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Abstract— In this paper, we study the Dynamic Traveling
Repairman Problem (DTRP) for dynamic systems. In the
DTRP, customers are arising dynamically and randomly in a
bounded region R, and when customers arrive, they wait for
the repairperson to visit their location and offer a “service”
-that will take a certain random amount of time s-. In our
study, the repairperson is modeled as a dynamic system whose
output space contains R and our objective is the average time
a customer has to wait to be serviced. We present schemes (for
low and high traffic intensities) that guarantee that the expected
waiting time for a customer scales within a constant factor of
the optimum in terms of traffic intensity.

I. INTRODUCTION

The problem we tackle in this paper is a dynamic par-

allel to our previous work [12] on the (static) Traveling

Salesperson Problem for dynamic systems. Both problems

have two components; the first is the dynamic system and

the second is an optimal routing problem (in the output

space of the system) with points to be visited. The idea

of introducing the kinematics or dynamics into the study

of the path optimization problems is gaining a considerable

amount of interest lately. Historically, these path optimization

problems (for example TSP and DTRP) have generally

been studied as combinatorial optimization problems over

a graph. Recently though, the properties the dynamic system

that has to tour the points have been considered; and the

TSP has been recently studied for the Dubins vehicle [1],

[10], the double integrator[2], the Reeds-Shepp car, and the

differential drive[7]. The DTRP has been studied for the

Dubins vehicle [1].

The main motivation for injecting the dynamics of the

system into these problems are real life applications where

separating the dynamics from the planning problem leads

to worse performance. These applications are usually for

autonomous robots and unmanned vehicles, where the robot

or vehicle should be able to trace the optimal path designed.

That requirement is hard to achieve by solving the path

planning problem first and then modifying the resulting

optimal path. Thus the natural problem to solve is the one in

which the dynamics of the system are part of the problem.

This way, the optimal paths designed will be appropriate for

the real life vehicles and robots the problem was designed

for.

With all the advances in robotics and the growth of interest

in Unmanned Aerial Vehicles (UAV’s), the applications that

need a fusion of dynamics and optimal path planning through

a set of points are countless. The possible use of robots
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and UAV’s in search and rescue missions, surveillance and

many other applications that require optimized planning of

a route make the problem we are tackling important for the

near future. In addition to that, studying the TSP and DTRP

for dynamic systems might also offer insight to the solution

of different path planning problems for dynamic systems.

Lastly, injecting the dynamics into the DTRP is a natural

step in the evolution of the research on the DTRP and similar

problems, where the constraints on the system that will tour

the points are added to the optimal path planning problem

that was historically solved without those constraints.

In this paper, we use state space models that are affine in

control to model the dynamic systems. This class of systems

is very general, and can be used to model a wide range

of vehicles, robots and other machines. It is therefore an

interesting and natural family of models to introduce into

the framework of the TSP and DTRP. Systems that are

affine in control have been widely studied in the literature,

due to their elegance, simplicity and wide scope. Much

of the research on such systems targets their reachability

and steering properties; those aspects of dynamical systems

are very interesting for problems that seek an optimal path

through a set of points.

The rest of this paper is organized as follows: In Section 2

we introduce the notation, and define the problem rigorously.

Section 3 gives some background for our study by citing

some relevant results and expanding on their interpretation

and usefulness. Section 4 has the main results: lower bounds

on the expected customer waiting time for a DTRP with a

dynamic system and algorithms that produce an expected

customer waiting time that scales like the lower bounds (in

terms of the traffic intensity). Section 5 has the conclusions

and the future work.

II. NOTATION AND PROBLEM STATEMENT

In this paper, we model the dynamic systems that we are

studying with state space models that are affine in control

and have an output in R
2:

ẋ = g0(x) +

m
∑

i=1

gi(x)ui, (1)

y = h(x),

x(0) = x0,

x ∈ R
p, y ∈ R

2, ui ∈ U,

U = {u(.) : R → [−M, M ]}.
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Fig. 1. Parameters for a car pulling k-trailers

We will concentrate on the DTRP policies for different dy-

namic systems and different traffic intensities. This statement

will be made more rigorous in the following section.

We now introduce two running examples of dynamic

systems that we’ll use through the paper to clarify some

concepts in our study.

The first is a simplified model of a car pulling k trailers (

from [13]). The states in that model are the location of the

first car and the angles at the axles of the trailers (Fig. 1).

The output is the location of the last trailer. The state space

model for the car is therefore [13]:

ẋ1 = cos(θ0)

ẋ2 = sin(θ0)

θ̇0 =
u

L

θ̇1 =
1

d1
sin(θ0 − θ1)

...

θ̇i =
1

di





i−1
∏

j=1

cos(θj−1 − θj)



 sin(θi−1 − θi)

...

θ̇k =
1

dk





k−1
∏

j=1

cos(θj−1 − θj)



 sin(θk−1 − θk)

y =

[

x1 −
∑k

i=1 di cos(θi)

x2 −
∑k

i=1 di sin(θi)

]

U = {u(.) = tan(φ(.)), φ(.) : R → [−φ0, φ0]}.

(2)

The car is assumed to have a constant speed forward, and

the control we have on the car is the steering angle φ (

actually tan(φ)). The second model is that of a linear time-

invariant system (a two-dimensional double integrator.) The

state space model of that system is as follows:

ẋ = Ax + Bu

y = Cx,
(3)

where

A =









0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0









, B =









1 0
0 1
0 0
0 0









, (4)

C =

[

0 0 1 0
0 0 0 1

]

, (5)

and

U =

[

u1

u2

]

, ui(.) : R → [−1, 1]. (6)

It is obvious how both of these systems are special cases

of our general dynamic system (1); for the car pulling k-

trailers, we have:

g0 =

































cos(θ0)
sin(θ0)

0
1
d1

sin(θ0 − θ1)
...

1
di

(

∏i−1
j=1 cos(θj−1 − θj)

)

sin(θi−1 − θi)

...
1
dk

(

∏k−1
j=1 cos(θj−1 − θj)

)

sin(θk−1 − θk)

































,

g1 =



















0
0
1
L

0
...

0



















.

(7)

For the linear system,

g0 = Ax =









0
0
x1

x2









, g1 =









1
0
0
0









, g2 =









0
1
0
0









. (8)

We will follow these examples through the paper and

generate the asymptotic solutions of the DTRP for them

as special cases of our main result and to illustrate some

properties.

A. Problem Statement

Given a dynamic system that is modeled as in (1), a closed,

and a bounded region R (assumed to be a rectangle with

dimensions W1,W2, without loss of generality) in the output

space of the system (can be thought of as the location of the

system), we consider the following problem:

In the DTRP, “customer service requests” are arising

according to a Poisson process with rate λ and once a request

arrives, it is randomly assigned a position in R uniformly

and independently. The repairperson (modeled as in (1)) is

required to visit the customers and service their requests. At

each customer’s location, the repairperson spends a service

time s which is a random variable with mean s and second

moment s2. We study the expected waiting time a customer
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has to wait between the request time and the time of service,

and we are mainly interested in how that quantity scales in

terms of the traffic intensity λs for low traffic ( λs → 0)

and high traffic (λs → 1). We also study the stability of the

system (whether the number of waiting customers is bounded

for all intensities).

B. Notation and Definitions

Next, we introduce some terminology and definitions for

systems that are affine in control; most of these definitions

are classical in the literature [8] [9]. We start by introducing

the most basic quantity we need, the reachable set of a

dynamic system.

Definition 1: Reachable set:

Given T ≥ 0, the reachable set from state x0 for any

dynamic system is the set RT (x0) of states x such that

∀ x1 ∈ RT , ∃ u∗
1, u

∗
2, ..., u

∗
m ∈ U such that:

x(0) = x0, x(T ) = x1,

x(t) ∈ RT ∀ t < T.

This is the set of states that are reachable in exactly T . We

define the set of states reachable in time less than or equal

to T by:

R≤T (x0) = ∪0≤t≤T RT (x0).

We extend the previous definition to the output space, and

so we define the output-reachable set from a state x0 to be

the set OT (x0) of points

y = h(x), x ∈ RT (x0),

and

O≤T (x0) = ∪0≤t≤T OT (x0).
We turn to some important properties of some systems

that are affine in control.

Definition 2: Vector Fields:

For all the purposes of this work, a vector field f(x) is

an infinitely differentiable mapping from R
p to R

p.
Given a vector field f and a function w(x) : R

p → R, we

denote the derivative of w along f by :

Lfw(x) =

p
∑

i=1

∂w(x)

∂xi

fi(x).

Given a vector field f and g(x) : R
p → R

q , we call the

derivative of g along f the new R
p → R

q function:

Lfg =
∂g

∂x
f(x).

Note that the ith component of Lfg is the derivative of the

function gi along f . Thus the use of similar notation should

not be confusing.

A simple piece of notation that we will use is the function

xj(x) which extracts the jth component of x. Notice that

Lfxj(x) = fj(x).

We now solve two sub-problems whose solution is essen-

tial to our study. One is helpful in finding a lower bounds

on the expected customer waiting time (for the DTRP). The

other is an important piece of our scheme for the DTRP that

achieves an expected customer waiting time that scales as

the lower bound in terms of λs.

III. SMALL TIME REACHABLE SET AND THE LEVEL

ALGORITHM

In this section, we will study some results from our

previous work in [12] and elaborate on them. These results

are important for our study here and they offer insight into

the behavior of dynamic systems that are affine in control

(and thus into the behavior of linear time-invariant systems.)

We start with some properties of the output small time

reachable set of systems that are affine in control.

A. Small Time Reachable Sets of Dynamical Systems

We are interested in A≤T , the area of the output small

time reachable set O≤T (definition (1)). In particular, we

are interested in how A≤T scales in terms of T as T →
0. Towards this purpose, let r1 and r2 be the two smallest

natural numbers such that the f1 and f2 defined by:

f1 = Lgi0
...Lgir1−1

h(x0) 6= 0,

f2 = Lgj0
...Lgjr2−1

h(x0) 6= 0,

are linearly independent, where

i0, ..., ir1−1, j0, ..., jr2−1 ∈ {0, ..., m}.

For the car pulling k-trailers, let

Pi =
i

∏

j=1

cos(θj−1 − θj),

then

f1 = Lg0
h(x0)

=

[

cos(θ0) +
∑k

i=1 di sin(θi) sin(θi−1 − θi)Pi

sin(θ0) −
∑k

i=1 di cos(θi) sin(θi−1 − θi)Pi

]

,

f2 = Lg1
Lg0

h(x0) =

[

− sin(θ0)
L

cos(θ0)
L

]

,

r1 = 1, r2 = 2.

(9)

For the linear system,

f1 = Lg0
h(x0) = CAx =

[

x1

x2

]

,

f2 = Lg2
Lg0

h(x0) = CAB2 =

[

0
1

]

,

r1 = 1, r2 = 2,

(10)

for every point such that x1 6= 0.

It is obvious in our LTI example that f1 and f2 are first

two linearly independent column vectors in
[

C[Ax|B]|CAB|CA2B| . . . |CAkB
]

,

where | stands for matrix concatenation.
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In general, given an LTI system and the minimum k such

that

C
[

[Ax|B]|AB|A2B| . . . |AkB
]

has rank 2, then the larger between r1 and r2 is equal to

k + 1. It is obvious that the matrix on the right is the

concatenation of Ax and the controllability matrix of the

LTI system. This means that the ri’s (and our index k here)

are indicators of “output controllability”. The inputs don’t

have to be able to steer the state arbitrarily, they just have to

move it in directions that will affect the output. Of course,

if the controllability matrix is full rank, and C is full rank,

then the system is “output controllable.” This means that the

ri’s are upper bounded by the controllability index of the

system.

Of course, the ri’s for nonlinear systems carry the same

interpretation, and thus they can represent a similar index

(like the k here). Thus a local version of the controllability

index can be defined for nonlinear systems that are affine in

control, and its relation to the ri’s is the same as in the LTI

case.

Thus relating r1 and r2 to A≤T relates k (and the

controllability index) to the small time reachable area, and

emphasizes its role in the output curves of the system (at

least those for the TSP, DTRP and similar problems). The

relation between the ri’s and A≤T is given by the following

Theorem [12]:

Theorem 1: Given a system described in (1) and r1 and

r2 as above, ∃ CU , CL > 0 such that:

CL ≤ lim
T→0

A≤T

T r1+r2
≤ CU .

This theorem says that the ri’s are measures of the

“difficulty” of moving in different directions in the output

space. Thus the higher the ri’s are, the smaller the area of

the set reachable in time t is, and so the system will need

a longer time on average to travel between any two points.

Thus both systems we are using as examples have a direction

in the output space in which they can move proportionally

to T and a direction where they can more proportionally to

T 2 (note that since T is small, T 2 <<< T .) Therefore, the

area of the set reachable in time T is proportional to T 3.

B. Level Algorithm

The Level Algorithm was introduced in [12] as an algo-

rithm for the TSP for dynamic systems. The TSP for dynamic

systems is defined as follows: Given a set P of n points that

are distributed in a closed and bounded region (assumed here

to be the same rectangle R defined in the DTRP problem

statement ) in the output space of system (1), find the fastest

output curve of system (1) that passes through all of the

points of P .

The Level algorithm is a simple iterative scanning of the

the area where the points are distributed such that every

iteration is done at a different “resolution” of the space.

In every iteration (em level), R is divided into a number

of rectangles that are sized depending on the dynamics of

system (1). The level Algorithm produces a tour LA such

that the expected time system (1) needs to trace LA, (TLA),
scales as the optimal in terms of n if the points in P are

chose randomly and uniformly. This is given by the following

theorem [12]1:

Theorem 2: TLA = CLAn1− 1
r1+r2 + o(n1− 1

r1+r2 ).

We will use the Level algorithm as a black box in our

scheme for the DTRP of dynamic systems under high traffic

intensity conditions. The Level Algorithm’s performance

guarantee will give the performance guarantee that we want

from our DTRP scheme.

We are now ready to produce our main results. We will

study the DTRP for the cases of low traffic intensity (λs →
0) and high traffic intensity. In both cases, we will produce a

lower bound on the expected waiting time of a customer and

a scheme that will guarantee an expected customer waiting

time that scales as the lower bound in terms of λs.

IV. MAIN RESULTS

Here we study the minimum customer waiting time for

the DTRP TDTRP , and whether there are schemes that will

guarantee that the number of waiting customers is always

bounded (as long as the λs. More specifically, we will study

how TDTRP scales in terms of the traffic intensity.

For simplicity of presentation, we add a few assumptions

here; we assume that r1 and r2 are constant over R, and that

that f1 is parallel to H and that ∃ TT > 0 such that between

any two points y1 and y2 in R, the system can be steered

from y1 to y2 in time less than TT (TT doesn’t have to be

small.)

A. Low Traffic Intensity

We will start with the results for low traffic intensity. This

means that λs → 0 and so almost all of the time can be

used to move the system’s output from one customer to

another. Let x∗ be a “time median” of R under the system’s

dynamical constraints (doesn’t have to be unique). So x∗ is

the point in R that minimizes

E[Tv(x, x∗)],

where Tv(x∗, x) is the time that the system needs to travel

from x∗ to x. Note that Tv doesn’t have to be small. Let

T1 = E[Tv(x∗, x)],

and

T2 = E[T 2
v (x∗, x)].

We have the following theorem:

1We say a function f(n) is O(g(n)) if ∃c, N > 0 such that f(n) ≤

cg(n) ∀ n > N , we say f(n) is Ω(g(n)) if g(n) is O(f(n)) and we say
f(n) is Θ(g(n)) f(n) is O(g(n)) and Ω(g(n)). We say f(l) is o(g(l))

if liml→0
f(l)
g(l)

= 0 (for functions) or limn→∞

f(n)
g(n)

= 0 (for sequences).
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Theorem 3: The expected customer waiting time in

the DTRP (TDTRP )for a dynamic system is equal to

E[Tv(x, x∗)] + s as λ → 0.

Proving that TDTRP ≥ E[Tv(x, x∗)] + s is direct. When

a customer service request arises, the system’s output has

to at least move from where it is already to the location of

the new customer and service it. Thus the expected time a

customer has to wait is at least E[Tv(x, xsys)] + s, where

xsys is a random variable determining the location of the

system’s output when the customer service request arrived.

From the definition of x∗, E[Tv(x, xsys)] ≥ E[Tv(x, x∗)],
and thus

TDTRP ≥ E[Tv(x∗, x)] + s = T1 + s = T ∗.

To get the matching upper bound, the following policy can

be followed:

Service customers in a First Come First Serve fashion,

while waiting at x∗ when there are no customers.

Lemma 1: The expected time of the previous policy

TFCFS satisfies the following relation:

TFCFS

T ∗
→ 1 as λ → 0.

Proof: The proof is similar to the one in [5].

We therefore have a single-server SQM system behaving

like an M/G/1 queue with first moment 2T1 +s and second

moment 4T2+4sT1+s2. Thus the expected customer waiting

time can be bounded by:

TF CFS =
λ(4T2 + 4sT1 + s2)

2(1 − 2λT1 − λs)
+ T1 + s.

Therefore:

lim
λ→0

TF CFS

T ∗
= lim

λ→0

λ(4T2+4sT1+s2)
2(1−2λT1−λs) + T1 + s

T1 + s

= 1.

(11)

Theorem (3) follows directly.

B. High Traffic Intensity

We now turn to the case where the traffic intensity is high.

Heavy traffic intensity is when λs → 1. This means that there

is little time for travel ( 1−λs per customer on average.) Thus

the system will need to follow a more complicated scheme

to allow the number of waiting customers to be bounded.

We first produce a lower bound on the expected customer

waiting time. This result will depend on the area of the small

time reachable set discussed in Section III-A, and is given

by the following lemma:

Lemma 2: TDTRP is Ω
(

(1 − λs̄)−(r1+r2)
)

.

Proof:

The lower bound proof is three steps:

1) Bound the Expected time travelled per customer:

Let n be the number of customers waiting in R to be

serviced and given that the output of system (1) is at

a certain point, let the minimum time needed to travel

to a customer be t∗. Then

E[t∗] ≥

∫ ∞

0

P[t∗ > τ ]dτ

≥

∫ ∞

0

max{0, 1 − cτ r1+r2}dτ,

where c = n CU

W1W2
, and CU is from Theorem 1.

E[t∗] ≥

∫ c
−

1
r1+r2

0

1 − cτ r1+r2dτ

= c−
1

r1+r2 − c
1

1 + r1 + r2
c−

1+r1+r2
r1+r2

=
r1 + r2

1 + r1 + r2

(

CU

W1W2

)− 1
r1+r2

n− 1
r1+r2

= c2n
− 1

r1+r2 .

2) Upper bound the rate of arrival:

Recall that s̄ is the average service time per customer

needed, W is the average waiting time, and T = W +s̄
is the system waiting time.

The stability condition is that the average time spent

travelling on the road plus the average service time is

not greater than the average time for a customer to

arrive:

λ(s̄ + E[t∗]) ≤ 1,

where λ is the rate of arrival.

Therefore,

s̄ + c2n
− 1

r1+r2 ≤
1

λ
.

3) Lower Bound the Customer Waiting Time:

From the previous bound, and using Little’s formula:

n = λW and T ∗ = s̄ + W is the minimum system

waiting time, we get:

n ≥
(λc2)

r1+r2

(1 − λs̄)r1+r2
,

and

TDTRP ≥ s̄ +
λr1+r2−1cr1+r2

2

(1 − λs̄)r1+r2
.

Therefore as λs̄ → 1, TDTRP is Ω(1 − λs̄)−(r1+r2).

To achieve the upper bound corresponding to the high

traffic intensity lower bound, we use the TSP policy. Under

this policy, the system waits until there are n customers, and

then services them with a TSP tour. This means that it first
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waits for customers number 1 to n, service them using a TSP

tour, then waits till the 2nth customer arrives, and services

customers n+1 to 2n,... Denote the kth set of n customers by

Sk and the system waiting time under this policy by TTSP ,

we have the following theorem:

Theorem 4: As 1 − λs̄ → 0, TT SP

TDT RP
≤ c3.

Proof: We now consider Sk to be the kth customer in

a queue. Since the interarrival and service times are i.i.d, we

have a GI/G/1 queue with an Erlang distribution of order

n. The mean of the sets is n
λ

and the variance is n
λ2 .

Therefore, the expected value of the service time of a set

is E[LLA(n)]+ns̄ and the variance is var(LLA(n))+nσ2.

Therefore, we can bound the average waiting time of the

sets by:

WS ≤
λ
n
( n

λ2 + var(LLA(n)) + nσ2)

2(1 − λ
n
(E[LLA(n)] + ns̄))

=
λ( 1

λ2 + σ2)

2(1 − λ((̄s) + CLAn− 1
r1+r2 ))

,

where CLA is from theorem 2. For stability, we have:

1 − λ(s̄ + CLAn− 1
r1+r2 ) > 0.

Therefore
(1 − λs̄)r1+r2

Cr1+r2

LA

>
1

n
,

and

n >
(λCLA)r1+r2

(1 − λs̄)r1+r2
.

This means that for high traffic (1 − λs̄ → 0), n has to

be large for the system to be stable. Our assumption for the

Level Algorithm performance guarantee (that n is large) is

thus satisfied.

The expected waiting time for a certain customer is the

sum of the expected time it waits for its set to form, the

waiting time for the set to get serviced, and the expected

time it needs to wait to get serviced after the service of its

set started.

Therefore,

TTSP ≤
λ( 1

λ2 + σ2)

2(1 − λ(s̄ + CLAn− 1
r1+r2 ))

+ n
1 + λs̄

2λ
+ CLAn1− 1

r1+r2 .

(12)

It can be shown that as 1 − λs̄ → 0, the optimal n

approaches
(λCLA)r1+r2

(1−λs̄)r1+r2
(which is the stability bound).

Substituting the optimal value of n in 12 gives:

TTSP ≤
λr1+r2−1Cr1+r2

LA

(1 − λs̄)r1+r2
,

and using this with lemma (2) gives the result:

TTSP

TDTRP

≤ c3.

and thus proves that TDTRP is Θ((1 − λs̄)r1+r2) .
Thus the DTRP is stabilizable for any dynamic system that

has basic reachability properties, that is, the expected waiting

time for a customer can be guaranteed to be bounded as

long as λs < 1. For the examples we are using, the average

customer waiting time scales as (1 − λs̄)3, which is worse

than the Euclidean case. This deterioration in behavior is due

to the fact that there is a direction in which motions of the

systems’ output is slow (the direction with ri = 2.)

V. CONCLUSIONS AND FUTURE WORK

In this paper, we tackled the Dynamic Traveling repairper-

son problem for dynamic systems that are affine in control.

We studied the area of the small time reachable set and

related it to notions of controllability and observability. We

proved that under some weak assumptions on the dynamic

system, the number of customers waiting to be serviced will

always be bounded for any traffic intensity satisfying the

necessary condition λs < 1. We finally studied the expected

waiting time for a customer and provided a scheme that

allows it to scale optimally in terms of λs.
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