutions
where all the constraints are satisfied at the sampled points,
but one or more constraints are violated in between the sam-
ple points. In the Alice problem, that effect is exaggerated
because the car operates very close to the singular region
where v = 0.

Fortunately, these false positive solutions always fail in a
characteristic manner. The velocity dips down to the singular
point momentarily, and in that instant, the heading angle
flips 180◦. These solutions can be identified by checking the
solution trajectory for a spike in θ̇. Since there are constraints
on the steering angle, the heading angle has a maximum rate
of change. If the solution ever allows θ̇ to move above this
threshold, then it is a false solution.

V. EXPERIMENTS

Using the implementation described above, the algorithm
was tested in two different ways: test runs on Alice, and
tests in a high fidelity computer simulation of Alice and
the environment. All test runs, both simulated and hardware-
based, were run in a zone as described in section IV.

Fig. 4. Baseline layout for all test cases. In every test case, Alice enters
the zone and initiates planning at the entry point; pulls forward, properly
aligned, into the parking spot; and departs the zone at the exit point.

The overarching task for every test run was to begin on
the boundary of the zone, drive to and park in a designated
parking spot, and then drive from the parking spot to some

designated exit point. The car must park properly in the spot,
meaning that in addition to reaching the right position, the
car must be correctly oriented to align with the parking spot.
Obviously, completing this task would often require several
maneuvers.

In these test cases, the same entry point, exit point, and
parking spot was used (Figure 4). Since the parking spot
is very close to the zone boundary, the only feasible way
to exit the parking spot is with a reverse maneuver. As a
result, the general solution to the problem is to drive forward
from the starting point into the parking spot, back up to a
useful intermediate point, and then drive forward to the exit
point. Test case 1 is free of obstacles. Test case 2 uses the
same zone, but adds several obstacles with which Alice must
contend.

Due to the tight turns required in these test cases, and in
consideration for the comfort of riders inside Alice during the
tests, the maximum velocity for forward maneuvers is 2ms .
For reverse maneuvers, the maximum velocity is 1ms . The
maximum steering angle φ is 0.45 radians. The maximum
acceleration is 0.98ms2 , and the maximum breaking is −3ms2 .

VI. RESULTS

All results presented in this section are experimental data,
taken fron tests run in real time on Alice.

A. Test Case 1: Baseline

The first test case serves as a baseline to explain the end-
to-end trajectory planning process.

Fig. 5. An early snapshot showing experimental data from test case 1 (zero
obstacles).

This process begins when Alice enters the zone. At this
point, Alice comes to a halt, and requests a solution path
from OTG. A one-piece solution is determined, allowing
the car to pull forward into the parking space in a single
maneuver (Figure 5).

Once Alice reaches the parking spot, the mission planner
(a separate component of the Alice software) determines
the appropriate exit point for the zone, and requests a new
solution from OTG that will take Alice to the specified exit
point. OTG produces a two-piece solution, consisting of a
reverse maneuver followed by a forward maneuver. Alice
proceeds down the first leg of this solution (Figure 6).

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB09.4

2811



Fig. 6. Completing the parking maneuver in test case 1. A plan to exit the
zone is created.

Fig. 7. Alice completes the reverse leg of the 2-piece plan. Alice at the
end of each maneuver (change of direction). The new plan is very similar
to the second leg of the old plan.

When Alice reaches the end of this maneuver, it again
calls for a replan. Due to navigation error and follower inac-
curacies, it does not end up exactly where the planned path
ended. Still, OTG produces a 1-piece trajectory that is very
similar to the second leg of the previous 2-piece trajectory
(Figure 7). Finally, Alice follows this new trajectory to the
exit point and out of the zone (Figure 8).

Note that when a replan is called for at the end of the
reverse maneuver, the resulting 1-segment path is extremely
similar to the second part of the 2-segment path. This
demonstrates that the OTG solvers obey the basic principle of
optimality: if Alice is positioned along an optimal trajectory
and a replan is made, then the same trajectory is produced
in the replan.

B. Test Case 2: Navigation with Obstacles

The second test case discussed in this paper displays the
ability of OTG to dynamically replan around obstacles which
are introduced into the environment. This test case begins in
the same manner as the first, with Alice entering the zone
and pulling in to the parking spot (see figures 10 and 11).

At this point, Alice’s sensors pick up some obstacles in the
zone. These obstacles are identified with a location, length,
and width. This information provides the hard boundary for
Alice to avoid. In order to prevent any part of Alice from

Fig. 8. Alice completes the test case and exits the zone.

Fig. 9. Commanded and real-world actuated steering angles for test case
1.

contacting obstacles, OTG expands all obstacle boundaries
by a 2m safety margin for control purposes. The safety
margin can be seen drawn around the obstacles. Then, as seen
on Figure 11, OTG determines a complete 2-piece solution
which is considerably different from the solution seen in test
case 1. Note that this solution is only discovered because
both legs of the solution are considered at once; the first
piece of the solution seen in Figure 6 may not violate any
constraints, but Alice would have a hard time leaving the
zone from that point.

As before, Alice follows the reverse leg of the two-
piece trajectory, and replans when it reaches the end of this
maneuver (Figure 12). Again, there is a slight amount of
drift, but OTG disregards this because it plans afresh from
Alice’s new location. In Figure 13, Alice again follows this
new path as it exits the zone.

VII. CONCLUSION

In this paper, a new form of the NTG algorithm, called
OTG, was developed. OTG employs a new type of indepen-
dent variable set which makes it more flexible and increases
on-line computation speed. The connection between OTG
and collocation was discussed. A differentially flat formula-
tion of the kinematic car was presented and utilized within
OTG. As a result, solution paths had no integration error. A
singularity that arises as a result of the flat formulation was
discussed, and a technique for multi-segment planning was
developed.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB09.4

2812



Fig. 10. Test case 2 has the same setup as test case 1, but obstacles have
been added to the parking zone.

Fig. 11. Alice completes the parking maneuver and detects the obstacles
in its way. OTG produces a 2-part trajectory that avoids all obstacles on the
way out the zone.

OTG was implemented and tested on Alice, an au-
tonomous vehicle developed at the California Institute of
Technology. OTG displayed the ability to handle complex
constraints, obstacle avoidance, multi-segment trajectories,
and on-line replanning in a real-world environment.

Future work includes efforts to show additional capabil-
ities of OTG in a comprehensive simulation and hardware-
in-the-loop test. The powers of the algorithm developed
for this paper extend significantly beyond the capabilities
that were possible to test using Alice. For example, this
implementation of OTG is fully capable of handling moving
obstacles. Also, the speed of OTG coupled with the lack
of integration error make it very useful within a feed–
forward Receding Horizon Control (RHC) framework [10].
The flexibility of the algorithm developed in this paper also
allows it to be applied to a large group of practical optimal
control problems.

VIII. ACKNOWLEDGEMENTS

We would like to acknowledge Richard Murray and
Melvin Flores for their help developing and testing the code
for OTG and Alice. We would also like to acknowledge
Nok Wongpiromsarn for additional help running our tests
on Alice.

Fig. 12. Alice completes the reverse leg of the 2-part trajectory, and replans
at its new location. Alice has drifted off the OTG trajectory slightly, but the
new OTG plan handles this because it always starts from Alice’s current
location.

Fig. 13. Alice follows the final OTG trajectory out of the zone.

REFERENCES

[1] J. A. Reeds and L. A. Schepp, Optimal Paths for a Car That Goes
Both Forwards and Backwards, Pacific Journal of Mathematics, 1990,
Vol. 145 No. 2, pp. 367–393.

[2] J. Laumond, P. Souères, Metric Induced by the Shortest Paths for
a Car-like Mobile Robot, IEEE/RSJ International Conference on
Intelligent Robots and Systems, July 1993, pp. 1299–1303.

[3] B. Müller, J. Deutscher, and S. Grodde, Continuous Curvature Tra-
jectory Design and Feedforward Control for Parking a Car, IEEE
Transactions on Control Systems Technology, May 2007, Vol. 15 No.
3, pp. 541–553.

[4] M. Fliess, J. Levine, P. Martin, and P. Rouchon, Flatness and Defect of
Nonlinear Systems: Introductory Theory and Examples, International
Journal of Control, 1995, pp. 1327–1360.

[5] C. de Boor, A Practical Guide To Splines (Springer-Verlag, 1978).
[6] L. Panizza and R. Frezza, Paths of Bounded Curvature with Minimal

Number of Maneuvers, IEEE Intelligent Vehicles Symposium, October
2000, pp. 204–209.

[7] C. R. Hargraves and S. W. Paris, Direct Trajectory Optimization Using
Nonlinear Programming and Collocation, AIAA, July–August 1987,
pp. 338–342.

[8] O. von Stryk and R. Bulirsch, Direct and Indirect Methods for
Trajectory Optimization, Annals of Operations Research, 1992, pp.
357–373.

[9] M. B. Milam, K. Mushambi, and R. M. Murray, A New Computational
Approach to Real-Time Trajectory Generation for Constrained Me-
chanical Systems, IEEE Conference on Decision and Control, 2000.

[10] M. B. Milam, R. Franz, J. E. Hauser and R. M. Murray, Receding
Horizon Control of Vectored Thrust Flight Experiment, IEE Proceed-
ings on Control Theory Applications, May 2005, Vol. 152 No. 3 pp.
340–348.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB09.4

2813


