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Abstract— This paper addresses the secondary user rate
adaptation problem in cognitive radio networks. By modeling
primary user activities and secondary user block fading chan-
nels as finite state Markov chains, we formulate the transmis-
sion rate adaptation problem of each secondary user as a zero-
sum dynamic Markovian game with a delay constraint. The
Nash equilibrium of the resulting game is available and all of
the Nash equilibria have a unique value vector. Conditions are
given so that the Nash equilibrium transmission policy of each
user is a randomized mixture of pure threshold policies. Such
threshold policies are easily implementable. Finally, we present
a stochastic approximation algorithm which can adaptively
estimate Nash equilibrium policies and track such policies for
non-stationary problems where the statistics of the channel and
user parameters evolve with time.

I. INTRODUCTION

Cognitive radio systems [1], [2] present the opportunity

to improve spectrum utilization by detecting unoccupied

spectrum holes and assigning them to secondary users. Sto-

chastic dynamic game theory is an essential tool for cognitive

radio systems as it is able to exploit the correlated channels

and primary user activities in the analysis of decentralized

behavior of cognitive radios. In comparison, most games

considered in wireless communication systems to date are

static games. Such static game theoretic analyses have been

applied in [3] in the context of power and rate control for

uplink cellular systems. Furthermore, [4] and [5] adopted

static game theoretic formulations to address the resource

allocation problem in cognitive radio networks.

This paper considers the secondary user rate adaptation

problem in cognitive radio systems where more than one user

tries to access a spectrum hole. We assume a time division

multiple access (TDMA) cognitive radio system model (as

specified in IEEE 802.16 standard [6]) which schedules

one user per spectrum hole at each time slot according

to a predefined decentralized scheduling policy. The policy

takes into account the behaviors of the primary users, as

well as the channel quality and transmission delay of each

secondary user. By modeling the primary user behaviors and

transmission channel as a Markovian chain, the transmission

rate adaptation problem of each user can be formulated as a

zero-sum switching control Markovian dynamic game with

a latency constraint.

A. Main Results

1. We first formulate the secondary user rate adapta-

tion problem in cognitive radio networks as a constrained

zero-sum switching controlled dynamic Markovian game in

Section II. As we consider a TDMA system, the system

state transmission probabilities only depend on the user

who is transmitting. This feature fulfills the property of a

special type of dynamic game which is called a switching

control game [7], [8], which are games where the transition

probabilities depend on only one player in each state. Such

games can be solved by a finite sequence of Markov decision

processes. In this paper, the problem is formulated to be a

constrained switching control Markovian game [9], which is

an extension of this type of game. Furthermore, both cost

and constraint of the game we formulate are zero-sum.

2. It is shown that the Nash equilibria of the game are

always available, and that all of them have the same value

vector. Few realistic assumptions on the system are given in

Section III.B. Under these assumptions, the optimal action

policy is a randomization of two pure policies, each of the

policies is monotone increasing on the buffer occupancy

state.

3. Section III.D proposes a more computationally efficient

algorithm to search for the optimal policy named stochas-

tic approximation algorithm. Stochastic approximation al-

gorithm greatly reduces the computational complexity of

searching for the optimal policy. At the same time, it directly

solves constrained zero-sum switching controlled Markovian

games. The algorithm can do blind adaptation according

to non-stationary channel and user statistics which evolve

with time. Numerical results of the stochastic approximation

algorithm are provided in Section IV.

II. RATE ADAPTATION PROBLEM FORMULATION

This section describes the system model. The rate control

problem of each secondary user can be formulated as a con-

strained dynamic Markovian game by modeling the primary

user activities and channel quality as a Markovian chain.

More specifically, under the predefined decentralized access

rule, the problem presented is a special type of game namely

a switching control Markovian dynamic game.

A. Markovian System Status Description

The channel quality of user k at time n is denoted as

h
(n)
k

. The channel model is assumed to be circularly sym-

metric complex Gaussian random variables which depend

only on the previous time slot. After applying quantization
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for the channel quality, the channel state space is h
(n)
k

∈
{0, 1, 2, . . .} where state 0 represents the case when the

primary user is occupying the channel. The composition

of channel states of all the K users can be written as

h(n) = {h
(n)
1 , . . . , h

(n)
K

}. Assume that the channel state

h(n) ∈ H, n = 1, 2, . . . , N is block fading, the block length

equals to each time period. The channel states constitute a

Markov process, its transition probability from time n to

(n + 1) can be written as P(h(n+1)|h(n)).

Use b
(n)
k

to represent the buffer occupancy state of user k at

time n and b
(n)
k

∈ {0, 1, . . . , L}, the composition of buffer

states of all the K users is b(n) = {b
(n)
1 , . . . , b

(n)
K

} which is

an element of secondary user buffer state space B.

In the system model, there is new incoming traffic at the

beginning of each time slot. Refer to the number of new

incoming packets at the nth time slot of the kth user as

f
(n)
k

, then f (n) = {f
(n)
1 , . . . , f

(n)
K

} is an element of the

incoming traffic space F . For simplicity, the incoming traffic

is assumed to be independent and identically distributed

(i.i.d.) in terms of time index n and user index k.

Let S denote the finite system state space, which comprises

channel state H, secondary user buffer state B and incoming

traffic state F . That is, S = H× B × F . Here × denotes a

Cartesian product. Sk is used to indicate the states where user

k is scheduled for transmission. S1,S2, . . . ,SK are disjoint

subsets of S with the property of S = S1 ∪ S2 ∪ · · · ∪ SK .

B. Action and Costs

If the kth user is scheduled for transmission at the nth
time slot, its action a

(n)
k

represents the bits/symbol rate

of the transmission. Different a
(n)
k

lead to different trans-
mission rates. Assuming the system uses uncoded M-ary
quadrature amplitude modulation (QAM) modulation, the
different bits/symbol rates determine the modulation schemes

as follows: M = 2a
(n)
k .

Transmission cost:Let ci(s
(n), a

(n)
1 , . . . , a

(n)
K

) denote the
transmission cost of user i at time n. When the channel
state in h(n) = {h

(n)
1 , . . . , h

(n)
K

} and the action taken at

time n is a
(n)
k

. Specifically, ck(s(n), a
(n)
k

) is chosen to be the
transmission bit error rate (BER) introduced by user k during
transmission. If the transmission and holding costs of each
user is independent of every other user then the system re-
duces to K decoupled users. To allow for interaction among
the users, we couple the transmission and holding costs of
the users. In particular, we assume that the system has both
zero-sum transmission costs and zero-sum constraint. The
zero-sum transmission costs can be written as:

KX

i=1

ci(s
(n)

, a
(n)
1 , . . . , a

(n)
K ) = 0. (1)

The zero-sum transmission costs can be viewed as the user
k who is scheduled for transmission pays a cost to other
users, which is equivalently the other users receive a reward.
Due to the “budget balance property” [10], the transmission
costs among all the users are zero-sum. In [10], a similar
assumption has been used for the resource allocation in a

wireless multimedia system.

With s(n) ∈ Sk and user k being scheduled to transmit at
time n, the performance of that user only depends on itself.
Due to the equality among all the remaining (K − 1) users,
the costs of all the users in the system are

ck(s(n)
, a

(n)
1 , . . . , a

(n)
K ) = ck(s(n)

, a
(n)
k ) ≥ 0

ci,i6=k(s(n)
, a

(n)
1 , . . . , a

(n)
K ) = −

1

K − 1
· ck(s(n)

, a
(n)
k ).

For notation convenience, in the following sections we will
drop the subscript k by defining

c(s(n)
, a

(n)
k ) := ck(s(n)

, a
(n)
k ).

Holding cost: Each user has an instantaneous Quality of

Service (QoS) constraint denoted as di(s
(n), a

(n)
1 , . . . , a

(n)
K

)
where i = 1, . . . , K . If the QoS is chosen to be the delay

(latency) then di(s
(n), a

(n)
1 , . . . , a

(n)
K

) is a function of the

buffer state b
(n)
i

of the current user i. The instantaneous
holding costs will be subsequently included in an infinite
horizon latency constraint. Since the transmission latency is
independent of the actions of all the remaining users, it can
be simplified as

dk(s(n)
, a

(n)
1 , . . . , a

(n)
K ) = dk(s(n)

, a
(n)
k ) ≥ 0, s

(n) ∈ Sk. (2)

We assume zero-sum holding costs among all the users,
which has the following property:

KX

i=1

di(s
(n)

, a
(n)
1 , . . . , a

(n)
K ) = 0. (3)

The zero-sum holding costs can be interpreted as another
type of cost caused during transmission.

Due to the equality among all the remaining (K − 1) users,
their holding costs can be expressed as

di,i6=k(s(n)
, a

(n)
k ) = −

1

K − 1
· dk(s(n)

, a
(n)
k ). (4)

Drop the subscribe k of the user being scheduled for
transmission, and its holding cost can be rewritten in the
following way:

d(s(n)
, a

(n)
k ) := dk(s(n)

, a
(n)
k ).

C. Switching Control Game and Transition Probabilities

With the above setup, the decentralized transmission con-
trol problem in a cognitive radio system is formulated as a
switching control game [8]. In such a game, the transition
probabilities depend only on the action of the kth user when
the state s ∈ Sk. The transition probabilities of the switching
control game can be mathematically written as follows:

P(s(n+1)|s(n)
, a1, . . . , aK)

=

8
>><
>>:

P(s(n+1)|s(n), a1) if s(n) ∈ S1

P(s(n+1)|s(n), a2) if s(n) ∈ S2

. . .

P(s(n+1)|s(n), aK) if s(n) ∈ SK

.

According to the property of the switching control game,
when the kth user is scheduled for transmission, the tran-
sition probability between the current composite state s =
[h, b, f ] and the next state s′ = [h′, b′, f ′] depends only on the
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action of the kth user ak. The transition probability function
of our problem can now be mathematically expressed by the
following equation.

P(s′|s, a1, a2, . . . , aK)

= P(s′|s, ak)

=
KY

i=1

P(h′
i|hi) ·

KY

i=1,i6=k

P(b′i|bi) · P(b′k|bk, ak).

As each user is equipped with a size L buffer, the buffer
occupancy of user k evolves according to Lindley’s equation
[11]

b
(n+1)
k = min

`
[b

(n)
k − a

(n)
k ]+ + f

(n)
k , L

´
. (5)

The evolution of the buffer state of user i = 1, 2, . . . , K
when i 6= k follows the following rule:

b
(n+1)
i = min(b

(n)
i + f

(n)
i , L).

For user k, the buffer state transition probability depends
on the distribution of its incoming traffic and its action. Its
mathematical expression is

P(b′k|bk, ak) =

(
P(fk = b′k − [b

(n)
k − a

(n)
k ]+) b′k < LP∞

x=L−[b
(n)
k

−a
(n)
k

]+
P(fk = x) b′k = L . (6)

For those users who are not scheduled for transmission,
the buffer state transition probability depends only on the
distribution of incoming traffic, which can be written as

P(b′i|bi) =


P(fi = b′i − bi) b′i < LP∞

x=L−bi
P(fi = x) b′i = L

. (7)

D. TDMA Channel Access Rule

This paper adopts a TDMA cognitive radio system model
(IEEE 802.16 [6]). A decentralized channel access algorithm
is designed for the TDMA channel. The mechanism of the
algorithm is described as follows. In the beginning of every
time slot, each user tries to access the channel after a certain
time delay t. The value of t is given in equation (8) by
applying an opportunistic scheduling algorithm [12]. After
the first user accessing the channel, all remaining users will
detect the channel occupancy and stop accessing. However,
when the spectrum is occupied by a primary user (assume
the system has perfect information concerning primary user

activities), the channel states of all users h
(n)
k

will be set
to zero, which in turn will lead the value of t∗ to be
infinity, meaning no user will access the channel during the
nth period. The parameters involved in this channel access
algorithm are specified as follows:

t
∗ = arg min

k∈{1,2,...,K}

γ

b
(n)
k h

(n)
k

k
∗ = arg min

k∈{1,2,...,K}

γ

b
(n)
k h

(n)
k

, if h
(n)
k 6= 0

k
∗ = 0, if h

(n)
1 =, . . . , = h

(n)
k = 0, (8)

where k∗ is the user scheduled for transmission, and t∗ is

the time delay of that user. γ is a system parameter which

is determined by the system. b
(n)
k

and h
(n)
k

are two elements

affecting the scheduling algorithm. b
(n)
k

evaluates the pack-

age delay of each user at time n, and users with longer delay

are preferred to be selected to transmit. h
(n)
k

is the channel

quality parameter, and user with better channel quality has

better a chance of being scheduled for transmission.

E. Switching Controlled Markovian Game Formulation

At time instant n, assume user k is scheduled for transmis-
sion according to the system access rule specified in (8). We

define c(s(n), a
(n)
k

) ≥ 0 to be the instantaneous cost of user

k when the system is in state s(n). We use Φ1, Φ2, . . . ,ΦK to
represent the set of all pure policies of each user, respectively.
The infinite horizon expected total discounted cost1 of any
user i given his transmission policy πi (πi ∈ Φi), can be
written as

Ci(πi) = Eπi

» ∞X

n=1

β
n−1 · ci(s

(n)
, a

(n)
k )

–

(9)

where 0 ≤ β < 1 is the discount factor, the state s(n) ∈ Sk

and the expectation is taken over action a
(n)
k

as well as

system state s(n) evolution for n = 1, 2, . . . . We aim to find

an optimal policy π∗

i
that can minimize the overall expected

discounted cost of the ith user subject to its constraint.

We can mathematically formulate the design of π∗

i
as the

following optimization problem.

Optimization Problem 1: The ith user has a discounted
cost defined in (9) and a latency constraint shown in (11). As-
sume at time slot n, the system schedules user k to transmit.

The holding cost of user i at that time is di(s
(n), a

(n)
k

). D̃i is
a system parameter depending on the system requirement of
user i. Consider an infinite time horizon, the optimal policy
of user i is chosen to optimize the discounted cost subject
to its constraint, as follows:

min
πi∈Φi

Ci(πi) (10)

s.t. D(πi) = Eπi

» ∞X

n=1

β
n−1 · di(s

(n)
, a

(n)
k )

–
≤ eDi.(11)

�

In this game, every user tries to minimize their cost by

choosing the optimal action when that user accesses the

channel. In the next section, we will prove the uniqueness

of the Nash equilibrium value vector in this game.

III. RANDOMIZED THRESHOLD NASH EQUILIBRIUM FOR

DYNAMIC MARKOVIAN GAME

This section first state the Nash equilibrium in a zero-sum

dynamic Markovian switching control game is available and

all the Nash equilibria have a unique value vector. Then a

structural result on the Nash equilibrium policy is presented.

Finally, a computationally efficient stochastic approximation

algorithm is proposed to search for the Nash equilibrium.

1There are two criteria for evaluating the cost of a Markov decision
process (MDP): expected average cost criterion and expected total dis-
counted reward criterion. The reason we choose discounted cost criterion
is because it is mathematically simpler than the average cost criterion.
And the average cost criterion has several technicalities with obtaining the
stationary optimal policies. In addition, if the stationary policy exists, when
the discounted factor β → 1, the policy obtained under the average cost
criterion is the same from that of the discounted cost criterion, Cavg =
limβ→1(1 − β) · Cdis. Here, Cavg , Cdis denote the average cost and
discounted cost, respectively.
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A. The Existence and Optimality of The Nash Equilibrium

Shapley’s Theorem says a discounted, zero-sum, stochastic

game possesses a value vector that is the unique solution

for the game [8]. By applying this result to our system, we

can introduce the following theorem.

Theorem 1: The Nash equilibrium of the constrained

switching control Markovian game with zero-sum

transmission cost (1) and zero-sum latency constraint

(3) is able to be obtained by a value iterative optimization

algorithm [8]. All the Nash equilibria obtained converge to

a unique value vector. This ensures the global optimality of

the Nash equilibrium policy obtained. �

B. Structural Result on Randomized Threshold Policy

First, we list three assumptions. Based on these three

assumptions, Theorem 2 is introduced.

• A1: The set of policies that satisfy constraint (11) is

non-empty, to ensure the delay constraint of the system

is valid.

• A2: Transmission cost c(s, ak) and holding cost

d(s, ak) are submodular2 functions of bk, ak for

any channel quality hk of the current user, and are

independent of the incoming traffic fk. And they are

also nondecreasing functions on bk for any hk, fk and

ak.

• A3:
∑L

b′
k
=l

P(b′
k
|bk, ak) is a submodular function on

bk, ak and nondecreasing in bk for any l and ak .

Theorem 2: Represent the optimal policy to Optimization

Problem 1 with constraint (11) is as π∗

k
(s). If assumptions

A1-A3 hold, then the optimal policy π∗

k
(s) is a randomization

of two pure policies π1
k
(s) and π2

k
(s). Each of these two pure

policies is a nondecreasing function with respect to buffer

occupancy state bk (defined in Section II.A).

The proof of Theorem 2 is available in [13]. �

C. Verification of Assumptions in Theorem 2

This subsection will verify the assumptions listed in Sec-
tion III.B. The model we consider is based on a TDMA
cognitive radio system. The cost of the switching control
dynamic game is evaluated by transmission BER and the
constraint is defined to be the transmission delay. The
channel model is assumed to be complex Gaussian random
variables which has zero mean.

First, we define the holding cost caused by user k when the
state is s ∈ Sk,

d(s, ak) =
bk

f
. (12)

Here f is the average number of incoming packets, which
is parameter of the system. Assumption A1 holds if there

2A function f : A × B × C → R is submodular in (a, b) for any
fixed c ∈ C. Then for all a′ ≥ a and b′ ≥ b, f(a′, b′; c) − f(a, b′; c) ≤

f(a′, b; c) − f(a, b; c) holds.

exist an action such that ak > f .

In our system, we choose the transmission cost to be
the BER which is function of the channel quality. Assume
the channel states are quantized by quantization threshold
parameters Γ(h)1, Γ(h)2, . . . which are selected by the
system. System transmission cost BER(γ, ak) depends on
the random channel gain γ ∈ [Γ(h)i−1, Γ(h)i). Therefore,
the transmission cost is

BER
i
k(hk, ak) =

R Γ(h)i

Γ(h)i−1
BER(γ, ak)g(γ)dγ

R Γ(h)i

Γ(h)i−1
g(γ)dγ

(13)

BERk(γ, ak) = 0.2 × exp

»
−1.6γ

(2ak − 1)

–
, (14)

where g(γ) denotes the probability distribution of signal-
to-noise ratio (SNR), and the expectation is taken over
the γ when the channel state hk belongs to quantization
region [Γ(h)i−1, Γ(h)i). The BER approximation expression
in (14) is from [14]. When the system uses uncoded M -ary
quadrature modulation (QAM), where M = 2ak .

By substituting (14) into (13), it can be seen that the averaged
transmission cost is independent of the buffer occupancy bk.
It is obvious from (12) that the holding cost function d(s, ak)
is increasing in bk and independent of ak. Thus, assumption
A2 holds.

The buffer state occupancy evolves according to Lindley’s
recursion equation (5). Given the current state buffer occu-
pancy, and actions the user takes, the transition probability
to the next state buffer occupancy depends on the probability
of incoming traffic, as shown in (6). Then the buffer state
transition probability can be rewritten as P(b′

k
|bk, ak) =

P(b′
k
|(bk − ak)). Assume the incoming traffic is evenly

distributed within the range of 0 to the buffer size L. This
can be mathematically written as P(fk < 0 or fk > L) = 0
and P(0 ≤ fk ≤ L) = 1

L+1 . The buffer state transition
probability can now be given by

P(b′k|bk, ak) =

(
1

L+1
b
′

k < L
1+[bn

k
−an

k
]+

L+1
b
′

k = L
. (15)

Therefore, the buffer state occupancy transition probability

is independent from bk and ak when b′
k

< L while it is first

order stochastically increasing in bk−ak when b′
k

= L. This

result verifies
∑

L

b′
k
=l

P(b′
k
|bk, ak) is nondecreasing in bk in

A3. According to (15) we can see that P(b
′

k
= L|bk, ak) is

submodular in bk, ak, thus A3 holds.

D. Stochastic Approximation Algorithm

Based on the structural result on the optimal policy stated

in Theorem 2, we will introduce a stochastic approximation

algorithm in this section. This algorithm can efficiently

reduce the complexity of finding the optimal policies. The

search domain is the set of optimal policies π∗

k
(s) described

in Theorem 2.

When there are two actions available with action set ak =
{0, 1}. An optimal policy π∗

k
(s) can be defined by three

parameters b1(s), b2(s) and p. π∗

k
(s) is chosen to be 0 when

0 ≤ bk < b1(s), it is p when b1(s) ≤ bk < b2(s) and 1 when

b2(s) ≤ bk. Here, p is the randomization factor, b1(s) and
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b2(s) are the lower buffer state threshold and higher buffer

state threshold, respectively. The search for each optimal

policy problem is now converted to the estimation of these

three parameters. The total number of parameters to be

estimated for the whole system is 3×|hk|×K . |·| denotes the

cardinality of a set. We first compute the continuous optimal

values of b1(s) and b2(s), then they are rounded off to the

nearest discrete values. This is a relaxation of the original

discrete stochastic optimization problem as the buffer state

in the problem setup is discrete.

The Simultaneous perturbation stochastic approximation

(SPSA) method [15] is adopted to estimate the parameters.

SPSA is especially efficient in high-dimensional problems

in terms of providing a good solution for a relatively

small number of measurements for the objective function.

The essential feature of SPSA is the underlying gradient

approximation, which requires only two objective function

measurements per iteration regardless of the dimension of

the optimization problem. These two measurements are made

by simultaneously varying, in a properly random fashion all

of the variables in the problem. The detailed algorithm is

described in Algorithm 1.

The first part of the algorithm initializes system variables.

Algorithm 1 Stochastic Approximation Algorithm

1: Initialization: θ(0), λ0; n = 0; ρ = 4;

2: Initialize constant perturbation step size β and gradient

step size α;

3: Main Iteration
4: if s(n) ∈ Sk then
5: mk = 3 × |hk|;

6: Generate ∆(n) = [∆
(n)
1 , ∆

(n)
2 , . . . , ∆

(n)
mk

]T ; ∆
(n)
i are

Bernoulli random variables with p = 1
2

.

7: θ
(n)
k+ = θ

(n)
k + β × ∆(n);

8: θ
(n)
k− = θ

(n)
k − β × ∆(n);

9: ∆C
(n)
k =

c(s(n),θ
(n)
k+

)−c(s(n),θ
(n)
k−

)

2β
[(∆

(n)
1 )−1, . . . , (∆

(n)
mk

)−1]T ;

10: ∆D
(n)
k =

d(s(n),θ
(n)
k+

)−d(s(n),θ
(n)
k−

)

2β
[(∆

(n)
1 )−1, . . . , (∆

(n)
mk

)−1]T ;

11: θ
(n+1)
k = θ

(n)
k − α ×

„
∆C

(n)
k + ∆D

(n)
k · max

h
0, λ

(n)
k +

ρ ·
`
D(s(n), θ

(n)
k ) − fDk

´i«
;

11: λ
(n+1)
k = max

h
(1− α

ρ
· λ

(n)
k ), λ

(n)
k + α ·

`
D(s(n), θ

(n)
k )−

fDk

´i
;

12: end if
13: The parameters of other users remain unchanged;
14: n = n + 1;
15: The iteration terminates when the values of the parameters θ(n)

converge; else return back to Step 3.

θ(n) represents the union of all the parameters we search for

at the nth time slot and θ
(n)
k

indicates parameters of the kth

user. β and α denote the constant perturbation step size and

constant gradient step size, respectively. In the main part

of the algorithm, SPSA algorithm is applied to iteratively

update system parameters. When the kth user is scheduled

to transmit at time slot n, parameters θ
(n)
k

and the Lagrangian

constant λ
(n)
k

can be updated after introducing a random per-

turbation vector ∆(n). In the meanwhile, the parameters of

the other users remain unchanged. The algorithm terminates

when the parameters θ(n) converge.
Theorem 3: {θn(α), λn(α)} are system parameters gener-

ated by the stochastic approximation algorithm 2. Define the
piecewise constant interpolated continuous-time processes of
{θn(α), λn(α)} to be {θt(α), λt(α)}. When t is within the
range of [nα, (n+1)α), the value of θt(α) is set to be θn(α)
and λt(α) is set to be λn(α). The mathematical expressions
are given as follows:

θ
t(α) = θ

n(α) t ∈ [nα, (n + 1)α),

λ
t(α) = λ

n(α) t ∈ [nα, (n + 1)α).

[16], [17] For sufficient large ρ, as α → 0 and t → ∞,

{θt(α), λt(α)} converge in probability to the KT pair of

(10,11) which is specified in (16). �

The optimal policies of (10,11) which satisfy the Kuhn
Tucker (KT) condition can be defined as follows. π∗

i
belongs

to the KT set when

KT = {π∗
i : ∃λi > 0, such that

∇πi
Ci + ∇πi

λi(Di − eDi) = 0, i = 1, . . . , K}, (16)

where Ci and Di are the optimization objective (9) and delay

constraint (11) respectively. Moreover, π∗

i
satisfies the second

order sufficiency conditions: ∇2
πi

Ci + ∇2
πi

(Di − eDi) ≥ 0 is

positive definite for all the i, and (Di − eDi) = 0, λi > 0,

i = 1, . . . , K.

Note here that in the stochastic approximation algorithm,

we first compute the continuous values of b1(s) and b2(s),
then they are rounded off to the nearest discrete values.

This relaxation leads to the continuous value of πi during

calculation, thus, (16) is differentiable on πi.

IV. NUMERICAL EXAMPLES

This section presents a numerical example of the Nash

equilibrium transmission policy using the stochastic approx-

imation algorithms proposed in Section III. The channel

quality measurements are quantized into two different states,

{1, 2}. In the models used, each user has a size 10 buffer. In

the system configuration, the transmission costs, the holding

costs and buffer transition probability matrices are chosen

to ensure A2-A3 specified in Section III.B. The channel

transition probability matrices are generated randomly.

It considers a system with 2 different secondary users, with

each user having 2 different action choices {0, 1}. As it is a

constrained switching controlled Markovian game, the Nash

equilibrium policy is a randomization of two pure policies.

Each optimal transmit policy can be determined by three

parameters, namely, lower threshold bl(s), upper threshold

bh(s) and randomization factor p. The stochastic approx-

imation algorithm is applied to find the Nash equilibrium

policy, the simulation results of user 1 with h2 = 1, b2 = 1
are shown in Fig. 4. The figure shows that the optimal

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThA02.3

3827



1
2

1
2

3
4

5
6

7
8

9
10

0

0.5

1

1.5

2

Randomized Optimal Policy

Buffer State

Channel State

P
o
lic

y

Fig. 1. The Nash equilibrium transmission control policy obtained via
stochastic approximation algorithm. A 2 users system is considered where
each has a size 10 buffer.

transmission policies are no longer deterministic but are

a randomization of two pure policies, and that each Nash

equilibrium policy is monotone increasing on the buffer state.

V. CONCLUSIONS

We formulate the secondary users rate adaptation problem

in a cognitive radio system as a constrained zero-sum switch-

ing control dynamic Markovian game. It is shown that the

Nash equilibria of the game are always available and have a

unique value vector. Based on few assumptions, the optimal

policy is a randomization of two pure monotone policies.

This allows us to propose a more computationally efficient

stochastic approximation algorithm. Numerical example is

provided to verify these results.
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