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Abstract— This paper presents a variable hierarchy six de-
gree of freedom non-linear sliding mode controller for a satellite
using potential function guidance for both position and attitude.
The novelty is the formulation of the joint attitude/position
sliding mode controller in combination with potential function
guidance and proof of its asymptotic stability. The control
method scales well to multiple satellites flying in formation
with dynamic position and attitude requirements and as such
is highly relevant to application in space systems such as
interferometry. A target application of the acquisition and
maintenance of a Halo type orbit about an unstable collinear
Lagrange point, to a specified attitude, is obtained under the
influence of the restricted three body dynamics.

I. INTRODUCTION

A Lagrange point (referred to herein as a Liberation point)
is an equilibrium solution to Euler’s classic restricted three
body problem (RTBP). It is a location where the gravitational
and centrifugal forces acting on a third body are balanced.
Fig. 1 depicts the Liberation Points of the RTBP, where the
points Ly, Ly and L3 are collinear with the primary system
bodies; points Ly and Ls form the so-called ’equilateral’
points with the system primaries. The existence and the
complex dynamics in the vicinity of these points has been
of great mathematical interest since Poincaré’s early work
in 1899, the three volumes of Méthodes Nouvelles. Szebele-
hely’s treatise [1] was the first publication to amalgamate
the work completed by numerous mathematicians into a
comprehensive document covering the theoretical aspects of
Liberation point locations and the existence of achievable
orbits about these points.

The use of satellites in Liberation Point orbits have been
investigated since the pioneering text by Farquhar [2] in
which the use of a satellite positioned in an orbit about the
L, point of the Earth-Moon system was suggested to permit
radio communications on the dark side of the moon. Libera-
tion point satellites have been flown, the International Solar
Earth Explorer-3 (ISEE —3) and the Solar and Heliospheric
Observatory (SOHO) missions being the most famous of
these [30][31]. More recently, the use of liberation point
orbits has been highlighted as an ideal location for satellite
imaging formations such as Herschel[27], the Terrestrial
Planet Finder (TPF)[28] and the Micro Arc-Second X-ray
Imaging Mission (MAXIM)[29]. Individual platforms, such
as Herschel and SOHO, require accurate control of both
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Fig. 1.

Liberation Points of the RTBP

position and attitude throughout the entirety of the intended
orbit; interferometric platforms such as the TPF have the
added complexity of formation flight requirements.

For such space systems where there is a significant time
delay in Earth based communications, autonomy becomes
important; where autonomy here relates to autonomous
movement in space/time. For formation flying systems this
autonomy is essential for operation. In addition to autonomy
requirements, the need for a six degree of freedom control
system is inherent due to the need for acquisition of time
varying positions and attitudes. The combined six degree of
freedom dynamics of rigid body, where both attitude and
position translation are considered, is non-linear in nature
and as such traditional linear control theory is difficult to
apply.

Control solutions for satellite motion within the three-
body environment have been presented by numerous authors.
Howell, who’s early work included numerical determination
of periodic Halo orbits[3], presents a control methodology
based on a Floquet control law within [5], an extension
of the work presented by Gémez et al [6]. The Floquet
approach is a method for countering disturbances to enable
positional maintenance in the vicinity of a prescribed Halo
orbit and does not consider attitude control or manoeuvres to
achieve a specified configuration. More complete solutions
are presented by [7] and [8]. [8] presents a hierarchical
optimal control solution to provide attitude and position
control through reducing a set of requirements to a minimisa-
tion problem. Although permitting both attitude and position
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control, the method does not allow for collision avoidance
considerations; a factor acknowledged by the author. An
important result from [8], is that the decentralised scheme
is able to cope with a complex set of requirements, where a
monolithic scheme would fail. [7] presents an adaptive output
feedback control scheme for a leader-follower configuration
in which a follower satellite is tasked with following a
halo reference trajectory. [7] uses a velocity filter to provide
estimates of relative velocities and as such allows for control
using only relative positional measurements. The control
regime is however, only prescribed for a leader-follower
configuration to the n'" order and attitude manoeuvres are
not considered. General control schemes, not applied within
the RTBP regime, exist in the form of [9],[10] both of
which use a potential function guidance method combined
with sliding mode control for position control, but neither
consider attitude manoeuvres in conjunction with positional
movement. Numerous papers exist for formation flight in the
Low Earth Orbit, though very few consider the combined
nonlinear position and attitude control. Indeed, the main
author in this area [12],[13] is the same for [7], in which
the same leader-follower controller is implemented within
a new dynamical regime. [14] presents a combined sliding
mode controller for both attitude and position in the presence
of zero disturbance and without guidance. Perhaps the richest
resource for combined position and attitude control schemes
lay in the field of Autonomous Underwater Vehicles, such
as [15], which develops a class of non-linear PD control
laws using a Lyapunov approach and tested by step response
commands.

Autonomous guidance, or path planning, is a complex is-
sue which is exacerbated with increasing formation elements.
For true autonomous operation, each formation element,
herein referred to as ’agent’, is required to regulate both
its position and attitude within the group of agents based on
its own percepts. [25] presents a broad introduction to the
field of multi-agent systems and highlights the complexity
of agent action selection. Several solutions to the agent
action selection problem for robotic navigation, spacecraft
proximity with rendezvous and self assembly of space based
structures exist in the form of potential functions, dynamic
systems theory and optimal control theory [16],[17],[9]. The
most developed of these is the method of potential functions
in which an artificial potential field is created from agent
percepts and subsequently used to model an agents’ time-
varying environment. Within this model the action selection
is prescribed by following the local gradient of the potential
field. Conceptually this is a very simple approach but can
lead to the acquisition of an undesirable local minimum
equilibrium position by an agent. Solutions to this problem
have been suggested by numerous sources, including the
implementation of random walks[18] and forming the poten-
tial field using Laplacian or harmonic functions[19][20]. An
elegant solution to the satellite agent collaboration problem
using potential functions is presented by [9] and [10]. In
the latter, the method is referred to as equilibrium shaping.
This technique is an amalgamation of various methods used
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within robot path planning and Al in which a kinematic
field is constructed as the sum of different weighted potential
field contributions. These contributions, or behaviors, result
in a global swarm behavior which solve a target assignment
problem autonomously.

In this paper, a potential field method is combined with
a novel variable hierarchy six degree of freedom sliding
mode controller for autonomous satellite operation in an
unstable halo orbit. A single agent is deployed into a leader-
follower configuration to track a desired orbital trajectory
whilst obtaining and maintaining a desired attitude. Although
only a single agent is deployed in this scenario, the method
is scalable to n agents deployed into a time varying large
scale formation. The main contribution of this paper is a
novel methodology for solving the joint spacecraft guidance,
attitude and position control problem.

Section II develops the equations of motion for the RTBP
environment and a rigid body with six degrees of freedom.
Section III develops the guidance and control laws which
are simulated in Section IV. The paper is concluded with
an outline of future work and a summary of the simulation
results obtained.

II. DYNAMICS

The development of the dynamics and kinematics will be
based upon a single agent, considered to be holonomic with
respect to control. In addition, the notation will be as follows:

« Capital Letter, Bold Face = Matrix, A

o Lower case letter, Bold Face = Vector, a
o Lower case letter, italic = Scalar, a

e m=mMmass,

o v=velocity, [vy, vy, v )T

+ w=angular velocity, [@y, @y, ®,]"

. f=force, [fi. fy, )7

o T=torque, [Ty, Ty, 7|7

o J= inertial matrix

A. Lagrange Point Dynamics

[1],[23] give a detailed development of both the circular
restricted three-body problem and the elliptic restricted three-
body problem, which includes periodic distance variation
between the two primary bodies.

Referring to Fig. 2 where m; and m, represent the bodies
of significant mass and m represents the third (insignificant)
body. Vector R is the distance from the system barycenter to
the third body and vectors r| and r, are the distances from the
significant masses to the third body. For the circular restricted
problem, where the orbital motion of the two primary bodies
about their barycenter is assumed circular and resulting in
a system with a constant orbital velocity, it is shown in
[23] that the non-dimensional equations of motion, where
distances are in units of D and time in units of 1/n, resultant
from inertial and gravitational acceleration are given by (1).
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Fig. 2. Schematic Overview of the RTBP

B. Six Degree of Freedom Dynamics

The non-linear rigid body six degree of freedom dynam-
ics are well documented. Using Newton/Euler equations to
resolve for forces and moments respectively, we generate
the translational and rotational motion equations for a rigid
spacecraft:

mv+mQv = f 2)
Jo+QJo=1 (3)

where the skew symmetric matrix  represents the angular
velocity cross product matrix as is given by (4).

0 -3
Q= w3 0 — )
- 0

The kinematic equation describing the evolution of the
spacecraft position and orientation are given by (5).
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= —Qd+v 5)
a= 1Qq (©6)

where
0 w — o
A —3 0 ()N )}
wm -0 0 3
- - —a 0

)

d represents the satellite position in the body frame and q is
the quaternion vector.

A complete representation of the dynamics and kinematics
for a single rigid body is given by (8).

d [ —Qd+v
d |V —Qv
3 P 19q +
® L -J'QJo
[ 033 033
m I<3’3) 0(3’3) |: f j| +
0(4’3) 0( 3 T
J l¢<3’3) J71
033 0Ops)
m 133 033 [ £ ]
Ou3)  Ouy | [ %
L 033 J!
x = f(x)+Bu+Cuy )

where @ is the cross product of control torques, a conse-
quence of actuator misalignment resulting in parasitic torques
generated from translational impulses. For subsequent analy-
sis @ will be taken as 0(3 3). u is the vector of applied control
[force,torque]” and uy is a vector representing external
force and torque disturbances. Rows 3-6 and 11-13 of matrix
B will be joined together to form a squared non-singular
sub-matrix B* that will be used later in Section 3.2 in the
formulation of the sliding mode equivalent control term u.

III. GUIDANCE AND CONTROL

Guidance for the desired agent state will be provided
through the use of potential functions in a similar manner
to the method within [10] but with the added novelty of
providing potential functions for attitude guidance. Separate
potential functions will be used to prescribe desired velocity
vectors for both position and attitude in the form of ¥v,
and Ww,, where W is the inertial to body conversion matrix.
Using the actual velocity vectors, v and ®, in combination
with the desired velocity vectors, a feedback regime will be
based upon the velocity vector errors:

ve = v—Wy,
o = o—Yo
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which will be used within the sliding mode control regime
presented within Section III-B. Prior to this, within Section
III-A, the potential functions used to achieve the desired
guidance for position and attitude will be developed. Within
Section III-C, the developed controller is generalised for a
group of n agents.

A. Guidance Law- Potential Functions

The potential function used as guidance for position will
be constructed as a function of the agent distance from
a desired point in space, referred to as a sink location.
Such a gathering behavior results in a predominantly global
influence over the agent. A compound potential, formed by
introducing n attractors towards the n sinks, €; can be used.
A general expression for the negative gradient of a potential
function which is prescribing a gathering behavior of agent
i to sink g; is

Y=Y ;g5 —x)| - (€ — %)

where a; is an integer coefficient dependant on the sink
priority. For the instance of leader-follower position tracking
control, only a single sink location is required for each
follower agent.

In considering more than one agent, collision avoidance
becomes an integral part of the control requirements. A
collision avoidance constraint can be imposed upon an agent
by the introduction of an inter-agent avoidance potential
between agent i and agent j given in [9] as

T?void _ _biZ(Xj _Xi) exp (_ ijk_XzH> ,
J i

b; is a suitable weighting parameter and k; represents an ad-
ditional weighting parameter dictating the sphere of influence
for the given avoid behaviour.

The potential function used as guidance for rotational
position will be constructed as a function of the agent
orientation error from a desired orientation in space, using
the quaternion notation. The error quaternion, q., is given
within [26] as:

qe = Qu q

where Qg is the matrix multiplication of the desired quater-
nion vector, q, obtained by using the components of qg:

qd4 qda3  —4d2  4d1

_ | 4943 4qas  —4a1 d4a2
Q= -

qa2 qd1 444 443

—qd1  —4qd2 —4d3 qd4

There exists a one-to-one equivalence between the direction
cosine matrix elements and the elements of the quaternion
vector and so a suitable output potential function can be
based on a desired orientation can be represented in the
following form.
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Definition Using the attitude reference q; as a sink an
attitude reference guidance vector for w is defined as

e,

=Ci*qey- e, )
Ges

orient
Ti

where c¢; represents a weighting factor.

Alike the positional potential function development, the
potential function for required attitude could consist of
multiple weighted parameters to result in a more complex
behavior dependant on the environmental percepts. In the
presented scenario, only the acquisition of a specified attitude
is considered.

The overall position and angular velocity reference for
agent i can then be defined as the sum of all partial
contributions as:

o vy B T}gather +r;¢v()id
Fl - |: Wy :| - |: T;)rient (9)

B. Sliding Mode Control Development

The starting point for developing sliding mode control is
the selection of a suitable sliding surface, &, such that when
o =0 is reached, the system exhibits the desired motion. For
the purposes of a combined position and attitude controller,
two separate sliding surfaces are required relating to the
separate translational and rotational movements.

ky Ve
ka - W

o1
02

With k, and k, representing fixed scalar gains for velocity
and attitude respectively. These gain values are used to
scale the magnitude of force and torque control signals by
scaling of the sliding mode inputs generated by the potential
functions. The above sliding surfaces can be placed into
matrix form:

L = [o,0)
_ | klpz 0pg) } [ Ve }
033 kol @, (10)
= Kx,
= K [x—¥xy

Traditionally, hierarchical sliding mode control is em-
ployed by driving a single sliding surface to zero within
finite time and then progressing sequentially through the set
of sliding modes whilst maintaining preceding modes until
Yo0;=0,i=1,2,...,n. Due to the nature of this approach,
hierarchical sliding mode control is also referred to as a fixed
order switching scheme [21][22]. Such a method is limited in
that the prescribed order of reaching sliding modes may not
be ideal and can result in a large magnitude in control effort.
In contrast, a *free-order’ sliding mode process operates on a
first-reach-first-switch scheme in which the order of sliding
modes is not specified. Although possessing more desirable
dynamical characteristics, by definition no direct control is
available over sliding modes; this can be disadvantageous
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in cases when a precedence is required due to actuation
limitations.

A modified hierarchical scheme is presented in (11), where
a1+ op =1 . By modifying the positive definite o; variables,
the sliding mode scheme can progress in various ways. When
o = o the scheme will progress as a ’free-order’ method.
When o4 # o a hierarchical scheme can be imposed. The
magnitudes of the «; variables are evaluated within the
guidance functions as a function of error velocities and mode
priorities. If control saturation is approaching, a precedence
operation over position and attitude can impose appropriate
o; values; at other times a ’free-order’ scheme is followed.

¢ = o lz; 033 (o]
033 l33 (o7} (1D
AX

Using the theory of variable structure systems [21],[22], an
equivalent control term is determined such that when on the
sliding surface, motion is constrained to the surface o; =0
for all time having intercepted the manifold. Applied to the
sliding modes outlined in (10), we require that £ =0 and
r= 0,Vt >ty where g is the time of manifold intersection.
For the multi-input/multi-output case, this is satisfied by

u,, =B (Wxy —f(x)) (12)

The equivalent control term, u,,, given in (12) must be aug-
mented with a switching term, uy,, to guarantee convergence
to the sliding surface. Defining a positive definite Lyapunov
function candidate as

(13)

for asymptotic stability we require that V(g) <0V . Using
(8), (11) and (13) we can show that

Vie) = ¢'¢
= ¢(AK(f(x)+Bu) — A K-¥x,)

By substitution of u = u,q +uy, it follows that the switching
term
Uy = _B*il'K_l'A_l'sgn(GL

satisfies

—¢Tsgn(g)
—lgll
0 V¢

V()

IN I

and hence the high level sliding mode, ¢, is asymptotically
stable. The following result has been obtained.

Theorem 3.1: For constant velocity references v;, @, the
sliding mode controller

u = l-ligq + Uy
B! (Wx,—f(x))—B* LK A sgn(c)
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is asymptotically stable.

To prevent excessive chattering due to the theoretical infinite
switching frequency associated with the sign function, it
is conventional to use a boundary layer solution in close
proximity to the switching surface. This is achieved by
replacing the sign function with a saturation function in
which

iffy[ <1
sgn(y) otherwise
C. Sliding Mode Control For n Agents

In considering the complete potential function guidance
law for agent i given by (9), the control response for each
agent will be

sty = {2

u = ll,'gq—l-ll,'m
B (W%, —£i(x) — B LKA sar(g)

with
Gi=AL

to regulate the agent to a desired position and attitude
using coordinated potential function gradients suitable for
the intended mission application. Each agent defines its own
potential gradient for translational and attitude velocities and
the sliding mode control solution developed in this paper can
be applied.

IV. SIMULATION RESULTS

The controller in combination with the potential function
guidance given in Section III was coded using MATLAB®.
The required halo orbit to be followed, equivalent to follow-
ing a leader satellite, was that of the ISEE-3 mission about
the L; liberation point using orbital data generated by an
analytical third order Richardson approximation [4]. Inser-
tion into the orbit was assumed to occur with random but
bounded velocity, position and attitude errors. The controller
objective was to regulate both orbital location and attitude
with respect to the reference trajectory. Orbital dynamics
were simulated using the three body dynamics presented in
Eqn. 1. Within the simulations realistic external disturbance
were introduced using random, uniformly distributed zero
mean variables bounded between +5uN and +0.5uNm
for both force and torque respectively. Control actuation
is assumed holonomic and bounded to realistic thrust and
torque levels, with a maximum levels of 1mN and 1mNm
respectively for a spacecraft mass of 10kg.

Fig. 3 shows the time evolution of the position error when
the satellite trajectory is regulated to the desired orbit. Fig. 4
shows the associated quaternion component output over the
same time period; the bottom plot is a verification plot to
visualise the Zqiz output, which mathematically should be
unity. The modified hierarchical sliding surface components
for position and orientation are shown in Figs. 5 and 6.
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Time Variation of Position Errors in [X,y,z]

!
50 100 150 200 250

Time (seconds)
[} T T T T
Soafk B
1 | |
50 150 200 250
Time (seconds)
04 T T
go 2\»/’/,
1 | | |
] 50 100 150 200 250
Time (seconds)
1 T T T T
3o 95}» «‘
o 1 | | N |
(] 50 100 150 200 250
Time (seconds)
1.2 T T T T
]
5" |
a
| ‘ ‘ ‘ ‘ |
(] 50 150 200 250

Time (seconds)

Fig. 4. Time Variation of Quaternion vector [q(l_g),qo]

Position Sliding Surface Variation

L , L
200 250

50 100 150
Time (seconds)

Fig. 5. Positional Sliding Surface Time Response

Fig. 7 shows both the controlled and uncontrolled orbital
positions, subject to the random orbital insertion conditions.
It is clear that the uncontrolled orbit degrades significantly
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Fig. 6. Angular Velocity Sliding Surface Time Response

within a single orbit, corresponding to a time period of
177.73 days, whereas the controlled orbit maintains the
desired orbit at the desired attitude.

Dual Trajectory Plot
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S 3% SRR SR — s
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Fig. 7. Regulated and Unregulated Satellite Orbits

V. CONCLUSIONS

A variable hierarchy sliding mode controller has been
presented in conjunction with a guidance method which is
scalable to n agents. Control of a single agent has been
demonstrated, with the agent regulated to a halo type orbit
generated using a Richardson approximation. Future work is
to include a discrete time implementation of the controller
expanded to a group of agents tasked with achieving a
predefined configuration, whilst following a differentially
corrected orbit. In addition to the discretisation of the control
system, disturbance torques and forces will also be consid-
ered.
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