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Abstract— Dynamic programming reduces the solution of
optimal control problems to solution of the corresponding
Hamilton-Jacobi-Bellman partial differential equations (HJB
PDEs). In the case of nonlinear deterministic systems, the HJB
PDEs are fully nonlinear, first-order PDEs. Standard, grid-
based techniques to the solution of such PDEs are subject to
the curse-of-dimensionality, where the computational costs grow
exponentially with state-space dimension. Among the recently
developed max-plus methods for solution of such PDEs, there
is a curse-of-dimensionality-free algorithm. Such an algorithm
can be applied in the case where the Hamiltonian takes the form
of a pointwise maximum of a finite number of quadratic forms.
In order to take advantage of this curse-of-dimensionality-free
algorithm for more general HJB PDEs, we need to approximate
the general Hamiltonian by a maximum of these quadratic
forms. In doing so, one introduces some errors. In this work,
we obtain a bound on the difference in solution of two HJB
PDEs, as a function of a bound on the difference in the two
Hamiltonians. Further, we obtain a bound on the suboptimality
of the controller obtained from the solution of the approximate
HJB PDE rather than from the original.

I. INTRODUCTION

The use of dynamic programming to solve nonlinear

control problems leads to the familiar dynamic programming

equation. In the case of problems in continuous space/time

governed by finite-dimensional “deterministic” (or max-plus

stochastic) dynamics, the dynamic programming equation

takes the form of a Hamilton-Jacobi-Bellman partial dif-

ferential equation (HJB PDE). In the infinite time-horizon

case, this is typically a PDE over a region in a space whose

dimension is the dimension of the state variable in the

control problem. We remark that the solutions are generally

nonsmooth, and the theory of viscosity solutions yields the

appropriate solution definition (c.f., [4], [6], [10]).

The difficulty lies in computing the solution of the HJB

PDE. The most intuitive, and commonly applied, approaches

are grid-based (c.f., [4], [5], [7], [10] among many others),

and are subject to the curse-of-dimensionality (whereby the

computational cost growth is very roughly on the order of

(2D)n where D is the required number of grid points per

dimension, and more importantly, n is the space dimension.

A recent development is the discovery of the curse-

of-dimensionality-free methods exploiting semiconvex dual
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operators and max-plus linearity ([13], [14], [15]). Using

convex-programming based pruning, a problem over IR6 was

solved on a desktop machine [12]. This approach has, so far,

only been developed for steady-state problems over the entire

space, although the class could be enlarged. (For other max-

plus-based methods developed for larger classes of problems,

see [1], [2], [9], [15], [16].) The curse-of-dimensionality-free

approach currently handles HJB PDE problems of form

0 = −H̃(x,∇V ) ∀x ∈ IRn \ {0}, V (0) = 0 (1)

where

H̃(x,∇V ) = max
m∈M

{Hm(x,∇V )}, (2)

M = {1, 2 . . .M}, and the Hm have computationally

simpler forms. In particular, the Hm considered to date have

been quadratic forms. Also, note that by boundary condition,

V (0) = 0, we mean that the solution is zero at the origin.

In [14], [15], the method was developed and the curse-

of-dimensionality-free nature was made clear. In [13], the

convergence rate for the algorithm was obtained. In par-

ticular, it was shown that there were two parameters, τ
and T = Nτ such that the errors go to zero as T =
Nτ → ∞ and τ ↓ 0. Further, a required relation between

the relative T and τ rates was indicated. The errors in

the pre-limit solution approximation are bounded in a form

0 ≤ Ṽ − V a ≤ ε(1 + |x|2) where Ṽ is the true solution

and V a is the computed approximation. Additionally, we

had T = Nτ ∝ ε−1 and τ ∝ ε2, and so N ∝ ε−3.

The computational cost growth with (space dimension) n
is only on the order of n3 (due to some matrix inverses).

However, the approach is subject to a curse-of-complexity,

where the computational cost can grow like MN . Attenuation

of this curse-of-complexity growth through pruning, using

semidefinite programming, is an active area of research [12].

Although the PDEs of (1) are certainly nontrivial nonlinear

PDEs, we would like to solve more general HJB PDEs. A

function, say F (y), is semiconvex if given any R < ∞,

there exists CR < ∞ such that F (y) + CR

2 |y|2 is convex

over BR(0). (Note that the space of semiconvex functions

certainly contains both C2 and the space of convex functions

as subspaces.) It is well known that one can approximate any

semiconvex function as the pointwise maximum of quadratic

forms. In fact, this is simply a max-plus basis expansion

over the max-plus vector space, or moduloid, of semiconvex

functions (c.f., [15]). With this in mind, we see that we could

approximate any semiconvex Hamiltonian by a Hamiltonian,

H̃ , of the form (2) with quadratic Hm. We could then solve

the HJB PDE problem (1) with a curse-of-dimensionality-
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free method, thereby yielding an approximate solution of the

HJB PDE with the original semiconvex Hamiltonian. Such a

procedure would induce two error sources. The first consists

of the errors in the solution of (1) generated by the curse-

of-dimensionality-free algorithm. These are briefly discussed

in the previous paragraph, and fully discussed in [13]. The

second source are those induced by the approximation of the

original Hamiltonian by H̃. This latter error source is under

discussion here. Although the analysis to follow is specifi-

cally oriented toward approximation by H̃ of the above form,

the general concepts may be more widely applicable. Further,

in addition to obtaining bounds on the difference between

the solution of the original and approximating HJB PDE

problems, we also obtain a lower bound on the suboptimality

of the controller obtained by use of the solution of (1) in the

controller computation. This latter question is, of course, of

significant practical value.

II. PROBLEM STATEMENT AND ASSUMPTIONS

We will consider HJB PDE problem

0 = −H(x,∇V ) = − sup
w∈IRk

[f ′(x, w)∇V + l(x, w)] ,

V (0) = 0 (3)

where x ∈ IRn. More specifically, we are seeking the

particular viscosity solution of (3) which is the value function

of the following optimal control problem. The dynamics are

given by

ξ̇t = f(ξt, wt)
.
= g(ξt) + σ(ξt)wt, (4)

and the running cost is

l(ξt, wt)
.
= L(ξt) −

γ2

2
|wt|

2. (5)

The value function we seek, maximizing the payoff over

controls w ∈ W
.
= L2([0,∞); IRk), is

V̂ (x) = sup
w∈W

sup
T<∞

{∫ T

0

l(ξt, wt)dt

∣∣∣∣ ξ0 = x

}
. (6)

We assume, ∃K, c, dσ, C, α ∈ (0,∞) such that

the following hold. g(x) is globally Lipschitz

continuous with constant K , (x − y)T (g(x) −
g(y)) ≤ −c|x − y|2 for all x, y, and g(0) = 0.

σ(x) is Lipschitz continuous with constant K ,

and its norm is bounded globally by dσ . |L(x)−
L(y)| ≤ C(1 + |x| + |y|)|x − y| for all x, y, and

0 ≤ L(x) ≤ α|x|2 for all x. Finally, we assume

γ2/d2
σ > α/c2.

(A.V )

It is worth noting, that with the above forms for f and l,

H(x, p) = g(x)′p + L(x) + 1
2γ2 p′σ(x)σ′(x)p.

In [15], it was demonstrated that the above assumptions

guarantee the following:

Theorem 2.1: V̂ (given by (6)) is a continuous viscosity

solution of (3), and is the unique such solution within the

class

Gδ̄
.
= {φ : φ is semiconvex, 0 ≤ φ(x) ≤ c

γ2 − δ̄2

2d2
σ

|x|2}

(7)

for δ̄ > 0 sufficiently small.

The goal is to approximately compute V̂ by approximating

H by an H̃ taking the form (2) with quadratic Hm, and then

to solve (1) with the curse-of-dimensionality-free method

[14], [15].

In particular, we assume that H and H̃ are close in

following sense. Assume that:
There exists θ > 0 such that, for all x, p ∈ IRn

such that H̃(x, p) ≤ 0, one has

H̃(x, p) ≤ H(x, p) ≤ H̃(x, p) + θ
[
|x|2 + |p|2

]
.

(A.c)

Note that the coefficient θ parameterizes the degree of

closeness between H and H̃. As we are dealing with max-

plus vector spaces, H̃ approximates H from below (c.f. [15]),

and so this approximation assumption is one-sided.

Let D−V (x) denote the subdifferential of V at x, i.e.,

D−V (x) =

{
p ∈ IRn

∣∣∣

lim inf
y→x

V (y) − V (x) − p · (y − x)

|y − x|
≥ 0

}
.

Remark 2.2: If Ṽ is a viscosity solution of (1), and

p ∈ D−Ṽ (x), then by the definition of viscosity solutions,

H̃(x, p) ≤ 0. Consequently, the inequalities of Assumption

(A.c) hold for all x, p such that p ∈ D−Ṽ (x).
We will suppose that the Hm are generalized quadratic

forms, with parameters meeting certain conditions which

guarantee existence and uniqueness within a certain function

class. The Hm take the form

Hm(x, p) = 1
2x′Dmx + 1

2p′Σmp + (Amx)′p

+(lm1 )′x + (lm2 )′p + αm (8)

where each Σm = (1/γ2)σm(σm)′ for appropriate matrices

σm. In regards to Hm, we make following assumptions,

which ensure existence of a solution meeting the boundary

condition at the origin (c.f. [13]).
Assume there exists cA ∈ (0,∞) such that

x′Amx ≤ −cA|x|
2 for all x ∈ IRn and all

m ∈ M.

Assume H1(x, p) has coefficients satisfying the

following: l11 = l12 = 0; α1 = 0; there exists

cA,1 ∈ (0,∞) such that x′A1x ≤ −cA,1|x|
2

∀x ∈ IRn; D1 is positive definite, symmetric;

Σ1 > 0; and γ2/c2
σ > cD/c2

A,1, where cD is such

that x′D1x ≤ cD|x|2 ∀x ∈ IRn and cσ
.
= |σ1|.

Assume that system ξ̇µt = Aµtξµt + lµt

2 + σµtw
is controllable in the sense that given x, y ∈ IRn

and T > 0, there exist processes w ∈ W and µ
measurable with range in M, such that ξT = y
when ξ0 = x and one applies controls w, µ.

(A.m)

The first assumption in (A.m) is not restrictive, as with-

out this nominal stability, sensible problems with positive
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definite running cost would have unbounded value. The

second of the assumptions assures that at least one of the

Hamiltonians has a purely quadratic structure, and this one

typically “looks like” the H near the origin. The controlla-

bility assumption is (currently) needed for technical reasons.

We let

Ṽ (x)
.
= sup

T<∞
sup

µ∈D∞

sup
w∈W

∫ T

0

Lµt(ξt) −
γ2

2
|wt|

2 dt

where

Lm(x) = 1
2x′Dmx + (lm1 )′x + αm,

ξ̇ = Aµtξt + lµt

2 + σµtwt,

and

D∞ = {µ : [0,∞) → M| measurable }.

In [15], [14], it was shown that:

Theorem 2.3: Ṽ is the unique viscosity solution of (1) in

the class of continuous functions satisfying V (x) ∈ [0, V̂ (x)]
for all x ∈ IRn.

III. PRELIMINARIES

The following lemmas will be useful further below. Let

T ∈ (0,∞), and let W be the finite horizon value function

given by

W (x, T ) = sup
w∈W

∫ T

0

l(ξt, wt)dt, ξ0 = x, (9)

where ξ satisfies (4). Noting that V̂ ≥ 0, we see that

W (x, T ) ≤ sup
w∈W

∫ T

0

l(ξt, wt)dt + V̂ (ξT ), ξ0 = x.

With this definition, and [15], Ch. 2, we immediately obtain

the following two lemmas.

Lemma 3.1: Let wε
t be ε–optimal (with ε ∈ (0, 1]) for

problem (9). Then,

1
2‖w

ε‖2
L2[0,T ] ≤

ε

δ̄
+

1

δ̄

[
cγ2

2d2
σ

e−cT +
α

c

]
|x|2. (10)

Lemma 3.2: Let wε
t be ε–optimal (with ε ∈ (0, 1]) for

problem (9), and let ξε
t be the corresponding state process.

Then,
∫ T

0

|ξε
t |

2dt ≤
2ε

δ̄

d2
σ

c
+

d2
σ

δ̄c

[(
2α

c2
+

γ2

dσ

)
+

1

c

]
|x|2. (11)

IV. ERROR IN THE VALUE FUNCTION

As noted in Theorem 2.3, 0 ≤ Ṽ (x) ≤ V̂ (x) for all x ∈
IRn. Now we obtain an upper bound on V̂ − Ṽ . The main

result and core of the proof are Theorem 4.5 below and its

corresponding proof. Prior to this we obtain some technical

results.

Lemma 4.1: There exists Kg < ∞ such that for any x ∈
IRn,

|p| ≤ Kg|x| ∀ p ∈ D−Ṽ (x).
Proof: By Theorem 2.3, Remark 2.2, and (2), for all

p ∈ D−Ṽ (x), one has

H1(x, p) ≤ H̃(x, p) ≤ 0.

Using (8) and Assumption (A.m), this implies

xT D1x + pT Σ1p + (A1x)T p ≤ 0 ∀ p ∈ D−Ṽ (x).

Rearranging this, and dropping superscripts for convenience,

yields

(
p +

Σ−1Ax

2

)T

Σ

(
p +

Σ−1Ax

2

)
≤ xT (AΣ−1A − D)x.

Thus
∣∣∣∣p +

Σ−1Ax

2

∣∣∣∣
2

λmin[Σ] ≤ |x|2λmax[AΣ−1A − D],

where, by Assumption (A.m), λmin[Σ] = λmin[Σ1] > 0.

With a little calculation, this implies the desired result.

Fix R < ∞, and let x ∈ BR. Let ε ∈ (0, 1], and let wε

be an ε–optimal controller for (9). Also, let ξε denote the

corresponding state process.

Lemma 4.2: For any T ∈ [0,∞), ξε
t is absolutely contin-

uous on [0, T ].
Proof: Fix any δ > 0. Consider any finite set of disjoint

subintervals of [0, T ], say {[si, ti] | i ∈]i, N [}, such that ti <
si+1 for all i ∈]1, N − 1[ and such that

∑
i≤N |ti − si| = δ.

We have

N∑

i=1

|ξε
ti
− ξε

si
|=

N∑

i=1

∣∣∣∣
∫ ti

si

g(ξε
t ) + σ(ξε

t )wε
t dt

∣∣∣∣,

which by Assumption (A.V )

≤

N∑

i=1

∫ ti

si

K|ξε
t | + dσ|w

ε
t | dt (12)

for proper choice of K1.

From inequality (3.17) from [15] (which follows easily

from Assumptions (A.V )), there exists C4 < ∞, indepen-

dent of T , such that

|ξε
t |

2 ≤ C4

(
1 + |x|2 +

∫ t

0

|wε
r |

2 dr

)
∀ t ∈ [0, T ]

which by Lemma 3.1,

≤ C5(1 + |x|2) ∀ t ∈ [0, T ], (13)

for proper choice of C5 < ∞ (independent of T ∈ [0,∞)
and ε ∈ (0, 1] ). Combining (12) and (13), one finds for

proper choice of C6 < ∞ (independent of T ∈ [0,∞) and

ε ∈ (0, 1]),

N∑

i=1

|ξε
ti
− ξε

si
| ≤

N∑

i=1

{∫ ti

si

C6(1 + |x|) dt +

∫ ti

si

dσ|w
ε
t | dt

}

= C6(1 + |x|)δ +

N∑

i=1

∫ ti

si

dσ|w
ε
t | dt. (14)

Define

φ(t) =
{

1 if t ∈ [si, ti] for some i
0 otherwise.

With this definition, (14) becomes

N∑

i=1

|ξε
ti
− ξε

si
| ≤ C6(1 + |x|)δ + dσ

∫ T

0

φ(t)|wε
t | dt.

which by the Cauchy-Schwarz inequality
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≤ C6(1 + |x|)δ + dσ

[∫ T

0

(φ(t))2 dt

]1/2

‖wε
t ‖

≤ C6(1 + |x|)δ + dσδ1/2‖wε
t‖

which, by Lemma 3.1 again

≤ C6(1 + |x|)δ + C7(1 + |x|)δ1/2

for proper choice of C7 < ∞. This last inequality implies

absolute continuity.

Lemma 4.3: For any T ∈ [0,∞), Ṽ (ξε
t ) is absolutely

continuous on [0, T ], and

Ṽ (ξε
T ) − Ṽ (x) =

∫ T

0

d

dt
Ṽ (ξε

t ) dt,

where the time-derivative exists almost everywhere.

Proof: The semiconvexity of Ṽ (given in Theorem

2.3) implies local Lipschitz behavior (c.f., [8]). Further, by

the continuity given in Lemma 4.2 and finiteness of T , ξε
t

remains in a bounded set. Combining the absolute continuity

of ξε obtained in Lemma 4.2 with the Lipschitz property

of Ṽ over the bounded set immediately implies the absolute

continuity of Ṽ (ξε
t ). The remaining assertion is a direct result

of the absolute continuity.

Lemma 4.4: For any T ∈ [0,∞),

Ṽ (ξε
T ) − Ṽ (x) =

∫ T

0

max
p∈D−Ṽ (ξε

t
)

p · f(ξε
t , w

ε
t ) dt.

Proof: By the semiconvexity of Ṽ , the directional

derivative, Ṽu(x), exists for all x ∈ IRn and all |u| = 1
in IRn (c.f., [4], Th. II.4.7). Now,

d

dt
Ṽ (ξε

t ) = lim
δ→0

1

δ
[Ṽ (ξε

t+δ) − Ṽ (ξε
t )]

= lim
δ→0

1

δ
[Ṽ (ξε

t + δf(ξε
t , wε

t ) + O(δ2)) − Ṽ (ξε
t )]

= |f(ξε
t , w

ε
t )|Ṽut

(ξε
t )

with ut = f(ξε
t , wε

t )/|f(ξε
t , wε

t )| when f(ξε
t , w

ε
t ) 6= 0, and

ut an arbitrary unit vector otherwise. Again applying [4], Th.

II.4.7, this yields

d

dt
Ṽ (ξε

t ) = |f(ξε
t , w

ε
t )| max

p∈D−Ṽ (ξε

t
)

p · ut

= max
p∈D−Ṽ (ξε

t
)

p · f(ξε
t , wε

t ).

We now proceed to obtain the main result of the section.

For any t ∈ [0, T ], let

vε
t

.
= max

p∈D−Ṽ (ξε

t
)

p · f(ξε
t , w

ε
t ).

By the ε-optimality of wε, one has

W (x, T ) ≤

∫ T

0

[l(ξε
t , wε

t ) + vε
t ] dt −

∫ T

0

vε
t dt + ε

(where existence of the integrals follows from Lemma 4.4).

Then, by Lemma 4.4,

W (x, T ) ≤ Ṽ (x) − Ṽ (ξε
T )

+

∫ T

0

[l(ξε
t , wε

t ) + vε
t ] dt + ε. (15)

For any t ∈ [0, T ], let

pε
t ∈ argmax

p∈D−Ṽ (ξε

t
)

p · f(ξε
t , w

ε
t ).

Then,

l(ξε
t , w

ε
t ) + vε

t = l(ξε
t , wε

t ) + pε
t · f(ξε

t , w
ε
t )

which by Assumption (A.c),
≤ H̃(ξε

t , pε
t ) + θ(|ξε

t |
2 + |pε

t |
2). (16)

However, by the definition of a viscosity solution, and the

fact that pε
t ∈ D−Ṽ (ξε

t ), H̃(ξε
t , pε

t ) ≤ 0, and so, (16) yields

l(ξε
t , w

ε
t ) + vε

t ≤ θ(|ξε
t |

2 + |pε
t |

2)

which by Lemma 4.1,

≤ θ(1 + K2
g )|ξε

t |
2. (17)

Substituting (17) into (15), one obtains

W (x, T ) ≤ Ṽ (x) − Ṽ (ξε
T ) + θ(1 + K2

g )

∫ T

0

|ξε
t |

2 dt + ε,

and noting Ṽ ≥ 0,

≤ Ṽ (x) + θ(1 + K2
g)

∫ T

0

|ξε
t |

2 dt + ε,

which, by Lemma 3.2,

≤ Ṽ (x) + θ(1 + K2
g)[C1 + C2|x|

2] + ε, (18)

where

C1 = 2d2
σ/(δ̄c),

C2 =
d2

σ

δ̄c

[(
2α

c2
+

γ2

dσ

)
+

1

c

]
.

Since this is true for all ε ∈ (0, 1], we have

W (x, T ) ≤ Ṽ (x) + θ(1 + K2
g)[C1 + C2|x|

2]. (19)

Then, noting (c.f., [15]) that W (x, T ) → V̂ (x) as T → ∞,

(19) yields the value approximation result:

Theorem 4.5: There exists C3 < ∞ such that

V̂ (x)−θC3(1+ |x|2) ≤ Ṽ (x) ≤ V̂ (x) ∀x ∈ IRn, (20)

where θ is as given in Assumption (A.c).
Thus, we see that Ṽ approximates V̂ arbitrarily well if H̃

is sufficiently close to H , this closeness being parameterized

by θ.

V. DEGREE OF SUBOPTIMALITY OF THE CONTROLLER

In the previous section, it was shown that if the ap-

proximating Hamiltonian is close to the Hamiltonian of

the originating problem in a certain sense, then the corre-

sponding viscosity solutions will be close in an appropriate

sense. However, recall that we are specifically concerned

with a case where we can efficiently solve the HJB PDE

with the approximating Hamiltonian, and would like to use

this solution to generate a controller for the originating

problem. Consequently, we would like to know whether an

(approximate) optimal control generated from the solution of

the approximate HJB PDE, will perform well when applied

to the true system, which is described by the originating

Hamiltonian. We begin with some preparatory results, which
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are minor variations of well-known properties of viscosity so-

lutions and semiconvexity. Between Lemma 5.4 and Lemma

5.5, the optimal control approximation will be introduced.

The main development will begin with Theorem 5.7. In the

interest of page-length, some proofs are omitted.

Lemma 5.1: Suppose V is a semiconvex viscosity solution

of 0 = Ĥ(x,∇V ), where Ĥ is continuous. Let D−V (x)
denote the subdifferential of V at x. For any x, q ∈ IRn,

there exists p̄ ∈ D−V (x) such that

p̄ · q = max
p∈D−V (x)

p · q (21)

and

Ĥ(x, p̄) = 0. (22)

It will be helpful to make the following definitions. Let

P(x) = P(x; Ṽ )
.
= argmax

{
f(x, w) · p + l(x, w) | (w, p) ∈ IRk×D−Ṽ (x)

}
.

Also, let

W0(x) = argmax
w∈IRk

max
p∈D−Ṽ (x)

[f(x, w) · p + l(x, w)] ,

and

P0(x) = argmax
p∈D−Ṽ (x)

max
w∈IRk

[f(x, w) · p + l(x, w)] .

Lemma 5.2: If ŵ ∈ W0(x), then there exists p̂ ∈
D−Ṽ (x) such that (ŵ, p̂) ∈ P(x). On the other hand,

(ŵ, p̂) ∈ P(x) implies that ŵ ∈ W0(x).
Lemma 5.3: If p̂ ∈ P0(x), then there exists ŵ ∈ IRk

such that (ŵ, p̂) ∈ P(x). On the other hand, (ŵ, p̂) ∈ P(x)
implies that p̂ ∈ P0(x).

We now get a simple representation for ŵ, which will be

useful in bounding the control effort.

Lemma 5.4: Suppose p̂ ∈ P0(x), and let ŵ = ŵ(x, p̂) =
1
γ2 σ′(x)p̂. Then, (ŵ, p̂) ∈ P(x), and ŵ ∈ W0(x).

Assume there exists a measurable selection p̄(·) :
IRn → IRn from set-valued P0(·) such that, with w̄(x)

.
=

1
γ2 σ′(x)p̄(x), there exists a Lipschitz continuous solution to

the feedback controlled system

ξ̇ = f(ξ, w̄(ξ)), ξ0 = x. (A.s)

for any initial x ∈ IRn (i.e., a solution to ξt = x +∫ t

0 f(ξr, w̄(ξr)) dr) over [0,∞), which we denote by ξ̄.

Lemma 5.5: For any T ∈ [0,∞),

Ṽ (ξ̄T ) − Ṽ (x) =

∫ T

0

d

dt
Ṽ (ξ̄t) dt

where d
dt Ṽ (ξ̄t) exists a.e.

The proof of the following lemma is essentially identical

to the proof of Lemma 4.4, and so we do not repeat it.

Lemma 5.6: For any T ∈ [0,∞),

Ṽ (ξ̄T ) − Ṽ (x) =

∫ T

0

max
p∈D−Ṽ (ξ̄t)

p · f(ξ̄t, w̄(ξ̄t)) dt.

It will be necessary to show that solutions driven by our

feedback control are well-behaved, i.e., staying bounded and

eventually decaying to the origin. This step is comprised of

Theorem 5.7 to Lemma 5.10.

Theorem 5.7: For any T ∈ [0,∞),
∫ T

0

l(ξ̄t, w̄(ξ̄t)) dt ≥ Ṽ (x) − Ṽ (ξ̄T ).

Proof:
∫ T

0

l(ξ̄t, w̄(ξ̄t)) dt

=

∫ T

0

[
l(ξ̄t, w̄(ξ̄t)) + max

p∈D−Ṽ (ξ̄t)

f(ξ̄t, w̄(ξ̄t)) · p

]
dt

−

∫ T

0

max
p∈D−Ṽ (ξ̄t)

f(ξ̄t, w̄(ξ̄t)) · p dt, (23)

where the integrability follows from Lemma 5.6.

Define

H0(x; H̃)
.
= {p ∈ IRn | H̃(x, p) = 0}.

Then, note that

l(ξ̄t, w̄(ξ̄t)) + max
p∈D−Ṽ (ξ̄t)

f(ξ̄t, w̄(ξ̄t)) · p

= max
p∈D−Ṽ (ξ̄t)

[
l(ξ̄t, w̄(ξ̄t)) + f(ξ̄t, w̄(ξ̄t)) · p

]
,

which by the definition of w̄, Lemma 5.4 and the definition

of W0,

= max
w∈IRk

max
p∈D−Ṽ (ξ̄t)

[
l(ξ̄t, w) + f(ξ̄t, w) · p

]
,

= max
w∈IRk

{
l(ξ̄t, w) + max

p∈D−Ṽ (ξ̄t)

[
f(ξ̄t, w) · p

]
}

,

which by Lemma 5.1,

= max
w∈IRk

{
l(ξ̄t, w) + max

p∈D−Ṽ (ξ̄t)∩H0(ξ̄t;H̃)

[
f(ξ̄t, w) · p

]
}

,

= max
p∈D−Ṽ (ξ̄t)∩H0(ξ̄t;H̃)

max
w∈IRk

[
l(ξ̄t, w) + f(ξ̄t, w) · p

]
,

= max
p∈D−Ṽ (ξ̄t)∩H0(ξ̄t;H̃)

H(ξ̄t, p),

which by Assumption (A.c),
≥ max

p∈D−Ṽ (ξ̄t)∩H0(ξ̄t;H̃)

H̃(ξ̄t, p),

which since p ∈ H0(ξ̄t; H̃),
= 0.

Integrating this over time, we see that,

∫ T

0

[
l(ξ̄t, w̄(ξ̄t)) + max

p∈D−Ṽ (ξ̄t)

f(ξ̄t, w̄(ξ̄t)) · p

]
dt ≥ 0.

(24)

Substituting (24) into (23), one finds
∫ T

0

l(ξ̄t, w̄(ξ̄t)) dt ≥ −

∫ T

0

max
p∈D−Ṽ (ξ̄t)

f(ξ̄t, w̄(ξ̄t)) · p dt,

which by Lemma 5.6,

= Ṽ (x) − Ṽ (ξ̄T ).

Corollary 5.8: For any x ∈ IRn, and any T ∈ [0,∞),
∫ T

0

l(ξ̄t, w̄(ξ̄t)) dt + V̂ (ξ̄T ) ≥ V̂ (x) − Kx
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where Kx
.
= V̂ (x) − Ṽ (x).

Corollary 5.9: For any R < ∞, there exists MR < ∞
such that for all |x| ≤ R and all T ∈ [0,∞),

∫ T

0

|ξ̄t|
2 dt ≤ MR.

Lemma 5.10: Given ε ∈ (0, 1], x ∈ IRn and T < ∞,

there exists T > T such that

0 ≤ Ṽ (ξ̄T ) ≤ V̂ (ξ̄T ) < ε.
Proof: As the other inequalities are already proven, we

prove only the rightmost. Using Corollary 5.9, it is easy to

show that given ε̄ > 0 and T < ∞, there exists T ∈ [T ,∞)
such that

|ξ̄T |
2 < ε̄. (25)

From [15], Theorems 3.19 and 3.20, there exists CV < ∞
such that V̂ (x) ≤ CV |x|2, and consequently,

V̂ (ξ̄T ) ≤ CV |ξ̄T |
2. (26)

Combining (25) and (26) yields the result.

We now begin the development leading to the main result

of the section. By Corollary 5.8 and Lemma 5.10, we see

that given ε ∈ (0, 1] and T < ∞, there exists T ∈ [T ,∞)
such that

∫ T

0

l(ξ̄t, w̄(ξ̄t)) dt ≥ V̂ (x) − Kx − ε. (27)

Recalling the specific form of l given in (5) and the growth

on L given by Assumption (A.V ), we see that (27) implies

γ2

2
‖w̄(ξ̄·)‖

2
L2(0,T ) ≤ α‖ξ̄‖2

L2(0,T ) + Kx + ε − V̂ (x)

which, by Corollary 5.9

≤ αM|x| + Kx + ε − V̂ (x).

Since this is true for any T < ∞,

‖w̄(ξ̄·)‖
2
L2(0,∞) ≤ Mx

.
=

2

γ2

[
αM|x| + Kx + 1 − V̂ (x)

]
.

(28)

Combining (28) and Corollary 5.9, we see that given ε̂ >
0, there exists T̂ < ∞ such that

‖ξ̄‖2

L2(T̂ ,∞)
, ‖w̄(ξ̄·)‖

2

L2(T̂ ,∞)
< ε̂,

which implies that given ε̂ > 0, there exists T̃ < ∞ such

that ∫ ∞

T̂

∣∣l(ξ̄t, w̄(ξ̄t))
∣∣ dt < ε̂, (29)

which implies that limT→∞

∫ T

0
l(ξ̄t, w̄(ξ̄t)) dt exists. In par-

ticular, given ε̂ > 0,
∣∣∣∣∣

∫ T

0

l(ξ̄t, w̄(ξ̄t)) dt − lim
T→∞

∫ T

0

l(ξ̄t, w̄(ξ̄t)) dt

∣∣∣∣∣ < ε̂ (30)

for all T ≥ T̃ . By (30) and Theorem 5.7, given ε̂ > 0,

lim
T→∞

∫ T

0

l(ξ̄t, w̄(ξ̄t)) dt ≥ Ṽ (x) − ε̂ − Ṽ (ξ̄T ) ∀T ≥ T̃ .

(31)

Combining (31) and Lemma 5.10 (with T replacing T̃ ), one

sees that given ε̂ > 0,

lim
T→∞

∫ T

0

l(ξ̄t, w̄(ξ̄t)) dt ≥ Ṽ (x) − 2ε̂.

Lastly, since this is true for all ε̂ > 0, we obtain:

Theorem 5.11:

lim
T→∞

∫ T

0

l(ξ̄t, w̄(ξ̄t)) dt ≥ Ṽ (x).

Combining Theorem 5.11 and Theorem 4.5, we have:

Theorem 5.12: For any x ∈ IRn,

lim
T→∞

∫ T

0

l(ξ̄t, w̄(ξ̄t)) dt ≥ V̂ (x) − θC3(1 + |x|2).

In other words, the payoff obtained with a feedback con-

trol, w̄(·), based on solution of the approximating problem,

will be arbitrarily close to the optimal payoff, V̂ (x). Further,

the bound on the difference, θC3(1 + |x|2), goes to zero as

θ → 0, where θ parameterizes the closeness of H̃ to the

originating Hamiltonian, H .
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