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Abstract— A general gradient estimation method is proposed
that relies on the computation of system dynamics and signals
in the frequency domain. With the theory presented the
computation of the gradient of an average linear quadratic (LQ)
performance criterion can be simplified using only ‘partial-
modelling’ with respect a finite signals spectrum. Using gradient
estimate a new iterative tuning (IT) method is presented
for nonlinear Active Noise and Vibration Control (ANVC)
problems. The most important novelty of the method is that it
performs one experiment per iteration that makes it suitable
for implementation as a self-tuning and adaptive controller.
Apart from the reduced number of experiments, relative to
time domain IFT methods, the new method has the added
advantage of its suitability for enhanced disturbance rejection
tuning in the frequency domain. The effectiveness of the method
is demonstrated on physical laboratory hardware.

Iterative controller tuning, frequency domain methods,

active noise and vibration control, nonlinear control

I. INTRODUCTION

Iterative feedback tuning in the time domain (TD-IFT) that

relies on measured input-output data to tune the controller

without estimating a model of the plant, had been investi-

gated [1], [2], [3], [4] and it turned out to be an effective

iterative tuning (IT) control method. It does not need explicit

modelling but requires additional signal injection path and

extra manual experiments in each tuning iteration.

This paper investigates iterative tuning of controllers for

vibration attenuation of nonlinear plants when all disturbance

signals are periodic. Prior to this research a frequency

domain iterative tuning (FD-IT) method has been developed

for linear ANVC problems with periodic disturbances in [5].

Although FD-IT has been initially developed for linear

problems, its idea can be extended to the control of some

nonlinear plants.

This paper also proposes a new gradient estimation theory

derived from the gradient estimation theory in [5] by extend-

ing it to nonlinear plants. The new method relies on local

linearisation and analysis in the frequency domain. Within

this approach the nonlinear dynamics is presented as a local

linear mapping from one multi-dimensional space (represent-

ing the input spectrum) to another multi-dimensional space

(representing the output spectrum). When the performance

function, that is an averaged quadratic criterion, can be

represented with the spectra of the signals, the gradient of the

performance can be completely represented using the local

linear mapping in the frequency domain.
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In case of finite discrete spectrum disturbances that result

in an essentially finite spectrum of all signal, only partial

modelling with respect to the contained frequencies is re-

quired to compute the gradient of average performance with

respect to tunable control parameters. Based on the gradient

estimation method presented here, a new self-tuning method,

namely the Nonlinear Frequency Domain Iterative Tuning

(NL-FD-IT) method, is developed to solve control problems

with approximately finite-spectrum signals. The new method

only requires one experiment per iteration apart from some

extra manual experiments needed at startup for initialization.

Tuning simultaneously takes place while TD-IFT in earlier

publications have had to perform multiple experiments for

feedback and feed-forward controllers separately.

While active noise and vibration control (ANVC) often

deals with periodic disturbances, it is one of the most

important target areas of FD-IT’s application. The initial idea

of ANVC has been reported in the early 1930s [6], and the

underlying physical theory is well established [7]. One of

the most commonly used and well understood methods is

the filtered-x LMS algorithm [8], which requires the model

of the plant and is generally used to tune a feed-forward

controller. The FSF-IFT method [9] and frequency domain

tuning (FDT) method [10] all require additional injection

paths and extra experiments in each tuning iteration. This

paper discussed the extension of gradient estimation theory

in the frequency domain to nonlinear cases, and gives a

very prototype of an iterative tuning method for nonlinear

ANVC problems. Like FD-IT for linear systems, NL-FD-

IT has some advantages (over time domain methods) for

applications: no parametric modelling is needed and only

partial frequency response modelling is needed to deal with

periodic disturbances. According to the simulation example

and laboratory experimental example, the feasibility of NL-

FD-IT is illustrated. Although there are some further im-

provement to complete NL-FD-IT, the fundamental tuning

strategy of FD-IT is proved to be an effective and simple

adaptive method to solve both linear and nonlinear ANVC

problems.

The remainder of this paper is organized as follows. In

Section II the problem of gradient-based tuning control for

ANVC is shortly reviewed in both the time domain and the

frequency domain. In Section III a gradient estimation theory

is proposed that operates in the frequency domain. NL-FD-IT

is developed and some implementation issues are discussed

in Section IV. In section V experimental work is presented

to show the effectiveness of NL-FD-IT in nonlinear ANVC

problems, respectively. Finally conclusions are drawn in the
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last section.

II. GRADIENT BASED ITERATIVE TUNING FOR ANVC

This section presents the ANVC problem addressed in this

paper, the fundamental equations and performance function

will be defined and the essence of iterative tuning (IT) is

formulated in the context of the ANVC problem.

A. Problem setting in the time domain

Fig. 1 displays a schematic description of the control

system considered in this paper.

Fig. 1. Block diagram of a linear feedforward feedback system of ANVC
system

The measured output, which is affected by the disturbance

ddd ∈ Rnd , is represented by yyy ∈ Rny . G is the unknown plant

dynamics with inputs ddd and uuu and produce yyy. It can be

described as

yyy = G(ddd,uuu) (1)

The control signals from the feedforward controller F and

feedback controller H are denoted by uuu f ∈ R
nu and uuuh ∈

Rnu , respectively. The tunable control system C comprises

the parameterized feedforward controller F and the feedback

controller H:

C(www,rrr,yyy) : F : uuu f = F(wwwF ,rrr)
H : uuuh = H(wwwH ,yyy)

uuu = uuu f + uuuh

(2)

which can be tuned by adjusting their parameter vectors in

www := {wwwF ,wwwH} ∈ Rnw .

It is assumed that the disturbance-reference signal rrr ∈Rnr

is obtained through an unknown dynamics S from ddd while

the output signal yyy(t) is measurable and recordable. The

disturbance signal ddd cannot be measured directly.

In order to apply iterative tuning method, it is always

assumed the system states can be repeated after a certain

iteration period under stationary conditions. In this case, the

steady input and output of the system are repeated as well

after a certain common period.

If the ANVC system has steady output yyy with period N,

the control performance criterion is defined as an average

quadratic performance with respect to a length N output

sequence:

J(www) :=
N−1

∑
t=0

yyyT(t)Qyyy(t) (3)

where Q is a priori known weighting matrix.

The objective of controller tuning is to tune the controller

parameters wwwF and wwwH to minimize performance (3), which

can be represented as an optimization problem in mathemat-

ics as:
min : J(www) in (3),

s.t. Eqn. (1),

Eqn. (2).

(4)

In general the problem of minimizing J(wwwF ,wwwH) is not

necessarily convex. The tuning method only finds a subop-

timal solution at a local minimum. This suboptimal solution

of the problem is given as a solution of

∇J(wwwo
F ,wwwo

H) = 000 (5)

For further interest about global optimization, some

work [11], [12], [13], [14] can be referred.

In general a practically efficient method to solve this kind

of optimization problem is a negative gradient-based algo-

rithm such as Newton’s optimization method. The gradient-

based tuning is the one of the most efficient and popular

approaches in adaptive control.

B. Problem setting in the frequency domain

In this subsection the ANVC problem as in Fig.1 with cost

function (3) will be addressed. First some frequency domain

notations are defined for further discussion.

Consider the SISO discrete system as described by Fig.1

with repeated iteration of a common period N. There is

an N-length output data set yyy := {y(0); . . . ;y(N −1)} ∈ RN .

Let ωm := 2πm
N

,m = 0, . . . ,N −1 denote discrete frequencies.

φφφ y := {φy(ω0); . . . ;φy(ωN−1)} ∈ CN is the discrete spectrum

of the N-length time sequence yyy and can be estimated through

the Discrete Fourier Transform (DFT) i.e. φφφ y

.
= DFT(yyy).

There are similar notations of φφφ d , φφφ r, φφφu f and φφφ uh.

In the frequency domain the plant G can be described as

a function {φφφd ,φφφu} ∈ C
2N 7→ φφφ y ∈ C

N :

φφφ y = ΦG(φφφd ,φφφ u), (6)

and controller system C can be also described as function

{www,φφφ r,φφφ y} ∈ C
nw+2N 7→ φφφ u ∈ C

N :

ΦC(www,φφφ r,φφφ y) : ΦF : φφφ u f = ΦF (wwwF ,φφφ r)

ΦH : φφφuh = ΦH(wwwH ,φφφ y)

φφφu = φφφ u f + φφφ uh

(7)

According to Parseval’s Theorem [15], it is straightforward

to rewrite (3) in the frequency domain format as

J =
1

N

N−1

∑
i=0

φ∗
y (ωi)QF(ωi)φy(ωi) =

1

N2
φφφ∗

yQF φφφ y (8)

where QF is the representation of Q in the frequency domain.

Similarly, the optimization problem in mathematics can be

written as:

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB15.2

3015



min : J(www) in (8),

s.t. Eqn. (6),

Eqn. (7).

(9)

It is noted that the system as Fig.1 is represented in the

frequency domain as general mappings between two multi-

dimension spaces, which is not limited in linear or nonlinear

dynamics. While the mapping of linear dynamics can be

illustrated by a Frequency Response Function (FRF) matrix,

the mapping of nonlinear dynamics in the frequency domain

can be only explained by Generalized Frequency Response

Function (GFRF) [16], [17] that is based on Volterra/Wiener

series function [18], [19], [20].

Therefore, when the average LQ cost function (3) can

be represented in the frequency domain as multiplication of

discrete spectra, the above representation in the frequency

domain is suitable to demonstrate a general system including

nonlinear systems.

III. GRADIENT ESTIMATE IN THE FREQUENCY DOMAIN

In this section, a new gradient estimation theory is pro-

posed from the aspect of the frequency domain, which is

based on the reformatted ANVC problem setting in the

frequency domain in the above section.

A. Gradient Estimation in the Frequency Domain

While discussing gradient-based algorithms, the differen-

tiable condition is always necessary. Similarly, considering

iterative tuning in the frequency domain, it is assumed that

ΦG, ΦF and ΦH are differentiable functions with respect to

their input spectra (φφφu,φφφ r,φφφ y) and tunable parameters (www).

In order to discover the relationship between the perfor-

mance (8) and control parameters www, local linearization can

be performed and computed using infinitesimal increments.

Considering the ANVC system as Fig. 1, the local lin-

earization of ΦG can be described as:

∆φφφ y ≈
dφφφ y

d{φφφd ,φφφu}

[

∆φφφd

∆φφφu

]

(10)

Since φφφd is fixed due to stationary disturbance, only the

case ∆φφφd = 000 is needed to be discussed.

To simplify the presentation in the following discussions,

some frequently used notations are defined as

ΦG′ :=
∂ΦG(φφφ d ,φφφu)

∂φφφu

∈ C
N×N

, (11)

and similarly

ΦH′ :=
∂ΦH(wwwH ,φφφ y)

∂φφφ y

∈ C
N×N (12)

Given φφφ y, φφφ u and ΦG′ , the infinitesimal increment of plant

dynamics G in the frequency domain with respect to ∆φφφu

can be written as

∆φφφ y = ΦG′(∆φφφu f + ∆φφφuh) (13)

Considering small increment ∆φφφu caused by the small update

of parameter www, i.e., wwwF → wwwF +∆wwwF and wwwH → wwwH +∆wwwH ,

it is straightforward to write

∆φφφ y = ΦG′(
∂ΦF (φφφ r ,wwwF )

∂wwwF
∆wwwF +

∂ΦH (φφφy,wwwH )

∂wwwH
∆wwwH

+ΦH′∆φφφ y)
(14)

Denoting ∆φφφw
u f :=

∂ΦF (φφφ r,wwwF )
∂wwwF

∆wwwF ,∆φφφ w
uh :=

Fig. 2. Block diagram of small increment in frequency domain

∂ΦH(φφφ y,wwwH)

∂wwwH
∆wwwH ,∆φφφ y

uh := ΦH′∆φφφ y, (14) can be graphically

described by following Fig. 2.

According to (14), when considering the plant G as the

unknown control object, the mapping is ∆φφφu 7→ ∆φφφ y.

The change in the feed forward path φφφ w
u f is straight

forward, which is caused by the change of parameters ∆wF .

At the same time, the increment in feedback path comprises

two parts: φφφw
uh, caused by the change of controller parameter

∆wwwH ; φφφ y
uh, caused by the change of system output ∆φφφ y.

Considering the part in ∆φφφu caused directly by the ∆w, if

(I −ΦG′ΦH′)−1 exists, the mapping {∆φφφw
u f + ∆φφφw

uh} 7→ ∆φφφ y

can be rewritten from (14) as

∆φφφ y = (I −ΦG′ΦH′)−1ΦG′(∆φφφw
u f + ∆φφφw

uh) (15)

Considering the closed-loop system T := {G,H} as the

unknown control object, (I −ΦG′ΦH′)−1ΦG′ is the partial

derivative of ΦT with respect of the change of the spectrum

of input signals ∆φu when fixing controllers.

Introducing the notation

ΦT ′ := (I −ΦG′ΦH′)−1ΦG′ , (16)

and using (15), the partial derivative of φφφ y with respect to

controller parameters wwwH and wwwF can be written as

∂φφφ y

∂wwwH

= ΦT ′

∂ΦH(φφφ y,wwwH)

∂wwwH

(17)

and
∂φφφ y

∂wwwF

= ΦT ′
∂ΦF (φφφ r,wwwF)

∂wwwF

(18)

The derivative of performance J with respect to the

controller parameters can be written in the frequency domain

format as

∂J(www)

∂wwwi

=
2

N2
φφφ ∗

yQF ΦT ′

∂ΦC(www,φφφ y,φφφ r)

∂wwwi

(19)
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In ANVC, while the output yyy, the controller H and F are

all known, φφφ y and
∂ΦC(www,φφφy,φφφ r)

∂wwwi
are both available in (19).

The key to gradient estimation turns out to be to find an

estimate of ΦT ′ .

B. Gradient estimation in systems with periodic disturbance

In the above subsection, (19) gives a full-bandwidth format

in the frequency domain including the full-bandwidth from

ω0 to ωN−1. It is not convenient to compute the gradient

because N frequencies are required to proceed in the full

band. Fortunately, thanks to the computations in the fre-

quency domain, the estimation of the performance gradient

can be greatly simplified in systems with periodic input uuu

and output yyy.

Note that φφφ ∗
y can be considered as a weighted factor vector

when (19) is rewritten as

∂J(www)

∂wwwi

=
2

N2

N−1

∑
n=0

φ∗
y (ωn)

∂φy(ωn)

∂wwwi

(20)

Considering periodic output yyy with common period N,

only the finite frequency set Ωy := {ω0, . . . ,ωnΩy} are in-

cluded in φφφ y that is denoted by φφφ y|Ωy , and the other elements

in φφφ y are 0. To solve
∂J(www)
∂wwwi

in (19), only the elements in
∂φφφ y

∂wwwi

with respect to φφφ y|Ωy are required to consider, i.e.,

∂J(www)

∂wwwi

=
2

N2 ∑
ω∈Ωy

φ∗
y (ω)

∂φy(ω)

∂wwwi

(21)

Compared with the gradient estimate in the LTI system [5],

the gradient estimate is somewhat more complicated in the

nonlinear case as the frequency responses can be coupled.

Given φφφ r,φφφu and φφφ y with finite frequency sets Ωr, Ωu and

Ωy respectively, (19) can be rewritten as

∂J(www)
∂wwwi

= 2
N2 φφφ ∗

y|Ωy ΦQΦT ′ |{Ω∆u 7→Ωy}
∂ΦC(φφφ y|Ωy ,φφφ r |Ωr ,www)

∂wwwi

(22)

where Ω∆u denotes the frequency set of the change of the

control action spectrum ∆φφφu caused by the change of control

parameters ∆www at {φφφ y|Ωy ,φφφ r|Ωr ,www}.

Compared with the gradient estimate in the LTI system,

(22) has three important difference.

1) In (22) for a nonlinear system, Ωr, Ωu and Ω∆u are

often different from Ωy; In a LTI system, Ωr, Ωu and

Ω∆u are always identical with Ωy and all substituted

with Ω.

2) In (22) for a nonlinear system, ΦT ′ |{Ω∆u 7→Ωy} is

a (nΩy × nΩ∆u
)-dimension matrix; In a LTI system,

ΦT ′ |Ωy is a nΩy-dimension diagonal square matrix.

3) In a nonlinear system, the partial closed dynamics

ΦT ′ |{Ω∆u 7→Ωy} is presented as

ΦT ′ |{Ω∆u 7→Ωy}

= (I −ΦG′ |{Ω∆u 7→Ωy}ΦH′ |{Ωy 7→Ω∆u})
−1

ΦG′ |{Ω∆u 7→Ωy}

(23)

In a linear system, the partial closed dynamics has sim-

pler format without considering the difference between

Ω∆u and Ωy.

As discussed in the above subsection, the key to estimate

∇J(www) is to solve Φ′
T . In the system with periodic yyy, the

key of gradient estimation in control can be simplified to

estimating a linear mapping from a nΩ∆u
-dimension φφφ u space

to a nΩy-dimension φφφ y, which can be further simplified to

nΩy sub-problems of linear one-to-one mapping in the linear

case.

Considering the case of N >> nΩy , the advantage of a

gradient estimate in the frequency domain is obvious: while

the problem in time domain [3] is to solve N sub-problems of
∂y(t)
∂www

,t = 0, . . . ,N −1, the problem in the frequency domain

is to solve nΩy sub-problems of estimation of
∂φy(ωi)

∂www
, i =

0, . . . ,nΩy .

IV. FREQUENCY DOMAIN ITERATIVE TUNING IN THE

NONLINEAR SYSTEM

In this section, based on the previously proposed gradient

estimation theory, a new adaptive control method, named

here Iterative Tuning in the Frequency Domain (NL-FD-IT),

will be developed to solve ANVC problem in the nonlinear

system with periodic disturbances .

In (22) controller C is known by the designer,
∂ΦC(φφφy|Ωy ,φφφ r |Ωr ,www)

∂wwwi
and ∆φu caused by ∆www is computable given

{φy|Ωy ,φφφ r|Ωr ,www}. The only unknown item is ΦT ′ |{Ω∆u 7→Ωy},

which is the key in the iterative tuning in the frequency

domain in nonlinear system as well.

Recalling (23), ΦT ′ |{Ω∆u 7→Ωy} can be computed out through

estimating ΦG′ |{Ω∆u 7→Ωy}, which can be estimated through

input-output difference pairs (i.e., {∆uuu,∆yyy}) in different

experiments. It is called the indirect approach to estimation.

Considering one spectrum difference pair

{∆φφφu|Ω∆u
,∆φφφ y|Ωy} from two experiments with different

inputs uuu, one infinitesimal increment equation set is given

by

∆φφφ y|Ωy ≈ ΦG′ |{Ω∆u 7→Ωy}∆φφφu|Ω∆u
(24)

which contains nΩy equations.

Since ΦG′ |{Ω∆u 7→Ωy} has nΩy × nΩ∆u
unknown variables,

it requires nΩ∆u
such equation sets as (24) to solve

ΦG′ |{Ω∆u 7→Ωy}.

As above discussed, nΩ∆u
difference pairs {∆φφφu, ∆φφφ y} can

be obtained through (nΩ∆u
+ 1) experiments with different

inputs, which can be produced either by injecting extra

signals as TD-IFT or by updating control parameters as FD-

IT in [5].

V. EXPERIMENTAL WORK IN AN AIR-DUCT SYSTEM

This section illustrates the the feasibility of NL-FD-IT

through experimental work in an air-duct system. As shown

in Fig. 3, a duct system is set up to test the FD-IT method

for ANC in a semi-closed environment.

The duct is made of tin plate and comprises two parts.

The speaker (EuroTec 520CO 4Ω, 10w), i.e., Spk0, fixed

in left part is disturbance speaker. In the middle of of the

whole duct, the speaker (EuroTec 520CO), i.e., Spk1, is fixed

in the right part as a control speaker. The error microphone
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Fig. 3. Duct system

(Mic1, L160, 10Ω) is fixed to the right end of the duct, which

acquires the error signal as system output yyy.

• The disturbance speaker (Spk0) and control speaker

(Spk1) are driven by the signal ddd and uuu from an audio

power amplifier (SONY TA-FE570).

• The error signal yyy collected by Mic1 is amplified by an

audio power amplifier (Philips TD1015). The reference

signal rrr directly uses low-pass filtered stimulus distur-

bance source ddd0. yyy and rrr are both filtered through a

band-pass RC filter.

• The source control signal uuu0 is directly recorded by the

PC as control actions used in FD-IT.

The above experimental platform is controlled by a PC-

based control system that comprise three parts:

1) A/D and D/A interface: Blue Wave System PC/16IO8

multichannel I/O board acquires analogue measure-

ment data and provides analogue disturbance and con-

trol signals derived from DSP control unit.

2) DSP control unit: Blue Wave System PCI/C44S-60-1 is

a DSP board based on Texas InstrumentsTMS320C4x

Digital Signal Processors (DSPs) acting as disturbance

source generator and real controllers.

3) PC host unit: Compatible PC system has AMD Althlon

1G Hz CPU and 384M RAM, and the operation

system is Windows 2000. The iterative tuning work

is implemented by Matlab R12.

As well known, nonlinearities exist in real dynamics. The

speaker present strong nonlinearity when working in low

frequency conditions. According to some offline test about

the single frequency FRF of the contained frequencies, there

are some nonlinearity in the actuator-sensor path in the duct

system:

1) When the input signal is lower than some threshold,

the amplitude response of the single frequency FRF

present some ‘dead zone’ nonlinearity;

2) When the input signal is hight than some threshold,

the amplitude response of the single frequency FRF

present some ‘saturation’ nonlinearity.

In the following ANC experiment in the duct system, the

periodic source disturbances is produced by the DSP board,

which are given by

ddd = 0.33× [sin(2π×200t)+ sin(2π×400t)
+sin(2π ×500t)]

(25)

Due to the memory limitation of the DSP board, FIR

structure was selected to be used in the control systems while
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Fig. 4. Initial state in duct system, (A) error output, (B) power spectrum
of output, (C) control actions, (D) power spectrum of control

the FSF-based FD-IT requires to dynamically add FSF path

containing IIR filters. In all experiments, the initial controller

is to set F0 = 1.2 and H0 = 0. The typical initial states of

the ANC system is illustrated as following Fig. 4, that have

initial performance as J0 = 0.5288.

In the initial manual experiments, the manually set con-

trollers are given by F i = F0 +∆F i, i 6= 0, where the random

parameter change ||∆F i||2 < 0.1||F0||2.

For the memory limitation of a DSP board, F is 40-th

order FIR and H is 10-th order FIR. The common periods

is set as N = 1600 in NL-FD-IT.

Each iteration lasts 3N sampling periods including 2N

sampling periods to let the system reach steady state.

In NL-FIR-FD-IT, the tuning step sizes are are set as

µF = 0.16,µH = 0.016. After 100 experiments, the tuned

performance is J100 = 0.0051 with 21.2dB cancellation after

105.53s of tuning. The final outputs and control actions of

the duct system are illustrated in Fig. 5, and the performance

updating during the tuning is shown in Fig. 6.
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Fig. 5. Final state using NL-FIR-FD-IT, (A) error output, (B) power
spectrum of output, (C) control action, (D) power spectrum of control
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Fig. 6. Performance updating in NL-FIR-FD-IT

As shown in (B) of Fig. 5, the nonlinearity of the system

is very notable, which includes more significant frequencies

than the original spectrum with 500Hz, 400Hz and 200Hz

shown in (B) of Fig. 4. The first three dominant frequencies

turn out to be 200Hz, 400Hz and 50Hz in the end of the

tuning.

At the same time, the linear FD-IT algorithm [5] is

also tested in the same platform and produces only 16.4dB

final cancelation due to its working in the range of linear

dynamics.

Compare (D) of Fig. 5 with (D) of Fig. 4, the range of

the change of control action amplitude is from 0.08 to 0.25

which is in the nonlinear range of ‘dead zone’ of the system.

NL-FD-IT gives extra 5dB performance over the ‘dead zone’.

From the aspect of tuning process as shown in Fig. 6,

compared with the tuning process in linear case [5],

• It is clear that there are more than two manual extra

experiments in NL-FIR-FD-IT, while there are only two

in linear case.

• The tuning process has some notable fluctuations while

it is much more smooth in the linear case. They illustrate

tuning’s overcoming the impact of bad SNR conditions,

and demonstrate the global robustness of the algorithm.

VI. CONCLUSIONS

An innovative way to estimate the control performance

criterion’s gradient is proposed in the frequency domain.

The method can help to solve iterative tuning problems with

nonlinear dynamics. The system dynamics is represented as

mappings between two multi-dimension spaces (spectrum

space), and gradient-based tuning problem is represented

as multiplication of spectrum vectors and FRF derivative

matrixes. It has an inherent advantage being able deal with

control problems with periodic inputs and outputs due to its

simplified presentation in the frequency domain.

Based on the presented gradient estimation theory, a

new iterative tuning method has been developed to solve

nonlinear ANVC problems with periodic disturbances.

An experimental air-duct system, that was found to contain

some nonlinearity of its dynamics, has been used to test the

feasibility of NL-FD-IT in ANC. The results demonstrate the

applicability of NL-FD-IT to nonlinear systems.
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