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Abstract— A novel nonlinear control scheme is applied to
the TORA benchmark system. This approach incorporates a
continuous implementation of sliding mode control and an
extended high-gain observer, and is based on previous work
on the stabilization of a non-minimum phase nonlinear system,
under the assumption that its associated auxiliary system has a
stabilizing controller. The rotor angle is the only measurement
required by this controller, and the closed-loop system thus
obtained has quite interesting properties. The performance
characteristics of a full-order observer-based second order
linear system were recovered through an iterative tuning pro-
cedure. The final design provides good transient performance
and some robustness to perturbations in the masses of the cart
and rotor.

I. INTRODUCTION

The translational oscillator with a rotating actuator

(TORA) system, or rotational-translational actuator (RTAC),

as it is also known, has been widely used in the literature

for the past several years as a benchmark problem for

testing novel nonlinear control schemes. The problem was

introduced in [1] and [2]. In [3], two control laws are

presented, the first a cascade controller and the second one

a feedback passivating controller. A control law based on

an L2 disturbance attenuation approach was proposed in [8].

Output feedback controllers dependent on measurements of

the rotational and translational positions were proposed in

[6], while controllers requiring only the measurement of the

rotational position were presented in [5] and [7]. In [9],

four different controllers were experimentally evaluated on

an RTAC testbed.

The controller proposed in this paper is based on a novel

approach to the stabilization of a non-minimum phase nonlin-

ear system if its associated auxiliary system can be asymptot-

ically stabilized. This technique is based on previous work by

Isidori [11], [13]. It was shown in [4] that the output feedback

system can asymptotically recover the performance of the

partial state feedback system in the absence of uncertainty

in the control coefficient. When uncertainty is present, it

recovers the performance of a perturbed version of the state

feedback system. This approach is applied to the TORA

benchmark problem in this paper.

*This work was supported in part by the National Science Foundation
under grant numbers ECS-0400470 and ECCS-0725165.

II. ROBUST STABILIZATION OF A NON-MINIMUM PHASE

SYSTEM USING AN EXTENDED HIGH-GAIN OBSERVER

This section provides a brief overview of an extended

high-gain observer-based robust output feedback control

scheme for systems in the normal form, which could poten-

tially include unstable zero dynamics. This control method-

ology incorporates continuous sliding mode control—chosen

for its robustness properties as well as its ability to prescribe

or constrain the motion of trajectories in the sliding phase—

and the aforementioned extended high-gain observer to esti-

mate one of the unknown functions in the plant model. In [4],

stabilization in the case of an unknown control coefficient

and uncertain constant parameters is shown for the state as

well as output feedback cases.

A. Problem Statement

We consider a single-input, single-output system with

relative degree ρ, which, under a suitable diffeomorphism,

can be expressed in the following normal form.

η̇ = φ(η, ξ, θ), (1)

ξ̇i = ξi+1, 1 ≤ i ≤ ρ − 1, (2)

ξ̇ρ = b(η, ξ, θ) + a(η, ξ, θ)u, (3)

y = ξ1, (4)

where a(·) 6= 0, η ∈ Dη ⊂ R
n−ρ, ξ ∈ Dξ ⊂ R

ρ, and θ ∈
Θ ⊂ R

p is a vector of constant parameters. In the technique

developed by Isidori [11], the stabilization problem can be

solved, provided an auxiliary system—defined below—can

be globally stabilized by a dynamic feedback controller. The

auxiliary system is defined by ([11], [13]),

η̇ = φ(η, ξ1, . . . , ξρ−1, ua, θ), (5)

ξ̇i = ξi+1, 1 ≤ i ≤ ρ − 2, (6)

ξ̇ρ−1 = ua, (7)

ya = b(η, ξ1, . . . , ξρ−1, ua, θ). (8)

Equations (5)–(7) come from (1)–(2) by viewing ξρ as the

control input ua, while the term b(η, ξ, θ) on the right-hand

side of (3) is taken as the measured output.

This auxiliary problem is assumed to have a stabilizing

dynamic controller of the form

ż = L(z, ξ1, . . . , ξρ−1) + M(z, ξ1, . . . , ξρ−1)ya, (9)

ua = N(z, ξ1, . . . , ξρ−1), (10)
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where z ∈ Dz ⊂ R
r. Under this assumption, it was shown

by Isidori that a dynamic feedback law exists, which can

robustly stabilize the original system [11, equation (27)],

[13]. In [4], a combination of a continuous implementation

of sliding mode control and an extended high-gain observer

was utilized to stabilize the original system using only

measurement of the output y. The sliding mode control was

designed to force the system trajectories to a manifold within

a finite time, along which the system response coincides with

a perturbed version of the auxiliary system, and hence the

performance of the auxiliary system may be recovered under

certain conditions and constraints on the model uncertainties.

B. Output Feedback Design Using an Extended High-Gain

Observer

The output feedback design relies upon the estimates of the

states ξ and of b(η, ξ, θ) that are obtained using an extended

high-gain observer for the system (1)–(3), which is taken as

˙̂
ξi = ξ̂i+1 + (αi/εi)(ξ1 − ξ̂1), 1 ≤ i ≤ ρ − 1, (11)

˙̂
ξρ = σ̂ + â(ξ̂)u + (αρ/ερ)(ξ1 − ξ̂1), (12)

˙̂σ = (αρ+1/ερ+1)(ξ1 − ξ̂1), (13)

where ε is a positive constant to be specified, and the positive

constants αi are chosen such that the roots of λρ+1+α1λ
ρ+

. . . + αρλ + αρ+1 = 0 are in the open left-half plane. The

design of the extended high-gain observer closely follows

the work by Freidovich and Khalil [10].

It is apparent from (11)–(13) that the ξ̂1, . . . , ξ̂ρ are used

to estimate the output and its first (ρ− 1) derivatives, while

σ̂ is intended to provide an estimate for b(·). With the aid

of these estimates, the output feedback controller for the

original system can be taken as

ż = L(z, ξ̂1, . . . , ξ̂ρ−1)

+M(z, ξ̂1, . . . , ξ̂ρ−1)σ̂, (14)

l(ξ̂, z) = −
β(ξ̂, z)

â(ξ̂)
sat

(

s

µ

)

, (15)

u = K sat(l(ξ̂, z)/K), (16)

where

s = ξ̂ρ − N(z, ξ̂1, . . . , ξ̂ρ−1), (17)

K > max
(ξ,z,s)∈Ω

∣

∣

∣

∣

β(ξ, z)

â(ξ)

∣

∣

∣

∣

, (18)

and Ω is a compact set of interest containing the initial

state and the origin. The control is saturated at ±K outside

Ω in order to protect the system from peaking during the

observer’s transient response.

In [4], the above output feedback design is shown to

be able to recover exponential stability of the origin by

appropriately tuning the high-gain parameter ε.

III. OUTPUT FEEDBACK STABILIZATION OF THE TORA

BENCHMARK SYSTEM

The TORA problem was originally conceived as a simpli-

fied version of the dynamics of dual-spin spacecraft [1]. The

interaction between rotation and translation in the oscillating

eccentric rotor is analogous to the interaction between spin

and nutation in a dual-spin spacecraft.

A. TORA Dynamic Equations

The oscillating eccentric rotor being considered (a figure

can be found in [12, Figure 1.25]) consists of a cart of mass

M connected to a fixed reference frame via a linear spring

with spring constant k. The cart is constrained to only move

horizontally. Attached to the cart is an unbalanced mass m
with moment of inertia I about its center of mass, located at

a distance L from its rotational axis. Let x1 be the rotational

angle of the unbalanced mass, x2 denote the translational

position of the center of mass of the proof mass, x3 = ẋ1

and x4 = ẋ2. The control torque applied to the proof mass

is denoted by u. The dynamics are then given by [1], [12]

ẋ1 = x3, (19)

ẋ2 = x4, (20)

ẋ3 = [(m + M)u − mL(cos x1)

×
(

mLx2
3 sinx1 − kx2

)]

/∆(x1), (21)

ẋ4 =
[(

I + mL2
) (

mLx2
3 sin x1 − kx2

)

− mLu cos x1] /∆(x1), (22)

y = x1, (23)

where ∆(x1) = (I + mL2)(m + M) − m2L2 cos2 x1 ≥
(I + mL)2M + mI > 0.

Our objective is to design an output feedback controller to

stabilize the origin. The controller will be designed under the

assumption that all the parameters are known, but we will

use simulations to investigate its robustness to perturbations

in the masses m and M .

We now introduce the change of variables

η1 = x2 +
mL sin x1

m + M
, η2 = x4 +

mLx3 cos x1

m + M
,

ξ1 = x1, ξ2 = x3,

which transforms the system into the normal form

η̇1 = η2, (24)

η̇2 =
k

m + M

(

mL sin ξ1

m + M
− η1

)

, (25)

ξ̇1 = ξ2, (26)

ξ̇2 =
1

∆(ξ1)

{

(m + M)u − mL(cos ξ1)

×

[

mLξ2
2 sin ξ1 − k

(

η1 −
mL sin ξ1

m + M

)]}

,(27)

y = ξ1. (28)

We see from the above equations that the internal dynamics

are given by (24) and (25). Setting ξ1 = 0 in these equations

results in the zero dynamics

(

η̇1

η̇2

)

=

(

0 1
−k

m+M
0

)(

η1

η2

)

,
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which have eigenvalues at ±j
√

k/(m + M), meaning the

system is non-minimum phase. Consequently, we need a

control scheme that is applicable to non-minimum phase

systems, and in this paper, we apply the technique of [4].

B. Auxiliary Problem

Following [11], [4], we first consider the auxiliary system

associated with this problem, and this is given by

η̇1 = η2, (29)

η̇2 =
k

m + M

(

mL sin ξ1

m + M
− η1

)

, (30)

ξ̇1 = ua, (31)

ya =
mL cos ξ1

∆(ξ1)

×

[

k

(

η1 −
mL sin ξ1

m + M

)

− mLu2
a sin ξ1

]

.(32)

In order to stabilize this system, we shall adopt a strategy of

first linearizing the input-output map and designing a linear

compensator for the transformed system, and then imple-

menting the inverse transformations to obtain the nonlinear

control in the original coordinates. Hence, we define a new

output for the auxiliary system as

ỹa =
∆(ξ1)ya

mLk cos ξ1
+

mL

k
u2

a sin ξ1 +
mL sin ξ1

m + M

, h̃a(ya, ξ1, ua), (33)

With the newly defined output ỹa, the output equation is

given by

ỹa = η1. (34)

The design of a stabilizing feedback controller for the system

(29)–(31) and (34) can be simplified by viewing sin ξ1 as a

virtual control input to the system (29)–(30), and then using

either backstepping or high-gain feedback to determine the

control ua. We shall use the high-gain feedback approach. To

this end, let ua = (va − ξ1)/εa, where va is a control input

to be designed and εa is a positive number. The auxiliary

system can now be expressed in terms of (29), (30), (34)

and

εaξ̇1 = va − ξ1. (35)

For εa small enough, (29), (30) and (35) will exhibit a two

time-scale behavior and can thus be regarded as a singularly

perturbed system. The reduced system, obtained by setting

εa = 0 ⇒ va = ξ1, is given by (29), (30) and (34), and for

this reduced system, the quantity

sin ξ1 = sin va , wa (36)

can be regarded as the control input, and can now be designed

as a linear control. To summarize, the control problem for

the auxiliary system reduces to a problem of finding a

compensator with a strictly proper transfer function (due to

the assumptions made about the dynamic controller in [4])

for the linear system

η̇1 = η2, (37)

η̇2 =
k

m + M

(

mL

m + M
wa − η1

)

, (38)

ỹa = η1. (39)

It can be shown that the above system is observable and

controllable, and a state feedback controller wa = k1η1 +
k2η2 was found using LQR theory. The values of k1 and k2

providing near-optimal trade-off between the transient per-

formance of the states and the control effort were computed

in terms of a parameter ρ1 used to minimize the cost function

J =

∫

∞

0

[

(

η1 −
mL

m + M
wa

)2

+ ρ1w
2
a

]

dt,

subject to the constraint |wa| ≤ 1. This parameter was tuned

to ensure that wa just meets the constraint. This yielded the

parameter values of k1 = −1 and k2 = −8.

Next, a full-order observer was designed for (37)–(39) as

ż1 = z2 + α̃1(ỹa − z1), (40)

ż2 = α̃2(ỹa − z1) −
kz1

m + M
+

kmL

(m + M)2
wa, (41)

where α̃1 = 2 and α̃2 = 1. The observer-based control law

can now be taken as

wa = k1z1 + k2z2, (42)

and (40)–(42) now provide the strictly proper dynamic com-

pensator alluded to earlier.

We now substitute the transformations into the compen-

sator equations above and find the stabilizing controller for

the auxiliary system (29)–(32) to be

ż1 = z2 + α̃1(h̃a(ya, ξ1, N(z, ξ1)) − z1), (43)

ż2 = α̃2(h̃a(ya, ξ1, N(z, ξ1)) − z1) −
kz1

m + M

+
kmL

(m + M)2
sat(k1z1 + k2z2), (44)

ua = N(z, ξ1), (45)

where N(z, ξ1) =
{

sin−1 [sat(k1z1 + k2z2)] − ξ1

}

/εa. We

note that we needed to use the saturated control sat(wa) =
sat(k1z1 + k2z2) in order to ensure that its contribution to

the control effort does not exceed unity magnitude in the

presence of peaking. The partial state feedback controller

for the system (24)–(27) is now obtained as [4]

u = −
(m + M)β

∆(ξ1)
sat

(

ξ2 − N(z, ξ1)

µ

)

. (46)

C. Output Feedback Controller for the TORA

The output feedback controller for the original system

(19)–(23) can now be designed using an extended high-gain
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observer in accordance with [4] and as outlined in §IIB.

˙̂
ξ1 = ξ̂2 + (α1/ε)(y − ξ̂1), (47)

˙̂
ξ2 = σ̂ + âu + (α2/ε2)(y − ξ̂1), (48)

˙̂σ = (α3/ε3)(y − ξ̂1), (49)

ż1 = z2 + α̃1(h̃a(σ̂, y,N(z, y)) − z1), (50)

ż2 = α̃2(h̃a(σ̂, y,N(z, y)) − z1) −
kz1

m + M

+
kmL

(m + M)2
sat(k1z1 + k2z2), (51)

u = −
(m + M)β

∆(y)
sat

(

ξ̂2 − N(z, y)

µ

)

. (52)

D. Numerical Simulations

Numerical simulations were performed using the follow-

ing system and controller parameters, with the former taken

from [1]: M = 1.3608 kg, m = 0.096 kg, L = 0.0592 m,

I = 0.0002175 kg m2, k = 186.3 N/m, α̃1 = 2, α̃2 =
1, k1 = −1, k2 = −8, β = 500, εa ∈ {0.1, 0.01}, µ ∈
{1, 0.1}, ε ∈ {0.01, 0.001}, x1(0) = 0 and x2(0) = 0.025
m. Figures 1 through 7 show the effects of tuning certain

design parameters and of perturbations in the masses of the

cart and the proof mass.

E. Discussion of the Results

Figures 1 through 7 show the results of a step-by-step

tuning of the design parameters, starting with matching the

performance of the fourth-order reduced system in the first

step and ending with the tuning of the extended high-gain

observer parameter to match the partial state feedback case.

In the process, the full output feedback system is made

to match the performance of the reduced system, whose

state equation is linear and fourth order—however, since the

compensator’s eigenvalues are located quite far into the left

half-plane relative to those of the reduced system’s plant,

the state equation for the latter is essentially second order

and linear. Therefore, this design methodology enabled us

to enforce linear second order-like response characteristics

on the controlled TORA system. We explain the tuning pro-

cedure to recover the reduced system’s performance below.

The errors in each step are computed using the system from

the previous step as the new target.

1) The top panel in Figure 1 shows the target response

trajectory we seek to recover. The solid line is the

response of the reduced system (29)–(30), (34), (40)–

(42), the dashed line the response of the auxiliary system

(29)–(32), (43)–(45), with the latter utilizing high-gain

feedback parameter values of εa = 0.1 and 0.01. The

bottom panel shows how reducing εa from 0.1 to 0.01

allows for the auxiliary system to better approximate the

response of the reduced system—indeed, the settling time

was reduced drastically. The εa parameter is now fixed

at 0.01 and we move to the next step.

2) Now, we try and match the performance of the auxiliary

system with the partial state feedback system (24)–(27),

(43)–(44), (46). Figure 2 shows the results. The reference

trajectory used to compute the error in this step is the

auxiliary system state ξ1. The switch was made from η1 to

ξ1 because the former is not an output of the full system.

A µ value of 0.1 was deemed to provide an acceptably

small error, so it was fixed at this value.

3) We now tune the extended high-gain observer parameter

ε to recover the performance of the partial state feedback

system from the previous step. Figures 3 and 4 show the

recovery of the performance of the state feedback system

by reducing ε from 0.01 to 0.001, in the output feedback

system (19)–(23), (47)–(52). We note from the bottom

panels of these two figures that reducing ε down to 10−3

results in a significant reduction in the error. We therefore

choose the final design parameter as ε = 10−3.

The above three-step tuning procedure suggests that we pick

the design parameters εa = 0.01, µ = 0.1 and ε = 10−3 so

that the performance of the reduced system is recovered by

the output feedback system.

Figure 5 shows that the maximum control effort required

to stabilize the output feedback system is under 0.05 Nm.

Finally, in order to investigate the robustness of this

design, the masses of the cart and the rotor were perturbed

and some simulations were run. Figure 6 shows the result

when the cart and eccentric rotor masses were perturbed to

M = 1.7 kg (+24.9% error) and m = 0.14 kg (+45.8%

error). Figure 7 shows the result when the cart and eccentric

rotor masses were perturbed to M = 1.1 kg (-23.7% error)

and m = 0.06 kg (-37.5% error).

IV. CONCLUDING REMARKS

A novel extended high-gain observer based output feed-

back control technique for non-minimum phase systems

developed in [4] was employed to stabilize the translational

oscillator with rotating actuator (TORA) benchmark system.

A key feature of this technique is to initially simplify the

problem to one of finding a stabilizing controller for an

associated auxiliary system—in order to find this controller,

a high-gain feedback approach was employed, which reduced

the problem further to a constrained linear control problem

for a simple second order linear system. A linear dynamic

controller satisfying the control constraint was obtained by

optimizing a quadratic cost function. This immediately led

to an equation for the nonlinear controller that stabilized the

auxiliary system, and the remainder of the problem was then

solved in accordance with the design procedure developed

in [4] on the basis of the knowledge of the controller for

the auxiliary system. This led to an extended high-gain-

observer-based five-state dynamic controller for the four-state

TORA system, resulting in a ninth order closed-loop system.

Nevertheless, the simulation results show that the response of

this system is not overly complex, and provides a solution

with good settling time and some robustness to parameter

perturbations.

The simulations also show that the performance of the

closed-loop reduced system, which is only fourth order,

can be asymptotically recovered by appropriate tuning of a
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Fig. 1. Recovery of the Reduced System performance by

decreasing εa.

single high-gain feedback parameter (εa). In the full output-

feedback system, the performance can be fine-tuned further

by reducing the width of the boundary layer µ in the sliding

mode control, and also by reducing the high-gain observer

parameter ε. However, it was observed that reducing µ did

not have a significant impact on the system performance.

Through simulations, it was observed that this controller

design allows for uncertainties between -23.7% and +24.9%

for the cart mass and from -37.5% to +45.8% for the rotor

mass. The output feedback system became unstable when

ε = 0.01 and the masses were reduced to the lower extremes

of the aforementioned ranges, but was stable for ε = 10−3

or less. It must be noted, however, that decreasing the ε
parameter in the extended high-gain observer too much could

potentially pose practical difficulties during implementation.

In conclusion, the stabilizing controller obtained in this

paper for the TORA system provides good transient per-

formance and exhibits some robustness to perturbations of

the cart mass. The nonlinear design equations for the fifth-

order extended high-gain observer based controller may look

complicated, but the design procedure itself is actually fairly

simple and systematic, in that it provides a framework for

order reduction, with the design being contingent upon a

stabilizing controller for an auxiliary system of order one less

than that of the original problem. Furthermore, this design

approach was ultimately able to recover the performance

characteristics of a full-order observer-based second order

linear system.
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