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Abstract—We present the construction and analysis of

a dynamical system model for human decision making

in sequential two-choice tasks, in which a human subject

makes a series of interrelated decisions between two

choices in order to obtain the maximum reward. For a

nominal decision making policy inspired by behavioral

aspects of humans, we show asymptotic behavior of such

decision making process in sequential two-choice tasks

for various types of reward structures. Our work gives

a control theory oriented perspective to the experiments

carried out by cognitive scientists.

I. INTRODUCTION

Operations of mixed teams of humans and robots have

recently attracted new research interests with the goal of

ensuring that the entire human/robot system maintains

certain required performance despite that performance of

humans is affected by physiological and psychological

factors and skill levels (see, e.g., [1]). One way to

address the above issue is to incorporate human deci-

sion making dynamics into the design of autonomous

robots. This line of research requires knowledge of both

human decision making and autonomous control and has

attracted collaborative research of cognitive researchers

and control researchers.

In this paper, we use control theoretic tools to study

a particular type of human decision making, namely

decision making in sequential two-choice tasks [2], [3].

This type of task is specifically devised by cognitive

scientists to study cognitive and behavioral aspects of

human decision making [2], [3] (which were inspired

by foraging behaviors of honeybees [4]).

Human decision making in sequential two-choice

tasks has been modeled using the prediction-error model

[3], which is a neural network/reinforcement learning

model with two weights, one for each choice, where the

probability of the next choice is biased as a function of

the difference between the weights. Also closely related
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to sequential two-choice tasks are two alternative forced-

choice tasks, such as the task of determining the direc-

tion of moving dots embedded in a noisy screen. Two

alternative forced-choice tasks have been modeled using

drift diffusion models (see, e.g. [5] and the references

therein), in which the difference between the amounts

of evidence supporting one choice over the other is

integrated over time until it crosses a threshold.

This work aims to bring a control systems perspective

to the modeling and analysis of sequential two-choice

tasks. In particular, we focus on asymptotic properties

of human decision making, a feature which has not

been addressed adequately in [3], [5], [6]. While human

decision making is stochastic in nature, as a first step, we

model human decision making as a deterministic policy

motivated by two basic human behavioral characteristics.

We then discuss extensions of such nominal policy to

capture other human behavioral aspects. Compared to the

prediction-error model, our model is somewhat simpler

but it enables us to analyze asymptotic behaviors for

various types of reward structures in sequential two-

choice tasks (see also [7] for another approach to the

modeling and analysis of sequential two-choice tasks as

well as how to map this type of task to certain operations

of mixed teams of humans and robots).

Our work here lies in between the areas of cognitive

science and control systems theory. With respect to the

cognitive research community, this work brings another

perspective on and explanation of the dynamics of hu-

man decision making. To the control community, this

work introduces a particular class of dynamical systems

coming from cognitive science in which the dynamics to

be controlled are completely unknown to the controller,

the controller has limited memory and computational

capability, and the system’s behavior is then assessed

via structure of output functions.

II. SEQUENTIAL TWO-CHOICE TASK

In a sequential two-choice task [2], a participant is

presented with two choices (e.g., two buttons), A and

B. At each time, the participant can choose either A
or B and receives a reward afterward. The goal is
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to maximize the reward. The reward is calculated as

follows: if the participant chooses A, and the percentage

of A among the last fixed number of (e.g. 20) decisions

is x, the reward is ϕA(x); if the participant chooses B,

and the percentage of A among the last 20 decisions is

x, the reward is ϕB(x) (see Fig. 1). The number 20 is

defined as the window of the task. The pair (ϕA, ϕB) is

called a reward structure. Examples of common reward

structures are plotted in Fig. 1, where the horizonal

axis is the percentage of allocation to A in last 20
decisions, and the vertical axis is the reward (which is

a non-negative number) for choice of A or B at a given

percentage of A.

reward to A

reward to B

w1 10
Allocation to A

Reward

ϕB

ϕA

a. Matching shoulder task

reward to A

reward to B

w1 10
Allocation to A

Reward

ϕB

ϕA

w2

b. Rising optimum task

Fig. 1. Common reward structures [3].

The difficulty for a participant in the task is that the

participant knows neither how the reward is calculated

nor the reward functions ϕA and ϕB . Cognitive scientists

are interested in finding out whether a human can find

the global optimum for a given reward structure (e.g., in

Fig 1b, the global optimum decision is near the point 1 of

the horizontal axis) and how human characteristics (such

as personality) influence performance in these tasks.

In experiments using the matching shoulder task (Fig.

1a) [2], cognitive scientists observed that for a majority

of the human test subjects (18 out of 24), the human

decisions were such that the average of A over the

entire experiment was biased towards the point w1 of the

horizontal axis (which is known as a crossing point in

the cognitive literature [8]). In the rising optimum task

(Fig. 1b), for about half of all participants (14 out of

25), the average of A over the entire experiment was

biased toward the point w1. A smaller percentage of

the participants were biased toward the point 1 of the

horizontal axis. These particular biases suggest that there

is some mechanism underlying human decision making

in sequential two-choice tasks.

III. MODELING DECISION MAKING IN SEQUENTIAL

TWO-CHOICE TASKS

Denote by tk ∈ R, k = 0, 1, . . . the times at which the

human makes decisions (where t0 is the starting time),

and by u(tk) the corresponding decisions, where u(tk) ∈
{A,B}. Denote by x the fraction of A in the last N
choices, where N is the window of the task. Between

tk and tk+1, x does not change, and so the dynamics

of x are ẋ(t) = 0 for t ∈ (tk, tk + 1). At time tk, x
is changed1 according to the following impulsive map g
(also known as a reset map):

x(tk) = g(x(t−
k
), u(tk))

=:































x(t−
k
) + 1

N
if u(tk) = A,

u(tk) 6= u(tk−N )

x(t−
k
) − 1

N
if u(tk) = B,

u(tk) 6= u(tk−N )

x(t−
k
) if u(tk) = u(tk−N ).

(1)

Let (ϕA, ϕB) be a reward structure, where {ϕA, ϕB} :
[0, 1] → [0, Rmax] for some number Rmax. The reward

to the participant at time tk is

y(tk) = ϕu(tk)(x(tk)). (2)

In control terminology, the decision u is the control

signal, and y is the output. In general, the control signal

is of the form

u(tk) = ρ(I(tk)) (3)

for some function ρ (which could be probabilistic

and vary from person to person), and I(tk) :=
{u(ti), y(ti), 0 6 i < k} is the information available

to the controller (i.e. the human in this case) at time tk.

The closed loop system of the sequential two choice task

is written as






























ẋ(t) = 0 t 6= tk

x(tk) = g(x(t−
k
), u(tk))

y(tk) = ϕu(tk)(x(tk))

u(tk) = ρ(I(tk))

I(tk) = I(tk−1) ∪ {y(tk−1), u(tk−1)}

(4)

with some initial values for u(t−N ), . . . , u(t−1), the

initial state x(t−1) being the number of A in

{u(t−N ), . . . , u(t−1)}, and I(t−1) = ∅, where g is as

in (1), ϕ is as in (2), and ρ is as in (3).

1Without loss of generality, we assume that x is continuous from

the right.
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We chose to treat x as a continuous-time variable

because in general, the variable x, which represents

the state of the environment with which the human

interacts, can have its own dynamics, i.e. ẋ = 0 in (4)

can be generalized to ẋ(t) = f(x(t)) (though in this

paper, we only consider the sequential two-choices tasks

represented by (4)). Fig. 2 depicts the closed loop of

sequential two-choice tasks in general.

ẋ = f(x)

x(tk) = ρ(I(tk))

x(tk) = g(x(t−k ), u(tk))

System (the environment)

Controller (the human)

Fig. 2. The closed loop system of a sequential decision task. The

dash line is to indicate that communication happens only at times tk.

A. The γ-policy for decision making

We do not solve for a control law ρ which optimally

plays the sequential two-choice tasks, but rather, try to

understand human decision making in such tasks (which

could be non-optimal). We seek a static control law ρ,

which is termed a policy in this context (in cognitive

science, such approach is called a top-down approach,

and policies are called normative strategies; see, e.g.,

[2]). A static ρ is of interest for the following reason: a

static ρ can be seen as an input-output characterization of

human decision making dynamics. Such a static ρ makes

analysis of asymptotic behaviors of the closed loop

system (4) possible. Also, this input-output approach

allows us to incorporate human behavioral characteristics

(such as exploring or hedging) directly into the model

(see Section V).

We now present one simple decision making rule—

termed the γ-policy—in sequential two-choice tasks:

u(tk) :=

{

u(tk−1) if y(tk−1) > y(tk−2)

switch(u(tk−1)) else,

(5)

where switch(a) = B if a = A, and switch(a) = A if

a = B. By convention, y(t−1) = ϕu(t
−1)(x(t−1)).

The rationale behind the γ-policy is as follows: In

sequential two-choice tasks, we postulate that humans

largely follow the following two courses of action:

• A1: If the last reward increases or does not de-

crease, one keeps the current choice.

• A2: If the last reward decreases, one will immedi-

ately switch the decision.

The above courses of action are illuminated by human

behavioral characteristics. If the outcome is as expected

i.e. when the last choice increases the reward, there is no

incentive to change from the last decision (alternatively,

it is the incentive to continue with the same decision). If

the outcome is not as expected i.e when the last choice

decreases the reward, it is the incentive to switch the

decision (in order to avoid further potential losses)2.

In cognitive psychology terminology, actions of Type

A1 are known as exploitation, and actions of Type A2

are known as exploration (in fact, relationships between

exploitation and exploration in human decision making

is a major research theme in cognitive science [11]).

Using this terminology, the first case of (5) encodes

exploitation, and the second case encodes exploration.

Switching between the two is triggered by whether

expectation is met or not.

The actions A1 and A2 are idealistic. Some humans

may try to explore by switching decisions even if there

is no decrease in rewards (for example, in gambling type

of activities), or some may stay with a decision even if

there is a temporary decline in rewards (for example,

those traits can be found in long term investors). We

will discuss modifications of the policy (5) to incorporate

these deviations later in Section V, but for the moment,

for the sake of conveying our idea and for analysis, we

use the (ideal) policy (5).

IV. ANALYSIS

A. Reward structures

Reward structures are continuous functions as con-

structed in the experiments carried out by cognitive

scientists. However, the outcomes of the experiments

depend only on values of the reward functions at the

discrete positions X = {0, 1/N, . . . ,N − 1/N, 1}.

In this paper, we consider eight basic types of reward

structures based on the monotonicity of ϕA and ϕB

and their relative positions. We write ϕA > ϕB if

ϕA(x) > ϕB(x) ∀x ∈ X (and similarly for ϕA < ϕB).

The definitions and examples the basic reward structures

are plotted in Fig. 3. The range of the rewards is

[0, Rmax] for some Rmax, and without loss of generality,

Rmax can be taken as 1 after some scaling. For a

structure Γ = (ϕA, ϕB), denote by Type(Γ) the type

of Γ.

2The γ-policy is very similar in spirit to the win-stay-lose-change

strategy in the psychology literature [9] or game theory literature

[10] but here the slight difference is that the reward can be the same

instead of a clear win-or-lose situation, and there is only one player.
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ϕA

ϕB

0 1
Type 1

ϕA increasing,

ϕB increasing,

ϕA > ϕB

ϕA

ϕB

0 1
Type 2

ϕA increasing,

ϕB decreasing,

ϕA > ϕB

ϕA

ϕB

0 1
Type 3

ϕA decreasing,

ϕB increasing,

ϕA > ϕB

ϕA

ϕB

0 1
Type 4

ϕA decreasing,

ϕB decreasing,

ϕA > ϕB

ϕB

ϕA

0 1
Type 5

ϕA increasing,

ϕB increasing,

ϕA < ϕB

ϕB

ϕA

0 1
Type 6

ϕA decreasing,

ϕB increasing,

ϕA < ϕB

ϕB

ϕA

0 1
Type 7

ϕA increasing,

ϕB decreasing,

ϕA < ϕB

ϕB

ϕA

0 1
Type 8

ϕA decreasing,

ϕB decreasing,

ϕA < ϕB

Fig. 3. Basic reward structures for sequential two-choice tasks. The horizontal axis is the percentage of A choices in the last N decisions,

and the vertical axis is the rewards for choice of A or B at given percentage of A

To facilitate analysis, we allow the domain of reward

structures be general intervals [a, b] ⊂ R, and the set X
is replaced by [a, a+∆, . . . , b] for some 0 < ∆ < b−a.

The definition of the basic reward structures in Fig. 3

unchanges when we replace [0, 1] by an interval D.

B. Asymptotic behavior

We can show that under the γ-policy, the decisions u
exhibit an asymptotic behavior. As in the previous sec-

tion, for generality, we allow the domain of the reward

structure be an arbitrary interval [a, b], and further, we

allow a general step change ∆ instead of 1/N in the

impulsive map g in (1):

x(tk) = ḡ(x(t−
k
), u(tk))

=:































min{x(t−
k
) + ∆, b} if u(tk) = A,

u(tk) 6= u(tk−N )

max{x(t−
k
) − ∆, a} if u(tk) = B,

u(tk) 6= u(tk−N )

x(t−
k
) if u(tk) = u(tk−N).

(6)

The max and min are to ensure that x is between a and b.

Let z(tk) := (u(tk−1), u(tk)) be the ordered sequence

of the two consecutive decisions at time tk−1 and tk;

it is clear that z(tk) ∈ {AA,AB,BA,BB}. We write

x ֌ x∗ (respectively, x ֌ S) if there exists T < ∞
such that x(t) = x∗ (respectively, x(t) ∈ S) ∀t > T .

Lemma 1 Consider the system (4) with the impulsive

map (6). Let Γ be a basic reward structure in Fig. 3 on

an interval [a, b]. Under the γ-policy (5),

• if Type(Γ) = 1, then x ֌ a if x(t−1) = a and

z(t1) = BB, and x ֌ b else

• if Type(Γ) ∈ {2, 7}, then either x ֌ a or x ֌ b
• if Type(Γ) ∈ {3, 4, 5, 6}, then there exists x∗ ∈ X

such that x ֌ {x∗, x∗ + ∆}
• if Type(Γ) = 8, then x ֌ b if x(t−1) = b and

z(t1) = AA, and x ֌ a else.

Sketch of proof: We construct finite state machines

for the variable z as in Fig. 4. Then by examining the

graph cycles for each finite state machine, we are able to

find patterns for the sequence of decisions. For example,

for Type 1 basic reward structures, from its finite state

machine, we conclude that unless the original state is

starting at x = a and the initial z is BB, all other

z will lead to a cycle of decisions AA, and hence, x
will approach b in finite time. The analysis is more

complicated for other finite state machines which have

multiple cycles and cycles with length greater than 1.

Due to the space limitation, the proof is omitted; see

[12] for details. �.

Corollary 1 Consider the system (4) with the impulsive

map (6). Let Γ be a basic reward structure on [a, b].
Under the γ-policy (5), for every initial state x(0) ∈
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AA

AB

BB

BA

Type 1

AA

AB

BB

BA

Type 2

AA

AB

BB

BA

Type 3

AA

AB

BB

BA

Type 4

AA

AB

BB

BA

Type 5

AA

AB

BB

BA

Type 6

AA

AB

BB

BA

Type 7

AA

AB

BB

BA

Type 8

Fig. 4. Finite state machines for the basic reward structures in Fig. 3.

[a, b], there exists a finite time T and x∗ ∈ X such that

x → {x∗, x∗ + ∆}.

For reward structures not one of the eight basic types

in Fig 3, if we can decompose the reward structure

into substructures of the basic types in Fig 3, then we

can examine the behavior of the overall structure using

Lemma 1. For a reward structure Γ on the domain [0, 1],
let {Γ1, . . . ,Γm} be the substructure decomposition of Γ
such that Γ is the concatenation of Γ1, . . . ,Γm. Assume

that Γ1, . . . ,Γm are of the basic types in Fig 3. It

can be shown that if such assumption holds, then the

decomposition Γ1, . . . ,Γm is unique.

Example 1 The reward structure in Fig. 1a. can be

uniquely decomposed into the substructures Γ1 on [0, w1]
and Γ2 on [w1, w], where w1 is the intersection of ϕA

and ϕB . We have Type(Γ1) = 3 and Type(Γ2) = 6. ⊳

Using Lemma 1, we obtain the following theorem.

Theorem 1 Consider the system (4) under the γ-policy

(5) with a reward structure Γ on [0, 1] and a window N .

Suppose that Γ can be decomposed into substructures of

the eight basic types in Fig. 3. For any initial values of

u(t−N ), . . . , u(t−1), there is a time T < ∞ and x∗ ∈
[a, b] such that |x(t) − x∗| 6 1/N for all t > T .

V. DISCUSSIONS

The γ–policy is idealistic, while undoubtedly, human

behavioral characteristics are rich and diverse. To capture

other human factors, the γ–policy can be modified and

extended in several ways as described belows.

1) Nondeterministic γ-policy: Humans may not fol-

low the γ-policy if one is not consciously aware of

it. However, as we discussed in Section III-A, humans

may unconsciously follow the γ-policy most of the time

due to common human psychology. We can relax the

condition that a human follows the γ-policy at all times

by allowing the human to only choose the decision

dictated by the γ-policy with a probability p. We call

1 − p the error probability.

In particular, a probabilistic γ-policy is

u(tk) :=



























































u(tk−1) if y(tk−1) > y(tk−2),

with prob. p

switch(u(tk−1)) if y(tk−1) < y(tk−2),

with prob. p

switch(u(tk−1)) if y(tk−1) > y(tk−2),

with prob. 1 − p

u(tk−1) if y(tk−1) < y(tk−2),

with prob. 1 − p.

(7)

We conjecture that for certain types of basic reward

structures, there exists a p∗ ∈ (0, 1) such that for all

p < p∗, we will recover the deterministic case with

probability 1, i.e. for all p < p∗, for any initial values

u(t−N ), . . . , u(t−1), ∃x∗ ∈ [0, 1] such that P (E|x(t) −
x∗| 6 1/N ∀t > T for some T ) = 1.

2) Personality: A γ-policy with a threshold δ is:

u(tk) :=

{

u(tk−1) if y(tk−1) > y(tk−2) + δ

switch(u(tk−1)) else.

(8)
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If δ < 0, the modified strategy (8) means that the

behavior is more exploitative: the action does not change

unless the reward degrades by an amount of at least δ
(this action means a risky behavior because the player

does not react to negative development). On the other

hand, if δ > 0, the strategy is more explorative: the

decision is switched unless the reward is improved by

a amount of at least δ (this action can be seen as

conservative in sequential two-choice tasks because the

goal is to seek optimum, and so it is not risky to

explore). Thus, in essence, the variable δ may capture the

risk attitude of humans in sequential two-choice tasks:

δ = 0 means risk neutral (most people), δ > 0 means

conservative behavior (few people), and δ < 0 means

risky behavior (few people). We can also have time-

varying δ instead of a constant one.

We conjecture that for a certain δ > 0 and certain

types of reward structures, the extended γ-policy can

mimic the behavior of the explorative type of people

who would navigate through a temporary dip to reach

the optimum (this behavior has also been observed in

experiments).

3) Response time: The effect of response time under

pressure (e.g. deadline) can be included as degradation

of the reward after a certain time window (alternatively,

one can cast this aspect as a changing environment). A

participant could be told that one has τ unit of times to

make a decision after which the reward will deteriorate.

This type of tasks can be captured, for example, by the

following output function

y(tk) =

{

ϕu(tk)(x(tk)) if tk − tk−1 < τ

ϕu(tk)(x(tk))e
−λ(tk−tk−1) if tk − tk−1 > τ

(9)

for some λ > 0.

The effect of response time under deadline pressure

can also be studied under the probabilistic γ-policy

framework, in which the error probability pe = 1 − p
is a function of τ . Reasonable relationships between pe

and τ are such that pe is larger if τ is smaller, pe is

smaller if τ is larger, and probably, pe → 0 as τ → ∞.

Different types of relationship between pe and τ could

exist depending human personality. This modification

also captures the issue between decision time and error

rate (speed vs. accuracy) in human decision making.

4) Longer memory: Another aspect is to include more

memory in the γ-policy (for example, chess players can

remember a larger number of steps than average people).

Instead of using the last two rewards in the γ-policy, one

can have a policy with three or more past rewards.

VI. CONCLUSIONS

We modeled human decision making in sequential

two-choice tasks as closed-loop dynamical systems. Us-

ing a decision making policy known as the γ-policy,

we showed that under such policy, the percentage of

A asymptotically converges to a point or a ball of

radius 1/N , where N is the window size. Future work

is to cover basic reward structures with flat reward

functions, to explore the extension discussed in Section

V, and to validate the theoretical results with data from

experiments with human subjects.

REFERENCES

[1] Board on Mathematical Sciences and Their Applications, Basic

Research in Information Science and Technology for Air Force

Needs. The National Academies Press, 2006.

[2] D. Egelman, C. Person, and P. Montague, “A computational

role for dopamine delivery in human decision-making,” J. Cogn.

Neurosci, vol. 10, pp. 623–630, 1998.

[3] P. R. Montague and G. S. Berns, “Neural economics and the

biological substrates of valuation,” Neuron, vol. 36, pp. 265–

284, 2002.

[4] L. A. Real, “Animal choice behavior and the evolution of

cognitive architecture,” Science, vol. 253, pp. 980–986, 1991.

[5] R. Bogacz, E. Brown, J. Moehlis, P. Holmes, and J. D. Cohen,

“The physics of optimal decision making: A formal analysis of

models of performance in two-alternative forced choice tasks,”

Psychological Review, vol. 113, no. 4, pp. 700–765, 2006.

[6] R. Bogacz, S. M. McClure, J. Li, J. D. Cohen, and P. R.

Montague, “Short-term memory traces for action bias in human

reinforcement learning,” Brain Research, vol. 1153, pp. 111–

121, 2007.

[7] M. Cao, A. R. Stewart, and N. E. Leonard, “Integrating human

and robot decision-making dynamics with feedback: Models

and convergence analysis,” in Proceedings of the 47th IEEE

Conf. Decision and Control, 2008.

[8] R. J. Herrnstein, “Rational choice theory: necessary but not

sufficient,” American Psychologist, vol. 45, pp. 356–367, 1990.

[9] H. H. Kelley, J. W. Thibaut, R. Radloff, and D. Mundy, “The

development of cooperation in the minimal social situation’,”

Psychological Monographs, vol. 76, no. 19, 1962.

[10] R. H., “Some aspects of the sequential design of experiments,”

Bulletin of the American Mathematical Society, vol. 58, pp.

527–535, 1952.

[11] J. D. Cohen, S. M. McClure, and A. J. Yu, “Should I stay

or should I go? How the human brain manages the tradeoff

between exploitation and exploration.” Philosophical Transac-

tions of the Royal Society B: Biological Sciences, vol. 362, pp.

933–942, 2007.

[12] L. Vu and K. A. Morgansen, “Modeling and analysis of dy-

namic decision making in sequential two-choice decision tasks,”

Preprint. http://vger.aa.washington.edu/∼linhvu/research/ two

choice tasks.pdf , 2008.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB15.2

1126


