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Abstract— Undesired hysteresis and constitutive nonlinear-
ities are present to varying degrees in all smart material
based transducers when they are driven at high levels. This
motivates the development of adaptive inverse compensation
techniques that can approximately linearize the transducer
response and also are sufficiently efficient to accommodate
model uncertainties and the error introduced by inexact in-
verse algorithms. In this paper, we employ the homogenized
energy model for describing hysteresis, and we incorporate the
corresponding inverse filter in L1 control design to develop a
robust adaptive inverse control approach. Asymptotic tracking
properties of the proposed algorithm are established, and
for periodic reference trajectories, the parameter convergence
behavior is characterized. Simulation results are provided to
illustrate the effectiveness of the proposed algorithm.

Index Terms— Robust adaptive control, hysteresis model,
inverse filter.

I. INTRODUCTION

Smart materials and structures play an important role in

improving performance capabilities of aerospace, automo-

tive, biomedical, industrial systems. Their advantages arise

from number of factors including multi-functionality, large

force or strain generation, high frequency and broadband

actuator capabilities, and the potential for minimal weight

increase. The need for high power density devices that

can operate over a broad frequency range with precise

control continues to draw interest in transducer designs

that employ smart materials. For a number of applications,

transducers employ ferroelectric or ferromagnetic drive ele-

ments which, respectively, produce electric or magnetic field

induced displacements and forces. However, the coupling

of fields to mechanical deformation, which makes these

materials effective transducers, also introduces hysteresis and

constitutive nonlinearities due to domain mechanisms. The

fact that the hysteresis and nonlinearities are rate-, stress-,

and temperature-dependent complicate the challenge of high

performance high acturacy control. Whereas these nonlinear

effects can be minimized by restricting input field levels

for certain applications, moderate to high input fields are

typically necessary in high performance applications. This

requires accommodating hysteresis and constitutive nonlin-

earities in the control design so that large strain and high

force capabilities can be effectively utilized.
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One can introduce the nonlinear and hysteretic behavior

into the control design via either inverse filters, used to

linearize the actuator response, or direct nonlinear compensa-

tion using nonlinear control designs. The use of inverse filters

has the advantage of providing linear control designs and can

improve tracking performance by effectively compensating

for nonlinear and irreversible material behavior; however,

these advantages are only realized if the constitutive model is

efficient enough to be inverted in real time. This complexity

can sometimes be avoided by the use of nonlinear control

designs which circumvent the need for an inverse filter and

determines the input signals that directly incorporate actuator

nonlinearities. However this approach introduces challenges

in identifying robust numerical algorithms that can achieve

efficient convergence.

It is the first approach that we consider here where a

model-based inverse compensator is directly incorporated

into the control design. The key to constructing an inverse

compensator which accommodate hysteretic behaviors is

the development of material models that can be efficiently

inverted. The present analysis employs the homogenized

energy model due to its energy basis and flexibility with

regard to numerous operating conditions. As detailed in [1],

it has been demonstrated that its corresponding inversion

can be achieved at reasonable accuracy and speed; Whereas

such compensation is never exact due to discretization and

modeling errors, the variability between inverse and hys-

teretic device can be viewed as a structural uncertainty which

motivates consideration of the L1 control design.

II. MODEL DEVELOPMENT

The homogenized energy model employed in the present

analysis incorporates mesoscopic material behavior at the

domain with a stochastic homogenization framework to

predict macroscopic material behavior. A distribution of

interaction fields and coercive fields is implemented to

model polarization switching processes that typically occur

in the presence of material non homogeneities and residual

fields. Boltzmann relations are employed to model thermal

relaxation behavior when thermal energy affects polarization

switching. Macroscopic material behavior is determined by

homogenizing the local polarization variants according to the

distribution of interaction and coercive fields.

A. Homogenized Energy Model

The equations governing the homogenized energy

model are summarized here. A detailed review of the mod-

eling framework is given in [4]. The homogenized energy

model is based on an energy description at the mesoscopic
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length scale. This local energy formulation is used to predict

macroscopic behavior using a stochastic representation of

material inhomogeneities.

In the absence of applied stresses σ, the Gibbs free energy

for ferroelectric materials at the mesoscopic length scale is

G = ψ(P ) − EP (1)

where ψ(P ) is the Helmholtz energy approximated by the

piecewise quadratic function

ψ(P ) =






η(P + PR)2/2, P ≤ −PI

η

2
(PI − PR)

(
P 2

PI

− PR

)
, |P | < PI

η(P − PR)2/2, P ≥ PI .

(2)

Here E is the electric field, P is the polarization, PI denotes

the positive inflection point at which the switch occurs, PR

is the local remanence polarization and η is the reciprocal

slope ∂E
∂P

. The one-dimensional Helmholtz energy function

is double-well potential below the Curie point Tc which

gives rise to a stable spontaneous polarization with equal

magnitude in the positive and negative directions. More

details can be found in [4].

The Boltzmann relation gives rise to the local expected

values

〈P+〉 =

∫ ∞

PI

exp(−G(E + EI , P )V/kT )dP
∫ ∞

PI

P exp(−G(E + EI , P )V/kT )dP
(3)

〈P−〉 =

∫ −PI

−∞
exp(−G(E + EI , P )V/kT )dP

∫ −PI

∞
P exp(−G(E + EI , P )V/kT )dP

(4)

of the polarization associated with positive and negatively

oriented dipoles, respectively. Here V is the volume of the

mesoscopic layer, k is Boltzmann’s constant, and T is the

temperature.

The local polarization variants are defined by a volume

fraction of variants x+ and x− having positive and negative

orientations, respectively. The relation x− + x+ = 1 must

hold for the volume fraction of polarization variants.

The local average polarization is qualified by the relation

P = x+〈P+〉 + x−〈P−〉. (5)

The macroscopic polarization is computed from the distribu-

tion of local variants from the relation

[P (E)](t) =
∫ ∞

−∞

∫ ∞

0
νc(Ec)νI(EI)

·P (E + EI ;Ec;x+)dEIdEc

(6)

Here ν(Ec) and ν(EI) respectively denote the densities

of coercive field value Ec (at which a dipole changes its

orientations) and interaction field value EI and x+ represents

the distribution of the local variants. The densities can often

be modeled as lognormal or normal distributions. However,

when more accurate model predictions are critical, a general

density can be fit to data. As detailed in [4], the model for

magnetic material is equivalent.
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Fig. 1. Model-based inverse compensation.

B. Inverse Compensator

As discussed in Section I, one strategy for designing robust

control laws for hysteretic actuators it to employ a model for

describing hysteresis, and construct an inverse representation

of the model which can be used as compensator before the

the hysteretic actuator in the manner depicted in Fig. 1.

The composite system to be controlled is then approximately

linear and time-invariant. This allows robust control theories

to be utilized, including the L1 control method employed

here.

The inverse compensator we employ is the inverse of

the homogenized energy model. To construct the inverse

representation of (6), we need to determine the field level

necessary to bring the actuator to the given value of polariza-

tion (or strain). More precisely, given any valid state x+ and

any P̂ within the operating range of the material, determine

E such that P = P̂ , where P is the solution of (6). Due to

the nonlinearity and dependence on x+, it is not feasible to

invert (6) analytically. Thus, the problem is reformulated as

a numerical root finding problem; namely, determining the

value E such that for a given x+ and P̂ ,

P (E; x+) − P̂ = 0. (7)

Additional details are provided in [1].

III. MODEL-BASED L1 INVERSE CONTROL

ARCHITECTURE

Consider the dynamic system:

ẋ(t) = Ax(t) + bu(t), u(t) = [H(v)](t)

y(t) = cT x(t)
(8)

The matrix A may be unknown or uncertain and we assume

that there exists a known and stable matrix Am ∈ R
n×n and

a vector of ideal parameter θ(t) ∈ R
n such that (Am, b)

is controllable and A − Am = b θT . We further assume the

(unknown) parameter vector θ(t) belongs to a given compact

convex set Θ. Here u(t) = [H(v)](t) is the driving force

generated by the hysteretic actuator H where v(t) is the input

field to the actuator.

Next we incorporate the approximate inverse of homog-

enized energy model as the inverse compensator and use it

before the actuator H (see Fig. 1). The driving force u(t)
can be rewritten as

u(t) = [H(v)](t) = [HĤ
−1

(ud)](t) (9)
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where the signal ud(t) is used as the input of the inverse

compensator Ĥ−1(·) to generate the control field v(t) which

is then applied to the hysteretic device.

Substituting (9) and A − Am = bθT into (8) yields

ẋ(t) = Amx(t) + b
(
[HĤ

−1

(ud)](t) + θT x(t)
)
,

y(t) = cT x(t).
(10)

Our objective is to design a low-frequency adaptive controller

ud(t) such that y(t) tracks a given bounded reference signal

r(t) while all other error signals remain bounded.

While such model-based inverse compensation is never ex-

act due to the discretization or modeling errors, the mismatch

between inverse and hysteretic actuator can be designed to

be small and thus be assumed bounded in magnitude; i.e.,

u(t) = ud(t) + σ(t) (11)

where σ(t) is the inversion error and satisfies |σ(t)| ≤ ∆0 ∈
R. We can thus model the inversion error as an external time-

varying disturbance and attenuate its impact by L1 control

techniques [2].

The elements of the model-based L1 adaptive controller

are introduced next.

We consider the output predictor

˙̂x(t) = Amx̂(t) + b(ud(t) + θ̂T x(t) + σ̂(t)),

ŷ(t) = cT x̂(t).
(12)

which has a similar structure to the system in (10). The

differences are: (i), the unknown parameter vector θ(t) is

replaced by the adaptive estimate θ̂(t), (ii), driving force

u(t) = [HĤ
−1

(ud)](t) is replaced by the relation (11) with

inversion error estimate σ̂(t). Two estimates, θ̂(t) and σ̂(t),
are governed the projection-based adaptation laws

˙̂
θ(t) = Γc Proj

[
θ̂(t), −x(t)x̃T (t)Pb

]
, θ̂(0) = θ0

˙̂σ(t) = Γc Proj
[
σ̂(t), −x̃

T (t)Pb
]
, σ̂(0) = σ0

(13)

where the signal x̃(t) = x̂(t)− x(t) is the error between the

states of the predictor and the physical system and P is the

solution of the algebraic Lyapunov equation AT
mP +PAm =

−Q, Q > 0. Projection operator Proj [·, ·] is defined by

Proj [p, x]|i =

{
xi, ‖p‖ ≤ M ;
0, otherwise.

The L1 control method allows for the incorporation of a

low-pass filter into the feedback-loop which passes lower-

frequency signals and attenuates higher-frequency signals.

Letting kg = 1

cT A−1

m
b

, the control signal ud(t) is generated

through the low-pass system

ud(s) = C(s)
(
kgr(s) − θ̂T (s)x(s) − σ̂(s)

)
(14)

where C(s) is a pre-specified low-pass filter with low-pass

gain C(0) = 1 and s is the Laplace variable.

With the low-pass filter C(s), the last two terms of the

right hand side of (14) can be viewed as time-varying

disturbances, which are not prevented from having high-

frequency oscillations.

The complete L1 controller consists of (12)-(14) subject

to the L1-gain stability requirement: design C(s) to satisfy

‖Ḡ(s)‖L1
L < 1, L = max

θ∈Θ

n∑

i=1

|θi(t)| (15)

where G(s) = (sI − Am)−1b(1 − C(s)), and the L1 gain

for a stable proper m input n output transfer function, say

G(s), is defined as

‖G(s)‖L1
= max

i=1,··· ,n




m∑

j=1

∫ ∞

0

|gij(t)|dt



 .

Here gij(t) is the impulse response of Gij(s), the ith row

jth column element of G(s).

For the specific choice of C(s) =
k

s + k
and constant

parameter vector θ(t), the state space form of the closed-

loop reference system (12) and (14) is

˙̂x(t) = Amx̂(t) + b(ud(t) + θ̂T x(t) + σ̂(t)),

u̇d(t) = −kud(t) + k(kgr(t) − θ̂T (t)x(t) − σ̂(t))

The stability requirement can be simplified to choosing a

gain k such that matrix

Ag =

[
Am + b θT b

−kθT −k

]

is stable for all θ ∈ Θ.
Note that when C(s) = 1 and with ideal parameter vector

θ(t), ud reduces to the ideal control signal

uid(t) = kgr(t) − θT xid − σ(t) (16)

and (16) is the one that leads to desired system response

ẋid(t) = Amxid(t) + bkgr(t) (17)

by canceling the uncertainties exactly. In the closed-loop

predictor system (12)-(14), uid(t) is further low-pass filtered

by C(s) in (3.9) to have guaranteed low-frequency range.

Thus, the system in (12)-(14) has a different response as

compared to (17) achieved with (16). It has been proved

in [2] that the response of the state predictor (12) can be

made as close as possible to the response of the ideal system

(17) by reducing ‖G(s)‖L1
arbitrarily small, and ‖G(s)‖L1

can be made arbitrarily small by appropriately choosing the

design constants; further details may be found in [2] and [3].
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IV. SIMULATION

A. Explicit Method

We first apply an explicit method (ode15s) to solve the

ODE system (12)-(14).
Consider a single-frequency sinusoidal function r(t) =

cos(t). Since the frequency of r(t) is 1/2π Hz (= 1 rad/sec),

based on the above analysis, this r(t) could pass the filter

and reference model unchanged. Theoretically, the tracking

output x1(t) should exactly match the shape of r(t) = cos(t)
after x1(t) converges. Simulation results are shown in Fig

2(a). We note that the system output x1(t) converges to

r(t) asymptotically whereas x1(t) lags behind the reference

signal r(t) with delay time of about t0 = 0.62 sec. The

system output x1(t) and predictor output x̂1(t) are almost

the same. To cancel out the delay, we could redefine r(t)
by r(t + t0) , so it requires that we should have an exact

prediction of the time-delay t0 in advance. The performance

for r(t) = cos(t) with time compensation is shown in

Fig. 2(b), and we can see that the x1(t) could exactly

track the reference signal r(t) if we have a good prediction

of the time delay. Next, we consider a multi-frequency

sinusoidal reference signal r(t) = 2 cos(t) + 10 cos(πt/5).
We keep the same values for all other parameters. This

multi-frequency r(t) could also pass the filter and reference

model unchanged. The simulation result shown in Fig. 3(a)

points out that time-delay is independent of the frequencies

of the reference signal r(t); it only depends on the chosen

predictor and controller (low-pass filter), while a rigorous

relationship between the control structure and time delay

has not been derived yet. The performance for r(t) =
2 cos(t) + 10 cos(πt/5) with time compensation is shown

in Fig. 3(b).

Further, two typical trajectories common to nanoposition-

ing and industrial applications are plotted in Fig. 4. Simu-

lation results for the trajectories r1(t) and r2(t) are plotted

respectively in Fig. 5 and Fig. 6. The results illustrate that

the L1 control design employing homogenized energy model

based inverse filters can maintain a tracking accuracy once

cutting commences even though the transducer is operating

in the hysteretic and nonlinear regime.

B. Implicit Euler Method

Secondly we apply the implicit Euler method to solve the

ODE system (12)-(14). Using the implicit Euler method,

we aim to see if it can improve the time delay problem.

The simulation results for the reference input r = cos(t) are

shown in Fig. 7. We see that the tracking performance is

much more stable compared to the results obtained by using

ODE15s (see Fig. 2), but there is no significant improvement
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Fig. 2. Performance of the L1 adaptive controller for r = cos(t) with (a)
no time compensation and (b) time compensation.

in reducing the time delay, and it takes 60% more CPU

time. Next, we apply the implicit Euler method to the same

multi-frequency reference signal that we used in Section

A; i.e., r(t) = 2 cos(t) + 10 cos(πt/5). We note that the

results, shown in Figure 8, are quite similar to the results

obtained using ode15s which means that, for this r(t), the

implicit method does not significantly improve the tracking

performance, and it is more time consuming and costly.

V. CONCLUDING REMARKS

In this paper, a robust control framework is developed by

combining an inverse compensation with L1 control theory.

The control design has focused on applications where the

reference displacement is known in advance and precise

control is desired at relatively high speeds. The incorporation

of the homogenized energy model in the control design is

shown to significantly improve the tracking performance.

Simulations of an unstable non-minimum phase system

verify the efficiency of the control framework. However, a
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Fig. 3. Performance of the L1 adaptive controller for r = 2 cos(t) +
10 cos(πt/5) with (a) no time compensation and (b) time compensation.

time-delay is observed in the performance of trackings. This

motivates our next step to correlate the control structure with

the time-delay.
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Fig. 7. Performance of the L1 adaptive controller for r(t) = cos(t)
with the implicit Euler method with (a) no time compensation and (b) time
compensation.
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Fig. 8. Performance of the L1 adaptive controller for r = 2 cos(t) +
10 cos(πt/5) with the implicit Euler method with (a) no time compensation
and (b) time compensation.
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