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Abstract— This paper studies a high-gain observer with a
nonlinear gain. The nonlinearity is chosen to have a higher
observer gain during the transient period and a lower gain
afterwards, thus overcoming the tradeoff between fast state
reconstruction and measurement noise attenuation. The ob-

server is designed such that the behavior of the innovation
process can be controlled separately from the other system
states. This is accomplished by assigning one fast eigenvalue,
with the remaining eigenvalues chosen relatively slow. Without
this key step, the stability analysis for the proposed observer
is unattainable. Recently, a switched observer approach has
been investigated, but the nonlinear gain approach bypasses
the complications associated with switching, with little to no
appreciable degradation in performance. This paper presents
a new model for the nonlinear observer, accompanied by a
discussion focusing on the main ideas behind the proof.

I. INTRODUCTION

High-gain observers are an important topic in state esti-

mation and feedback control; in the absence of measurement

noise, this technique has the ability to simultaneously reject

modeling uncertainty and quickly reconstruct the system

states [1]. Some of the earlier work performed in the spirt of

high-gain observers can be viewed in [2] and [3]; see also

[4] and [5] for recent results. The literature on high-gain

observers is vast, and the previous papers are in no way

inclusive. In order to achieve the objectives of minimizing

the effect of measurement noise and fast state estimation,

the observer gain (or bandwidth) must be chosen suffi-

ciently high. However, the presence of measurement noise

challenges this premise. The effect of measurement noise

was studied in [6], [7], and [8], where it was shown that

the steady-state estimation error has a component due to

modeling uncertainty, which can be attenuated by increasing

the gain. Yet, the error has a component due to measurement

noise that is amplified by increasing the gain. This tradeoff

constrains the observer gain, which reduces the observer’s

ability to quickly reconstruct the states.

In order to address the aforementioned tradeoff, a switched

gain observer was proposed in [7] to force a large gain during

the transient period for fast state reconstruction, and allow for

a smaller gain once the states were satisfactorily estimated

to reduce the effect of noise on the steady-state performance.

This work was supported in part by the National Science Foundation
under grant numbers ECS-0400470 and ECCS-0725165.

However, a number of complications are generally as-

sociated with a switched system. The time in which the

gains are switched, trigger threshold, and system peaking

are all issues that must be addressed. Both from an analysis

and design/implementation prospective, using a switched

observer can be quite tedious. The authors of [9] investigated

the use of a deadzone nonlinearity to alternate between

two filters of different bandwidths in order to achieve fast

state estimation while minimizing the quantization error. The

two sets of estimators, similar to [10], were necessary to

achieve adequate noise filtering and fast state reconstruction.

In [11], the idea of using a deadzone nonlinearity inherent

to the structure of the high-gain was proposed and shown

to be effective through simulation. Yet, neither [9] or [11]

were able to provide a proof for this conjecture due to its

inherent challenges. Namely, the form of the nonlinearity to

be inserted into the high-gain observer is not an obvious

choice. Moreover, even once the appropriate representation

was chosen, the nonlinear term present in the observer is

manifested in the closed-loop error dynamics in an incon-

venient manner; not only is there a nonlinear dependence

on the first error state, but the size of the zone plays a

role in the size of the ultimate bound. The task of proving

that the trajectories starting outside the zone would reach

the second phase of the observer gain, and the estimation

error would asymptotically approach a small magnitude was

difficult, if not impossible, to show before the high-gain

observer representation and analysis presented in this work.

An alternative to the switched or nonlinear high-gain

observer approach, for the class of problems addressed here,

is that of the sliding mode observer. As studied in [12]

and [13], the sliding mode observer technique is robust

against unknown system inputs, but sensitive to measurement

noise. In [14], a bound on the differentiation error was

derived for a higher-order sliding mode differentiator. In

[8] a direct comparison to the simulation results given in

[14] showed that the performance of the sliding mode and

high-gain observers in estimating the open-loop derivatives in

the presence of measurement noise was comparable. Further

information on sliding mode observers can be found in the

survey paper [15], and the references therein.

The purpose of this paper is to provide analysis for the

nonlinear gain approach. The idea behind the inclusion of
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a deadzone nonlinearity in the high-gain observer, is to

achieve a large gain when the estimation error is outside

of the deadzone and the system is still in the transient

phase. Hence, the state estimations can approach the true

state values significantly fast. When the estimation error

is sufficiently small, the error is inside the deadzone and

the observer gain is small. Thus, the measurement noise

can be attenuated. Section 2 describes the system form

and the general setup. Section 3 introduces the observer

dynamics and a few of the key points used in the analysis;

stated at the end of the section is a theorem concerning the

closed-loop system dynamics. A simulation comparing the

system performance under the switched, nonlinear, and linear

observers is provided in Section 4.

II. PROBLEM FORMULATION AND SYSTEM

DESCRIPTION

Consider the nonlinear system

ż = ψ(x, z, ς, u) (1)

ẋ = Ax+Bφ(x, z, ς, u) (2)

y = Cx+ v (3)

w = Θ(x, z, ς) (4)

where z ∈ R
l and x ∈ R

n are the system states, y ∈ R

and w ∈ R
s are the measured outputs, u ∈ R is the control

input, ς(t) ∈ R
p represents the exogenous signals, and

v(t) ∈ R is the measurement noise. Note, that the function

φ(x, z, ς, u) is not necessarily known. Moreover, the model

allows for the possibility of zero dynamics. The triple

(A, B, C) represents a chain of n integrators. The system

defined in (1) - (4) is required to satisfy Assumption 1 below.

Assumption 1:

• ς(t) ∈ D ⊂ R
p, where D is compact

• ς(t) is continuously differential and both ς(t) and ς̇(t)
are bounded

• v(t) is Lebesgue measurable and bounded, where the

bound is defined as |v(t)| ≤ µ
• φ, ψ, and Θ are locally Lipschitz in their arguments,

uniformly in ς , over the domain of interest; for each

compact subset of (x, z, u) in the domain of interest,

the functions satisfy the Lipschitz inequality with a

Lipschitz constant independent of ς for all ς ∈ D

The state feedback controller takes the following form

θ̇ = Γ(θ, x, w, ς) (5)

u = γ(θ, x, w, ς) (6)

and meets the requirements listed in Assumption 2.

Assumption 2:

• Γ and γ are locally Lipschitz functions in their argu-

ments, uniformly in ς , over the domain of interest

• Γ and γ are globally bounded functions of x

Let the closed-loop system (1) - (4) under the state feedback

controller (5) - (6) be denoted as

χ̇ = fr(χ, ς) (7)

where

χ =





x
z
θ



 ∈ R
N , fr(χ, ς) =





Ax+Bφ(x, z, ς, γ)
ψ(x, z, ς, γ)
Γ(θ, x, w, ς)





Assumption 3:

• The closed-loop system (7) is uniformly asymptotically

stable with respect to a compact positively invariant set

A, uniformly in ς
• φ(x, z, ς, γ) is zero in A, uniformly in ς

The high-gain observer is defined as

˙̂x = Ax̂ +Bφ0(x̂, w, ς, u) + h(y − x̂1) (8)

where

hi(y−x̂1) = αi



















gi
2(y − x̂1), |y − x̂1| ≤ d

gi
1(y − x̂1)

− (gi
1 − gi

2)d sign(y − x̂1), |y − x̂1| > d

The variable d is the size of the deadzone nonlinearity, which

is defined as [−d, d]. The observer gains are defined as

g1 = 1/ε1 and g2 = 1/ε2, where ε1 < ε2

Both ε1 and ε2 are small positive parameters. The αi’s are

designed such that the roots of

sn + α1s
n−1 + · · · + αn−1s+ αn = 0 (9)

have negative real parts. The function φ0 is chosen to be a

nominal model of φ.

Assumption 4:

• φ0 is locally Lipschitz in its arguments, uniformly in ς ,
over the domain of interest

• φ0 is globally bounded in x and zero in A

The output feedback controller is obtained by replacing x
in (5) - (6) with x̂.

III. OBSERVER DYNAMICS

For the closed-loop system analysis, the observer dynam-

ics are replaced by the equivalent dynamics of the scaled

estimation error found in [6]:

η̃ = D(ε1)[x− x̂] (10)

where D(ε1) = diag[1, ε1, · · · , ε
n−1
1 ]. The closed-loop sys-

tem under the output feedback controller can be written as

χ̇ = f(χ, ς,D−1(ε1)η̃)

=





Ax+Bφ(x, z, ς, γ(θ, x−D−1(ε1)η̃, w, ε))
ψ(x, z, ς, γ(θ, x−D−1(ε1)η̃, w, ε))

Γ(θ, x−D−1(ε1)η̃, w, ε)





(11)

ε1 ˙̃η = A0η̃ + εn
1Bδ(χ, ς, w,D

−1(ε1)η̃)

−B0ψ −
ε1
ε2
Q0ξ

(12)
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where

A0 =















−α1 1 · · · · · · 0
−α2 0 1 · · · 0

...
. . .

...

−αn−1 · · · · · · 0 1
−αn · · · · · · · · · 0















, B0 =















−α1

−α2

...

−αn−1

−αn















ψ =

{

η̃1, |η̃1 + v| ≤ d

−v + d sign(η̃1 + v), |η̃1 + v| > d

and

ξi = (
ε1
ε2

)i−1(v + ψ), Q0 = diag[α1, α2, . . . , αn]

The function δ(χ, ς, w,D−1(ε1)η̃) is defined as

φ(x, z, ς, γ(θ, x̂, w, ς)) − φ0(x̂, w, ς, γ(θ, x̂, w, ς)), and

the matrix A0 is Hurwitz. Note, that except for the presence

of negative powers of ε1 in the D−1(ε1)η̃ term, (11) -

(12) appear in the standard singularly perturbed form [16].

Consider the additional scaling for the observer dynamics

as

η = D(ε2)[x− x̂] (13)

where (13) is utilized only once the error y − x̂1 settles in

the zone [−d, d]. Hence, the observer dynamics for η, after

entering the zone, are denoted as

ε2η̇ = A0η + εn
2Bδ(χ, ς, w,D

−1(ε2)η) +B0v (14)

A key difference in the observer dynamics of (12) and (14),

is that (12) has a nonlinear dependence on η̃1 that does

not appear in (14). In both representations, δ is a globally

bounded function in x̂, implying that it is also globally

bounded in D−1(ε1)η̃ and D−1(ε2)η for (12) and (14),

respectively. Thus, there is a constant Lδ > 0, independent

of ε1 and ε2, such that ‖δ‖ ≤ Lδ for all χ ∈ Ωc and

η̃, η ∈ R
n; Ωc ⊂ R and is bounded, where R is an

open connected subset of the region of attraction (which

contains A). Moreover, given the functions f and δ are

globally bounded in D−1(ε1)η̃, the behavior of the closed-

loop system under output feedback (11) - (12) can be linked

to that of standard singularly perturbed systems. The slow

dynamics of (11) can be approximated by ε1 = 0, which

yields η̃ = 0. This reduces (11) to the closed-loop system

(7) under the state feedback controller (5) - (6).

Consider the representation of the fast equation (12) for

χ ∈ Ωc. Given A0 is Hurwitz, the solution matrix S to the

Lyapunov equation SA0 + AT
0 S = −I is symmetric and

positive definite. Let the Lyapunov function candidate for

(12) be chosen as W = η̃TSη̃. It can be shown that

Ẇ ≤ −
1

2ε1
‖η̃‖2, ∀‖η̃‖ ≥ r1 (15)

for r1 = εn
1σ1 + (µ + d)σ2 + ε1

ε2

(2µ + d)σ3 and σ1, σ2,

σ3 > 0. To ensure that the trajectories remain inside some

set, regardless the scaling used in the error dynamics, take

the above Lyapunov candidate function for η̃, and apply the

following transformation

η̃ = D

(

ε1
ε2

)

η (16)

where D( ε1

ε2

) = D(ε1)D
−1(ε2) which leads to W =

ηTD( ε1

ε2

)SD( ε1

ε2

)η. For trajectories inside the zone, using

(14), it can be shown that

Ẇ ≤ −
1

2ε2
‖η‖2, ∀‖η‖ ≥ r2 (17)

for r2 = εn
2σ1 + µσ2 and where the fact that ‖D‖ ≤ 1 is

utilized. Choose c1 > λmax(S)r21 and c2 > λmax(DSD)r22 .

Then, take c3 > max {c1, c2} such that the initial conditions

are contained in the set

{W ≤ c3} (18)

Then,

Ẇ ≤ −
1

2ε2‖S‖
W , ∀ W ≥ c3 (19)

which shows that (18) is a positively invariant set. Moreover,

it will be shown that all trajectories starting in (18) will reach

the positively invariant set

Σ = {W ≤ (εn
2σ4 + µσ5)

2} ∩ {|η1| ≤ Lµ} (20)

where the first component results from (17). The second

component intersecting the first set is described as a pos-

itively invariant strip of the following form

{|x1 − x̂1| ≤ Lµ} (21)

where L > 1
θ

and 0 < θ < 1. The zone size d is chosen as

d > (L+ 1)µ to ensure that (21) implies that

|x1 − x̂1 + v| ≤ d (22)

Furthermore, the choice of d may have an affect on the

closed-loop system dynamics; if d is chosen too large, the

dynamics of the observer may be too slow for the separation

principle to apply. This would result in χ growing unbounded

before the fast variables enter a positively invariant set. Thus,

d should be chosen as small as possible, while still meeting

the above requirements. It is required that the trajectories

will reach the strip (21) in finite time and stay in thereafter.

When the trajectories are outside the strip (21), it is crucial

that they move towards the strip, reaching it in finite time.

Once inside the strip, the trajectories should be confined to

that strip for all time. This is accomplished by designing A0

with one fast eigenvalue along with n− 1 slow eigenvalues.

In this case, (9) is written as

(sn−1 + β1s
n−2 + · · · + βn−2s+ βn−1)(s+ κ) = 0

where the first polynomial is Hurwitz with O(1) roots and

κ≫ 1. Thus, the fast component is associated with the pole

at −κ. To represent the estimation error in the singularly

perturbed form, A0, B0, and Q0 are represented as A0 =
A01κ + A02, B0 = B01κ + B02, and Q0 = Q01κ + Q02.

As in [6], the procedure from [16] is used to transform the
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system (14) into the standard singularly perturbed form via

the change of coordinates
[

ζ̃
η̃1

]

= T η̃ (23)

where

T =

[

Y
Z

]

and T−1 =
[

M N
]

with M ∈ R
n×(n−1) and Y ∈ R

(n−1)×n. It can be shown

that the observer dynamics for η̃, used for the analysis outside

the strip, take the following representation

ε1
˙̃ζ = Y A02Mζ̃ + εn

1Y Bδ − Y B02ψ

−
ε1
ε2
Y (Q01κ+Q02)ξ

(24)

ε1 ˙̃η1 = −κη̃1 + ζ̃1 + (β1 + κ)ψ

−
ε1
ε2

(β1 + κ)(v + ψ)
(25)

where Y A02M is by design a Hurwitz matrix. The coeffi-

cient of ξ in (24) is O(κ ε1

ε2

); thus, κ ε1
ε2

needs to be chosen

as O(1) in order to place the system in singularly perturbed

form.

The observer dynamics for η in the singularly perturbed

form are

ε2ζ̇ = Y A02Mζ + εn
2Y Bδ + Y B02v (26)

ε2η̇1 = ζ1 − κη1 − (β1 + κ)v (27)

and are only utilized for the analysis inside the strip (21).

The fact that the strip (21) is positively invariant can be

shown by calculating the derivative of W2 = 1
2η

2
1 along the

trajectories of (26) - (27), leading to

Ẇ2 ≤ −
2(1 − θ)κ

ε2
W2, ∀W2 ≥

1

2
L2µ2 (28)

To show that the trajectories reach the strip (21) in finite time,

the derivative of W2 = 1
2 η̃

2
1 (note that η̃1 = η1) is calculated

along the trajectories of (24) - (25). It can be shown that

Ẇ2 ≤ −
(1 − θ)(κ+ β1)

ε2
η̃2
1 ,

∀|η̃1| ≥ µ
(κ+ β1) + ε2

ε1

Lζ̃1

θ(κ+ β1) −
ε2

ε1

β1

(29)

for |η̃1 + v| ≤ d and

Ẇ2 ≤ −
(1 − θ)κ

ε2
η̃2
1 ,

∀|η̃1| ≥
µ

θ
+
ε2
θκ

(

Lζ̃1

ε1
+ β1

[

µ

ε1
+ d(

1

ε1
−

1

ε2
)

])

(30)

for |η̃1 +v| > d, where in the latter case the fact that η̃1[η̃1+
v− dsign(η̃1 + v)] > 0 is used, which follows from |v| < d.

Note that Lζ̃1
> 0. The lower bounds on |η̃1| in (29) and

(30) can be made arbitrarily close to µ
θ

by choosing κ large

enough. By choosing Lµ > µ
θ

, Ẇ2 ≤ − 2(1−θ)κ
ε2

W2, ∀|η̃1| ≥
Lµ.

If η1(t0) is outside the strip (21), it can be seen from (28)

that

W2(η1(t)) ≤W2(η1(t0)) exp

(

−
2(1 − θ)

ε2
κ(t− t0)

)

(31)

Therefore, η1 will reach the strip (21) within the time interval

[t0, t0 + Ts(ε2)], where

Ts(ε2) =
ε2

(1 − θ)κ
ln

(

LW2
√

1/2Lµ

)

(32)

Referring back to (17), it is clear that if η(t0) is outside of

Σ, then

W (η(t)) ≤W (η(t0)) exp

(

−
1

2ε2‖S‖
(t− t0)

)

(33)

which shows that η reaches the set W ≤ (εn
2σ4 + µσ5)

2

within the time interval [t0, t0 + Tu(ε2)], where

Tu(ε2) = 4ε2‖S‖ ln

(

LW

εn
2σ4

)

→ 0 as ε2 → 0 (34)

Therefore, it follows from (32) and (34) that η̃ will reach the

set Σ within the time interval [t0, t0 + T (ε2)], where

T (ε2) = Tu(ε2) + Ts(ε2) (35)

The remaining argument for the boundness of all trajectories,

ultimate boundness where the trajectories come close to the

set A× {x− x̂ = 0}, and closeness of trajectories concerns

the slow variables, and will not be included here. A similar

approach for the slow variables can be found in [11]. One

additional important point not included in the work of

[11], but relevant here, is that ε2 is an upper bound on ε1.

Therefore, as ε2 → 0 so does ε1. The above discussion can

now be summarized with a theorem.

Theorem 1 Let Assumption 1 through 4 hold. Moreover, let

M be any compact set in the interior of R and N be any

compact subset of R
n, where χ(t0) ∈ M and x̂(t0) ∈ N .

• There exist constants ca > 0 and µ∗ > 0 such that for

each µ < µ∗ there is a constant εa = εa(µ) > caµ
1

n ,

with limµ→0 εa(µ) = ε∗a > 0, such that for each

ε2 ∈ (caµ
1

n , εa] the trajectories of the closed-loop

system are bounded for all t ≥ 0;

• There exist µ∗
1 > 0 and a class K function ρ1 such

that for every µ < µ∗
1 and every Υ1 > ρ1(µ), there

are constants T1 = T1(Υ1) ≥ 0 and εb = εb(µ,Υ1) >
caµ

1

n , with limµ→0 εb(µ,Υ1) = ε∗b(Υ1) > 0, such that

for each ε2 ∈ (caµ
1

n , εb]

max{|χ(t)|A, ‖x(t) − x̂(t)‖} ≤ Υ1, ∀t ≥ T1 (36)

• There exist µ∗
2 > 0 and a class K function ρ2 such

that for every µ < µ∗
2 and every Υ2 > ρ2(µ),

there is a constant εc = εc(µ,Υ2) > caµ
1

n , with

limµ→0 εc(µ,Υ2) = ε∗c(Υ2) > 0, such that for each

ε2 ∈ (caµ
1

n , εc]

‖χ(t) − χr(t)‖ ≤ Υ2, ∀t ≥ t0 (37)
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where χr(t) is the solution of (7) with χr(t0) = χ(t0).

The complete proof of Theorem 1 will appear elsewhere.

IV. SIMULATION

The purpose of this section is to provide a performance

comparison between the linear, switched, and nonlinear high-

gain observers. The system under consideration is a field

controlled DC motor [17], where it is desired that the shaft

angular position track a reference signal as shown in Fig. 1.

The system is represented as

ẋ1 = x2 (38)

ẋ2 = φ(x, z, u) (39)

ż = ψ(x, z, u) (40)

y = x1 + v (41)

w = z (42)

where x1 is the rotor position, x2 the rotor angular velocity,

and z the armature current.

0 2 4 6 8 10
−20

−15

−10

−5

0

5

10

15

20

R
e

fe
re

n
c
e

 V
e

lo
c
it
y

Time

Fig. 1. Velocity reference trajectory (ṙ)

The design of the controller to achieve tracking is based on

feedback linearization. The field current is used as the source

of control and is denoted by u. The controller expression

is u = 10
w

(0.11x̂2 + r̈ − 100(y − r) − 20(x̂2 − ṙ)), where

standard feedback linearization techniques were applied. The

functions above are defined as φ(x, z, u) = −0.1x2 + 0.1zu
and ψ(x, z, u) = −2z−0.2x2u+200. The estimate x̂2 is sat-

urated outside [-20, 20]. The nominal value for φ used in the

observer is φ0(x̂, w, u) = −0.11x2 +0.1wu. The observer is

second-order, given that the state z is measurable and need

not be estimated. The remaining observer parameters are

chosen as α1 = 71, α2 = 70, ε1 = 0.0005, and ε2 = 0.01.

The initial conditions are set at x1(0) = x2(0) = x̂2(0) = 0,

x̂1(0) = π, and z(0) = 100 to match values consistent

with the physical system. It is also important to note that

x1(0) and x̂1(0) are deliberately chosen to be unequal to

ensure some sort of transient response in the system. The

measurement noise v is generated using the Simulink block

“Uniform Random Noise”, where the magnitude is limited

to [-0.0016, 0.0016] and the sampling time is set at 0.0008

seconds. The noise magnitude choice is based on a 1000

c/r encoder. The value of d for both the switched observer

threshold and the deadzone in the nonlinear observer is

0.005. In the switched observer, it was shown in [6] that if the

system switches before the transient response of the estimates

of the higher order derivatives has subsided, the value of

y − x̂1 could leave the valid switching threshold. If this

occurs, the system could be susceptible to multiple switching

until all of the trajectories recover from peaking. Thus, the

switched observer requires the additional component of a

switching timer, based on the peaking period, that prevents

the observer from switching before the trajectories of the

estimation error have reached a positively invariant set. The

delay timer is set for 0.15 seconds; details on how to choose

this value can be found in [6].

Fig. 2 shows the transient response of the error x2−x̂2 for

the observers. As expected, the switched observer captures

the behavior of the linear observer with the parameter ε1.

Unlike the switched observer, the nonlinear observer does

not wait for the transients to subside in both states before

entering the zone and subsequently changing the value of the

parameter ε. Thus, the nonlinear observer does not exactly

mimic the transient response of the linear observer shown

in Fig. 2(c). However, the nonlinear observer does achieve

faster state reconstruction than the linear observer with ε2.
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Fig. 2. Transient response for the error x2 − x̂2 vs. time

In Fig. 3, the steady-state behavior of the nonlinear,

switched, and linear (with the parameter ε2) observers is

identical. The linear observer, in Fig. 3(c), with the larger

gain is unable to sufficiently attenuate the measurement

noise. This is expected, given the smaller value of ε (larger

gain) is likely to amplify the noise. In the case of the

steady-state response, the nonlinear and switched high-gain

observers attenuate the measurement noise in an identical

manner.

Fig. 4 shows the tracking error x2− ṙ during the transient

response resulting from the nonlinear, switched, and linear

high-gain observer schemes. Given the switched observer

waits for all system transients to dissipate before changing

the gain, the transient response of the nonlinear observer is

slightly slower. However, the steady-state response for the

nonlinear, switched, and linear (with ε2) high-gain observers

is identical, as shown in Fig. 5. Thus, the nonlinear observer

is able to bypass the complexity associated with the switched
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observer at the cost of only a slightly slower transient, but

identical steady-state behavior.
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Fig. 3. Steady-state response for the error x2 − x̂2 vs. time
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Fig. 4. Transient response for the tracking error x2 − ṙ vs. time
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Fig. 5. Steady-state response for the tracking error x2 − ṙ vs. time

V. CONCLUSIONS

This paper investigated a new nonlinear high-gain ob-

server. It was shown that a crucial point in the closed-

loop analysis of the fast variables is to design the observer

eigenvalues with one eigenvalue much faster than the rest,

to ensure that the error y − x̂1 enters the deadzone in finite

time. With the nonlinear gain, the trade-off between fast

state reconstruction and noise attenuation was predominately

minimized. Although this method produces results similar to

that of a switched high-gain observer, the nonlinear observer

is able to do so without the associated complications due to

implementation overhead.
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