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Abstract— This paper presents a method to identify a class of
hybrid system models that arise in cognitive neural prosthetic
medical devices that aim to help the severely handicapped. In
such systems a “supervisory decoder” is required to classify
the activity of multi-unit extracellular neural recordings into a
discrete set of modes that model the evolution of the brain’s
planning process. We introduce a Gibbs sampling method to
identify the key parameters of a GLHMM, a hybrid dynamical
system that combines a set of Generalized Linear Models
(GLM) for dynamics of neuronal signals with a Hidden Markov
Model (HMM) that describes the discrete transitions between
the brain’s cognitive or planning states. Multiple neural signals
of mixed type, including local field potentials and spike arrival
times, are integrated into the model using the GLM framework.
The identified model can then be used as the basis for the
supervisory decoding (or estimation) of the current cognitive
or planning state. The identification algorithm is applied to
extracellular neural recordings obtained from set of electrodes
acutely implanted in the Posterior Parietal cortex of a rhesus
monkey. The results demonstrate the ability to accurately
decode changes in behavioral or cognitive state during reaching
tasks, even when the model parameters are identified from small
data sets. The GLHMM models and the associated identification
methods are generally applicable beyond the neural application
domain.

I. INTRODUCTION

A ”neural prosthetic” is a brain-machine interface that

enables a human, via the use of surgically implanted elec-

trode arrays and associated computer decoding algorithms, to

control external electromechanical devices by pure thought

alone. In this manner, some useful functions can be partially

restored to patients with severe motor disorders (e.g. Lou

Gehrig’s disease) or with high level spinal cord injuries.

Cognitive neural prostheses work by “decoding,” or esti-

mating, motor plans from the recorded electrical activity

of multiple neurons in brain areas (such as the posterior

parietal or dorsal premotor cortices) associated with motor

planning. These decoded plans can be used to drive devices

such as prosthetic arms or computer interfaces [1], [2], [3].

Future practical clinical neuroprostheses that seek to provide

a facile interface for the paralyzed patient will require a

supervisory decoder whose job is to classify, in real time,

the discrete cognitive, behavioral, or planning state of the

brain region from which the neural signals are recorded. I.e.,

the supervisory decoder must determine if: (1) the patient is

asleep or disinterested in using the prosthetic; (2) the patient

wishes to use the prosthetic; (3) the patient is planning

an action that must be decoded; (4) the patient wants to

execute the planned action; (5) the patient wants to scrub

or change the current action. While the actual planning

process in the brain is quite complex, for the purposes of

supervisory decoding there are a finite number of cognitive

states that model and govern the relevant activities of a

brain-machine interface. The knowledge of the current state

in the evolution of the planning process can be used in a

variety of ways. For example, depending upon the current

state, different algorithms, or different parameters in the

algorithm, can be applied to the decoding of movement plans.

Moreover, accurate knowledge of the current cognitive state

will improve the action of the prosthetic system.

In this paper we model the neural processes related to

the brain-machine interface as a hybrid dynamical system,

where the discrete states are associated to the cognitive

or planning brain states, and the continuous states model

the observed neural activity, such as firing rate. Thus, the

design of a supervisory decoder is a two part process: (1)

the identification (or learning) of the hybrid model that

represents neural activity in each discrete cognitive state

as well as the transitions rules between cognitive states;

(2) the design of an estimator which uses the identified

hybrid model to classify the current neural activity into

discrete cognitive states. In this paper we introduce a Gibbs

sampling procedure to identify a General Linear Hidden

Markov Model (GLHMM) class of hybrid dynamical that

combine a discrete dynamical system that is governed by

a Markov chain with continuous neural dynamics that can

be modeled by a generalized linear model. The methods

we use to decode, or estimate, the current GLHMM state

using the identified model follow from existing procedures.

While this class of dynamical systems is well suited to

our motivating neural prosthetic application, the GLHMM

models and methods presented in this paper can potentially

be applied to other physical systems.

Section II reviews basic neural signal models. Section III

describes the GLHMM class of hybrid dynamical models,

while Section IV presents a procedure to identify GLH-

MMs using a two-stage Gibbs sampler. For purposes of

demonstration and validation, Section V describes results

obtained by applying the method to neural recordings in the

parietal cortex of a macaque monkey while the animal carries

out tasks that simulate the operation of neural prosthetic.

Previous work [3], [4], [5] has demonstrated that the parietal

reach region (PRR) in the posterior parietal cortex contains
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both motor planning activity as well neural correlates of

the discrete cognitive and planning states needed for a

supervisory controller.

II. NEUROLOGICAL SIGNAL MODELS

The front end of a cortical neural prosthetic typically

consists of a multi-electrode array implanted in cortical

tissues [1], [2], [3], [5]. The signal recorded from each

electrode contains multiple signals components that arise

from different physiological origins and whose characteris-

tics require different signal models, which are now briefly

reviewed.

A. Local field potentials

Cortical local field potentials (LFP) arise from the ag-

gregate dendritic electric potentials originating from neurons

in a “listening sphere” that surrounds the electrically active

tip of the recording electrode [4]. Such signals average the

dendritic activity of a few thousand nearby neurons. In

practice, the LFP signal component is derived by amplifi-

cation and band-pass filtering (usually in the range 2-300

Hz) of the electrode signal. Historically, the LFP is modeled

from the knowledge of its spectrogram [4], [6] which is

optimally obtained from multitaper methods [7] which apply

the Fourier transform to tapered time series obtained from

the digitization of the LFP signal. Spectrograms of the LFP

signal in the Parietal Cortex show that temporal variations

of the power in certain frequency bands is correlated with

intended arm reach direction, as well changes in planning

state [4], [6]. The average power in each frequency band

can be modeled as a random variable with a log normal

distribution.

Autoregressive (AR) or vector autoregressive (VAR) equa-

tions can be used for parametric spectral estimation [7], and

will be used here to model the LFP signal in the time domain.

A pth order AR model, denoted AR(p), takes the form:

yk =

p
∑

i=1

β(i)yk−i + ηk , (1)

where yk ∈ R is the LFP signal sampled at time tk, and

ηk ∼ N (0, σ2) is zero mean noise with covariance σ2, and

model parameters θ =
{

β(1), ..., β(p), σ2
}

Note that the

spectral density of a stationary AR(p) process (1) is given

by [7]:

S(f) =
σ2∆t

∣

∣

∣
1 −

∑p

j=1 β(j) exp−i2πfj∆t

∣

∣

∣

2 , (2)

where f is the frequency, and ∆t is the sampling period.

While the spectrogram has been the primary LFP modeling

tool in prior work, there are two main advantages of using

time domain based AR models instead of frequency domain

spectrogram methods. First, the real-time computation of

the spectrogram is an excessive practical burden, and it

additionally introduces a time lag in the response of the

neural prosthetic system since a large window size (typically

512 or 1024 msec) is needed to obtain good precision.

This lag may cause undesirable psychophysical delays for

the prosthetic-using patient. The AR approach effectively

uses considerably smaller window sizes: the experiments of

Section V use a 55th order model on data LFP data sampled

at 1kHz, resulting in an effective window width of 55msec.

B. Single Unit Activity

Neurons generate characteristic electrical pulses called

action potentials, or spikes, whose arrival times, and not

waveform shape, are believed to encode information. Math-

ematical models used to decode neural stimuli typically

focus on the firing (spiking) rate of individual neurons

[8]. Numerous studies have shown that single unit activity1

can be correlated to intended reach direction, as well as

temporal or cognitive state in the posterior Parietal cortex [4],

[6]. Following standard practice, the spike arrival times are

discretized into sufficiently small time bins (1 msec in our ex-

periments) so that only one spike at most is assigned to each

bin. Let the beginnings of each discretized sampling interval

be denoted by the sequence of times {t1, t2, . . . , tk, . . . , tT }.

Thus, each bin corresponds to the time interval (tk, tk+1].
The signal yk is the number of spikes arriving in the interval

(tk, tk+1]. When the bin size is sufficiently small, the spike

arrival times can be modeled as a point process with a

stationary Poisson distribution:

f(yk, λ) =
λyke−λ

yk!
, (3)

where λ is the firing rate of the neuron, and is the only

parameter of the model (θ = λ). In previous studies [9], [10],

we have used a more versatile non-stationary point process

model [11] to represent single spiking unit activity. In this

similar model, the non-stationary firing rate is a log linear

function of the neuron’s spiking history:

λk = exp

[

β(0) +

p
∑

i=1

β(i)yk−i

]

. (4)

While the methods presented in this paper handle this more

general model, is not considered here due to the sparsity of

the neural action potentials in the example of Section V.

III. SUPERVISORY DECODER MODEL

This section describes a generalized linear hidden Markov

model (GLHMM) hybrid dynamical system model that rep-

resents the discrete cognitive states and their transitions by

a Hidden Markov Model (HMM), and uses Generalized

Linear Models (GLM) to represent neural activity in each

cognitive state. Note that both the AR-LFP models (1) and

point process single unit models (3)-(4) are examples of

generalized linear models. See [12] and references within

for additional information on GLMs.

1The action potentials, or spikes, of more than one neuron may be
recorded on a single electrode. A two step process isolates the activity of a
single neuron, or unit. First, spike waveforms are detected (in the midst of
substantial background noise) in the electrical signal. The detection process
also provides an estimate of the spike waveform’s arrival time, the time at
which the spike amplitude peaks. A spike sorting process [5] then analyzes
the waveform shapes and clusters the waveforms according to different
putative neural signal sources.
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A. Generalized Linear Hidden Markov Model

A GLHMM is formed around a set of d unobservable

discrete states, S = {S1, S2, . . . , Sd}, whose evolution is

governed by a first order Markov process. In our application,

these discrete states model the different cognitive or planning

states of the cortical area involved in the brain-machine

interface. At each tk, let mk denote the mode index, i.e., at

tk the system is in state Smk
. The probability of switching

between modes of the system is governed by a first order

Markov chain with transition matrix A = [ai,j ]:

P (mk = j| mk−1 = i) = ai,j . (5)

Let the vector yk =
[

y1
k, . . . , yn

k

]T
denote the n neural

signals measured at tk. Each neural signal yi
k is modeled

as a generalized linear model, with parameters that depend

on the discrete mode Smk
:

yi
k ∼ fi

(

gi
−1
(

θi
mk

xi
k

))

. (6)

Here fi is a probability distribution from the exponential

family, and gi is a link function. The linear predictor, θi
mk

xi
k

is composed of a regressor xi
k of ny previous subset outputs

and other system covariates or inputs uk:

xi
k =

[

yi
k−1, . . . , y

i
k−ny

, uk
T
]T

, (7)

and a corresponding parameter vector θi
mk

.

For example, the AR model for LFP activity can be written

in the GLM form (6) by setting f as the normal distribution

f = N (·, σ2), using identity for the link function g, and

simply using the output history in the regressor xk:

yi
k ∼ N

(

βi
mk

xi
k, σ2 i

mk

)

(8)

Likewise both the stationary and non stationary Poisson point

process models for single unit activity can be expressed in

GLM form.

IV. IDENTIFICATION OF GLHMM MODELS

This section describes a two-stage Gibbs sampler to iden-

tify GLHMM model parameters from an observed data set,

y1:T , where

y1:T = [y1, ...,yT ] . (9)

Using a probabilistic formulation of the problem, we seek to

estimate the posterior density of the GLHMM parameters:

p (Θ| y1:T ) , (10)

where Θ is the set of all model parameters. Model identifica-

tion is obtained from the mode of this distribution. Assuming

that there are n total signal sources, with nLFP LFP signals

and nspikes single unit signals, and d discrete modes, then

without loss of generality:

Θ =
{

θi
m, A

}n

i=1
, for m = 1, ..., d , (11)

where:

θi
m =

{

λi
m if i <= nspikes

[βi
m(1), ..., βi

m(p), σi
m] if i > nspikes

, (12)

and the variables βi
m were defined in Equation (1).

Instead of estimating (10) directly, we instead consider

the joint density function of the parameters Θ and the latent

discrete modes m1:T :

p (Θ, m1:T | y1:T ) , (13)

as (10) is the marginal distribution of (13):

p (Θ| y1:T ) =
∑

m1:T ∈ST

p (Θ, m1:T | y1:T ) . (14)

A two stage Gibbs sampler is used to draw samples from

the distribution (13), from which the identification process

is realized. Alternative methods for analyzing or maximizing

this distribution include the Expectation Maximization algo-

rithm [13], [14], as well as gradient and variational methods.

A. Gibbs Sampling

Gibbs sampling is an MCMC method for sampling from

a potentially complicated joint pdf, p (φ1, ..., φn), where

φ1, . . . , φn are system states or parameters. Gibbs sampling

can be usefully applied when the joint pdf p (φ1, ..., φn), has

associated conditional pdfs,

p (φ1| φ2, ..., φn) , . . . , p (φi| φ1, ..., φi−1, φi+1, ..., φn) ,

. . . , p (φn| φ1, ..., φn−1) ,

which can be efficiently sampled (e.g., there is a closed form

solution for the pdf). A single step in the Gibbs sampling

cycle requires one sample to be drawn sequentially from each

of the conditional pdfs, using the most recent sampled value

in subsequent conditional arguments. At the end of each step,

a new sample φ̂ =
[

φ̂1, . . . , φ̂n

]

has been drawn. As the

Gibbs sampler iterates through many steps, the samples
{

φ̂
}

tend to the joint distribution [15]. In theory this property

implies that the maximum of p (φ1, ..., φn), can always be

found using a sufficiently lengthy Gibbs sampling process, as

opposed to Expectation Maximization methods where only

a local maximum is guaranteed. In practice, only a finite

number of samples are drawn, and multiple runs of the Gibbs

sampling algorithm from different starting points are usually

conducted to test for convergence. The Gibbs sampling pro-

cess allows the joint pdf (13) to be naturally decomposed into

the component parts of identification, p (Θ| M, y1:T ), and

classification, p (M | Θ, y1:T ). This method is well suited to

high dimensional problems, and has asymptotic convergence

properties [16].

B. Gibbs Sampling Algorithm for GLHMM

Algorithm 1 defines a two stage Gibbs sampling method

for GLHMMs. This algorithm draws imax samples from the

joint distribution p (Θ, m1:T | y1:T ). Let the ith sample of a

variable, Θ, be denoted: Θ̂(i).
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Algorithm 1 Gibbs Sampling for GLHMM

1: Initial mode estimate: m̂
(0)
1:T

2: for i = 0 to imax do

3: Θ̂(i+1) ∼ p
(

Θ| m̂
(i)
1:T , y1:T

)

4: m̂
(i+1)
1:T ∼ p

(

m1:T | Θ̂(i+1), y1:T

)

5: end for

The core of algorithm involves sequentially drawing sam-

ples from the two conditional distributions shown in lines 3

and 4 of Algorithm 1, and can be considered identification

and classification steps respectively. The following describes

how to efficiently draw samples from the conditional distri-

butions in Algorithm 1:

1) Parameter Conditional Distribution:

p (Θ| m1:T , y1:T ) (15)

The model parameters Θ, conditioned on discrete cog-

nitive modes m1:T are independent. This can be shown

by splitting the data y1:T into discrete sets, creating d
independent identification problems. y1:T is split as follows:

Yi = {yk : mk = i, k = 1, . . . , T} . (16)

The parameter distribution (15) then becomes:

d
∏

m=1

p
(

θ1
m, ...,θn

m| Ym

)

p (A| m1:T ) . (17)

Furthermore, assuming independence between the n signals,

p
(

θ1
m, ...,θn

m| Ym

)

=

n
∏

i=1

p
(

θi
m| Ym

)

, (18)

where the individual distributions p
(

θ
i
m| Ym

)

can be sam-

pled from efficiently as they are in the GLM family, using

either standard methods or using adaptive rejection sampling

[17].

Each row, a(i,1:d), of A, the discrete Markovian kernel,

can be sampled from independently [18], [14]:

p (A| m1:T ) =
d
∏

i=1

p
(

a(i,1:d)| m1:T

)

. (19)

To sample from each row, the number of transitions in m1:T

are counted:

p (ai,1:d|m1:T ) =

D

(

αi,1 +

T
∑

k=2

δ(mk−1=i)δ(mk=1), . . . ,

αi,d +

T
∑

k=2

δ(mk−1=i)δ(mk=d)

)

, (20)

where D is the Dirichlet distribution, δ is the dirac delta

function, and the αi,j are derived from priori information,

and can be used to bias and constrain allowable transitions

(see Sec. IV-C).

2) Discrete Cognitive State Probabilities:

p (m1:T | y1:T , Θ) (21)

The discrete cognitive states m1:T can be sampled from

jointly by using dynamic programming, specifically the for-

ward filter (Algorithm 2) and then Markovian backwards

sampling [14] (Algorithm 3)

Forward filtering is a dynamic programming process that

yields the forward distributions:

p (mk = i| y1:k, Θ) (22)

This algorithm can be derived directly using the Bayes

theorem, and is used in the hidden Markov model literature

[13].

Algorithm 2 Forward Filtering

1: p (m1 = i| y1:1, Θ) = π(i)
2: for k = 2 to T do

3: ck =
∑d

i=1 p
(

mk = i| y1:k−1, Θ
)

p (yk| mk = i, Θ)

4: p (mk = j| y1:k, Θ) =
p
(

mk = j| y1:k−1, Θ
)

p (yk| mk = i, Θ) /ck

5: p (mk+1 = j| y1:k, Θ) =
∑d

i=1 p (mk = i| y1:k, Θ) p (mk+1 = j| mk = i, Θ)
6: end for

The normalizing constant ck in line 3 is shorthand for ck =
p
(

yk| y1:k−1, Θ
)

, and is the usual normalizing constant

used in this algorithm.

Markovian backwards sampling, Algorithm 3, can then be

used to simulate values of the discrete state m1:T .

Algorithm 3 Markovian Backward Sampling

1: mT ∼ p (mT | y1:T , Θ)
2: for k = T − 1 to 1 do

3: mk ∼ p (mk| y1:k, mk+1, Θ)
4: end for

Note that the distributions in Algorithm 3, can be broken

down into the forward distributions (22), and the Markov

transition probabilities, by applying Bayes’ theorem:

p (mk = i| y1:k, mk+1 = j, Θ) =

p (mk = i| y1:k, Θ) p (mk+1 = j| mk = i)
∑d

i=1 p (mk =i| y1:k, Θ) p (mk+1 = j| mk = i)
, (23)

C. Prior Information

Constraints can be incorporated into the identification

problem in a natural way through the use of prior distri-

butions. While priors are used on all distributions, the most

significant benefits are derived from instructive priors on the

Markov transition matrix A and firing rate λ priors. For

efficiency, conjugate prior distributions are used [16].

To avoid degeneracy in estimation, firing rates are con-

strained to be non-zero. This is a significant issue, as neural

data streams with low firing rate may contain intervals in
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which no action potentials are observed, leading to maximum

likelihood estimates of zero firing rate, λ = 0. To overcome

this problem, we use a gamma prior that represents physio-

logically plausible firing rates.

p
(

λi
k

)

= f(λi
k; α, β) = (λi

k)α−1 βαe−βλi
k

Γ(α)
, (24)

where α = 2, and β = 100.

The prior distribution of the Markov transition matrix, A,

constrains how the model can transition between discrete

states. A Dirichlet distribution is used for each row of A:

p (ai,1:d|m1:T ) = D (αi,1, αi,2, ..., αi,d) , (25)

where the parameters αi,j ∈ N, the non-negative integers

(including 0). For the neural prosthetic application in Sec.

V, we have four discrete modes, which occur in a cyclic

order. This transition structure is imposed on the GLHMM

by introducing the following prior parameters:

[αi,j ] =









1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1









. (26)

For example, this prior choice constrains the first discrete

state S1 to transition into S2. Indeed this constraint leads to

the desired behavior of S1 → S2 → S3 → S4 → S1, ...,. In

general if αi,j > 0, then the transition Si → Sj is allowed.

D. Model Order Selection

The AR order of the LFP signal models are automatically

selected using the Bayesian information criterion (BIC) [19].

BIC is defined as:

BIC = 2 lnL − k ln(N) (27)

where N are the number of observations, k are the number

of free parameters, and L is the likelihood value for the

estimated model. For GLHMMs, k = (nLPF )pd+nspikesd,

where p is the AR order, d is the number of discrete states,

and nLFP is the number of LFP signals. The number of

observations is the number of elements in y1:T .

Instead of calculating the AR order p for every neural

data set used in Sec. V, we chose a single data set, and

calculated the BIC as follows: First we identified a GLHMM

with a nominal AR order p0. Then we used the corresponding

discrete states m1:T , to break the data set up into d sets,

each set corresponding to a discrete mode. For each of

these sets, we found the maximum likelihood estimate of

the parameters, for AR order p = 1, ..., 100. The BIC value

was computed for each p, and the maximum BIC estimate

was chosen.

It is assumed that the number of discrete cognitive states

d is a fixed and known number. This is appropriate for our

neural prosthetics application where the discrete states have

physical meaning and are related to experimental events,

however for other applications, several models orders d
should be selected and compared.

E. Estimation with GLHMMs: The Viterbi Algorithm

The Viterbi Algorithm [13] is typically used to find the sin-

gle best hidden discrete state sequence M = {m1, ..., mT }
for hidden Markov models. It should be noted that it is not a

causal filter, as it uses all observations {y1, ..., yk, ..., yT}
when estimating the kth discrete mode mk. Due to the

Markov transition properties of the GLHMM model, it is

simple to extend and apply here.

V. APPLICATION TO NEURAL DATA SET

We applied the GLHMM identification procedure de-

scribed above to a neural data obtained from experiments

with rhesus monkeys. This data set consists of recordings

from two male rhesus (Macaca mulatta) monkeys, Animal

C and Animal D, from electrodes placed in various positions

within the Parietal Reach Region (PRR) of the posterior

parietal cortex. The neural data set contains both LFP and

neural spike arrival time signals [4]. While we have analyzed

data from both animals, for brevity the results presented

below focus on the 96 electrode recordings from animal D.

The data recordings occurred while the monkeys repeti-

tively executed a delayed center-out reaching task, which is

commonly used to simulate the actions of a neural prosthetic.

Such simulations are a necessary step in the development of

this technology for eventual human use. This task is illus-

trated in Fig 1. A task-board is placed within arm reaching

distance in front of the monkey’s visual field of view. Each

trial proceeds as follows. A light located in the center of

the task board is illuminated, and the monkey must place its

reaching arm on the light to indicate that it is attending to

the trial. A target light is flashed at one of 8 target locations

around the task board perimeter for a short cue period, and

then the target light is extinguished. After a random time

delay (the memory period, during which the monkey must

remember the target location and also plan its upcoming

reach to the target), the center light is extinguished, cueing

the monkey to reach to the remembered target location. If

the monkey successfully touches the correct target location,

while also respecting the temporal structure of the sequence,

it is given a juice reward.

To simulate the action of a neural prosthetic, the neural

signals from the PRR are “decoded” during the memory

period (when the monkey can only be planning a reach,

and not executing a physical reach), to predict the monkey’s

subsequent physical reach, even before the reach occurs.

Successful prediction of the subsequent reach from the mem-

ory period signals validates the ability to decode a reaching

plan from PRR neural activity. Practically, these experiments

demonstrate, for example, the ability of the brain machine

interface to control cursor movements on a computer screen

using neural signals. Such cursor control is a basic function

that would allow paralyzed patients to use a computer. In

more advanced experiments that more accurately simulate a

neural prosthetic, the monkey is taught to purely think about

the reach to the target, and the desired cursor command is

decode from this thought [5].
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Center light on Target on Target off Center light off (GO) Cue redisplayed

Baseline Cue Memory Reach

a

b

Fig. 1. Center-out reach experiment: a) Displayed experimental cues, b) corresponding cognitive or behaviorial states.

We can also use these trials to simulate and validate a

supervisory decoding system. The trial structure has an as-

sociated discrete number of different cognitive and planning

states: (1) a baseline state where the monkey is idle, or

starting to attend to the upcoming trail; (2) a cue period

during which the target location is lit; (3) a memory period

during which the location of the now extinguished target

must be remembered by the monkey, and during which the

monkey plans its upcoming arm movement; (4) a short“go”

period (which is really a transition between memory and

execution states) during which the planned movement is

initiated; and (5) a reach or execute period during which the

arm moves to the target location. To successfully simulate a

supervisory decoder, we seek to demonstrate that the onset

and duration of these different planning/cognitive periods

can be correctly estimated solely from the neural signals

recorded during the trial. The actual behavior of the monkey

is actively recorded during the task execution, providing us

with a reasonably good ground truth model against which the

predictions can be compared. We are particularly interested

in estimating the onset of the reach state (the “go” signal).

In an neural prosthetic, this signal will trigger the execution

of an action associated to the decoded planning activity.

Training (identification) and testing (estimation) data sets

were created by randomly choosing an n electrode subset,

En, from the set of available electrode signals, E . We limited

our selection to the subsets of the recorded data which

included at least 7 successful reaches in each of 8 possible

reach directions, and whose signal to noise quality exceeded

a threshold [4]. From the data set En, two reach trials in each

of the 8 directions were randomly chosen (16 trials total) to

form the training set. A testing data set was formed from the

remaining 5 trials in each of the 8 directions (40 trials total).

This is done 7 times for the given value of n, where n was

varied from 1 to 6, resulting in 42 data sets, each containing

16 training trials and 40 testing trials.

For each of the 42 training data sets, a GLHMM was

identified using the Gibbs sampling method described in

Sec. IV. Estimation of the discrete cognitive state in the

corresponding testing data sets is then done using the Viterbi

algorithm. For each trial, a discrete state estimation, or

decode, was considered correct when the reach state was

decoded within a 300 ms window of the ’go’ signal, as

shown in Fig 2. The exact timing of the go signal is obtained

experimentally by watching for the onset of the monkey’s

arm motion. The average percentage of correct decoding

trials versus the number of electrodes n is shown in Fig
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Fig. 2. Example decode: a) Recorded neural spike arrival times for 6
electrodes. b) Local field potentials for 6 electrodes. c) Cognitive states as
defined by experimental cues. d) Decoded cognitive state.
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Fig. 3. Decoding results: Percentage of correctly decoded trials, where
the reach state was correctly estimated within a finite time window of the
actual reach occurring: a) Decoding using both LFP and single unit activity.
b) Decoding using only LFP signals. c) Decoding using only single unit
activity.

3. The error bars represent standard deviations of percent

correct over the seven repetitions described above.

Figure 3 shows that a high level of decoding performance

can be achieved using a relatively small number of elec-

trodes. This is a promising result, as the surgical complexity

and risk associated with the implantation of the electrodes is

proportional to the number of electrodes.

In addition to the high percent correct of decodes, the lag

between the estimated onset of the reach state and the actual

reach is small, 0.027s on average. From the psychophysical

point of view, this is a negligible lag.

To relate the identified models back to the science con-

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeA05.6

2030



10
1

10
210

-3

10
-2

10
-1

10
0

Frequency (Hz)

Reach
Memory
Cue
Baseline

Fig. 4. Power spectrum of the identified AR models for each discrete
cognitive state for a single electrode

ducted in [4], we can calculate the power spectral density

(PSD) of the identified models, and show that we recover

similar phenomenon, of changing power in different fre-

quency bands through time in LFP signals. The PSD of the

55th AR models for a single electrode in each discrete state

is shown in Fig 4. The AR models in each discrete state show

the characteristic noise peak at 60Hz and 120Hz, however

the large discrepancy at lower frequencies is consistent with

the ranges considered in other studies using spectrographic

methods.

VI. CONCLUSION

This paper presented a new method, based on a 2-stage

Gibbs sampling process, to identify the parameters of a Gen-

eral Linear Hidden Markov Model class of hybrid dynamical

systems. This procedure naturally decomposes the hybrid

system identification problem into parameter identification

and discrete state clustering components. While the GLHMM

model is very well suited to our motivating application, it

should be useful for modeling other physical systems. We

demonstrated the use of these techniques on actual neural

recordings–signals which are characteristically noisy and

only weakly stationary.

As presented, our method is limited to stationary Hidden

Markov models with an apriori known number of discrete

states. Future work will focus on extending this methodology

to include non-stationary Hidden Markov Models, and to

allow automatic selection of the most probable number of

discrete states.
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