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Abstract— We generalize several recent works on nonlinear
observers for aided attitude heading reference systems: we pro-
pose a symmetry-preserving nonlinear observer which merges
the most common measurements available on an aircraft (alti-
tude, Earth-fixed and body-fixed velocity, inertial and magnetic
sensors). It can be seen as an alternative to the Extended
Kalman Filter, but easier to tune and computationally much
more economic. Moreover it has by design a nice geomet-
rical structure appealing from an engineering viewpoint. We
illustrate its good performance on simulation and experimental
results.

I. INTRODUCTION

Aircraft, especially Unmanned Aerial Vehicles (UAV),

commonly need to know their orientation and velocity to

be operated, whether manually or with computer assistance.

When cost or weight is an issue, using very accurate inertial

sensors for “true” (i.e. based on the Schuler effect due to

a non-flat rotating Earth) inertial navigation is excluded.

Instead, low-cost systems –sometimes called aided Attitude

Heading Reference Systems (AHRS)– rely on light and

cheap “strapdown” gyroscopes, accelerometers and magne-

tometers “aided” by position and velocity sensors (for in-

stance the velocity vector is given in body-fixed coordinates

by an air-data or Doppler radar system, the position/velocity

vectors in Earth-fixed coordinates by a GPS engine, the

altitude by a barometric altimeter). The various measure-

ments are then “merged” according to the motion equations

of the aircraft assuming a flat non-rotating Earth, usually

with a linear complementary filter or an Extended Kalman

Filter (EKF). For more details about avionics, various inertial

navigation systems and sensor fusion, see for instance the

books [4], [10], [7], [5], [6] and the references therein.

While the EKF is a general method capable of good

performance when properly tuned, it suffers several draw-

backs: it is not easy to choose the numerous parameters; it

is computationally expensive, which is a problem in low-

cost embedded systems; it is usually difficult to prove the

convergence, even at first-order, and the designer has to rely

on extensive simulations. Moreover on the aided attitude

heading problem, suitable modifications must be made to

make it work with quaternions [11], [9].

An alternative route is to use an ad hoc nonlinear observer

as proposed in [19], [13], [8], [14], [12], [1], [16], [17],

[15]. In the absence of a general method the main difficulty

is of course to find such an observer. In this paper we
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use the rich geometric structure of the flying rigid body

problem to derive an observer by the method developed

in [3], building up on the preliminary work [2]. We propose a

general observer structure able to handle the various possible

sensors, and which supersedes the previous works [13], [8],

[14], [12], [16], [17], [15]. It has by design a nice geometrical

structure appealing from an engineering viewpoint; it is easy

to tune, computationally very economic, and with guaranteed

(at least local) convergence around every trajectory for low

velocity flight. Moreover it behaves sensibly in the presence

of magnetic disturbances. We illustrate its good performance

on simulation and on preliminary experimental comparisons

with the commercial Microbotics MIDG II system.

II. PHYSICAL EQUATIONS AND MEASUREMENTS

A. Motion equations

The motion of a flying rigid body (assuming the Earth is

flat and defines an inertial frame) is described by

q̇ =
1

2
q∗ω

v̇ = v×ω +q−1 ∗A∗q+a

ḣ = 〈q∗ v∗q−1,e3〉

where

• q is the quaternion representing the orientation of the

body-fixed frame with respect to the Earth-fixed frame

• ω is the instantaneous angular velocity vector

• v is the velocity vector of the center of mass with respect

to the Body-fixed frame

• A = ge3 is the (constant) gravity vector in North-

East-Down coordinates (the unit vectors e1,e2,e3 point

respectively North, East, Down)

• a is the specific acceleration vector, i.e. all the non-

gravitational forces divided by the body mass.

• h is the altitude of the center of mass

More generally we could use ẋ = q ∗ v ∗ q−1, where x is

the position of the center of mass in the Earth-fixed frame,

instead of the last equation.

The first equation describes the kinematics of the body,

the second is Newton’s force law. It is customary to use

quaternions (also called Euler 4-parameters) instead of Euler

angles since they provide a global parametrization of the

body orientation, and are well-suited for calculations and

computer simulations. For more details about this section, see

any good textbook on aircraft modeling, for instance [18],

and section VIII in [14] for useful formulas used in this

paper.
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B. Measurements

We have four triaxial sensors plus the pressure sen-

sor, providing thirteen scalar measurements: 3 gyros mea-

sure ωm = ω +ωb, where ωb is a constant vector bias;

3 accelerometers measure a; 3 magnetometers measure

yb = q−1 ∗B∗q, where B = B1e1 +B3e3 is the Earth mag-

netic field in NED coordinates; the velocity vector yv = v

in the body-fixed frame is provided by some air-data or

Doppler radar system; the velocity vector yV = V is provided

by the navigation solution of a GPS engine; a barometric

sensor provides the altitude measurement yh = h. All these

measurements are of course also corrupted by noise.

It is possible to include more parameters to model the

sensors imperfections, see [16], [17], [15]. For simplicity we

have considered here only gyros biases.

C. The considered system

To design our observers we therefore consider the system

q̇ =
1

2
q∗ (ωm −ωb) (1)

v̇ = v× (ωm −ωb)+q−1 ∗A∗q+a (2)

ḣ = 〈q∗ v∗q−1,e3〉 (3)

ω̇b = 0 (4)

where ωm and a are seen as known inputs, together with the

output







yv

yV

yB

yh







=







v

q∗ v∗q−1

q−1 ∗B∗q

h







. (5)

III. CONSTRUCTION OF THE OBSERVER

A. Invariance of the system equations

There is no general method for designing a nonlinear

observer for a given system. When the system has a rich

geometric structure, namely invariance with respect to sym-

metry group, the ideas in [3] provide a constructive method

to this problem and simplify the analysis of the error system.

Several translational and rotational groups have been

considered for the aided attitude estimation problem [13],

[8], [14], [12], [16], [17], [15]. Nevertheless as soon as

we also consider position/velocity measurements in both

the Earth-fixed and body-fixed frames translations acting on

the velocities must be ruled out, see the discussion in IV.

We therefore consider the following transformation group

generated by constant rotations and translation in the body-

fixed and Earth-fixed frames

ϕ(p0,q0,h0,ω0)







q

v

h

ωb







=







p0 ∗q∗q0

q−1
0 ∗ v∗q0

h+h0

q−1
0 ∗ωb ∗q0 +ω0







=







q̃

ṽ

h̃

ω̃b







ψ(p0,q0,h0,ω0)







ωm

a

A

B







=







q−1
0 ∗ωm ∗q0 +ω0

q−1
0 ∗a∗q0

p0 ∗A∗ p−1
0

p0 ∗B∗ p−1
0







=







ω̃m

ã

Ã

B̃







ρ(p0,q0,h0,ω0)







yv

yV

yB

yh







=







q−1
0 ∗ yv ∗q0

p0 ∗ yV ∗ p−1
0

q−1
0 ∗ yB ∗q0

yh +h0







=







ỹv

ỹV

ỹB

ỹh







.

There are 3 + 3 + 1 + 3 = 10 parameters: the two unit

quaternions p0 and q0, the scalar h0 and the R
3-vector ω0.

The group law ⋄ is given by






p1

q1

h1

ω1







⋄







p0

q0

h0

ω0







=







p0 ∗ p1

q0 ∗q1

h0 +h1

q−1
1 ∗ω0 ∗q1 +ω1







.

The system (1)–(4) is of course invariant by the transforma-

tion group since

˙̃q = p0 ∗ q̇∗q0 = p0 ∗ (
1

2
q∗ω)∗q0

=
1

2
(p0 ∗q∗q0)∗ (q−1

0 ∗ω ∗q0) =
1

2
q̃∗ ω̃

˙̃v = q−1
0 ∗ v̇∗q0

= (q−1
0 ∗ v∗q0)× (q−1

0 ∗ω ∗q0)+q−1
0 ∗a∗q0

+(p0 ∗q∗q0)
−1 ∗ (p0 ∗A∗ p−1

0 )∗ (p0 ∗q∗q0)

= ṽ× ω̃ + q̃−1 ∗ Ã∗ q̃+ ã

˙̃h = ḣ = 〈q∗ v∗q−1,e3〉 = 〈q̃∗ ṽ∗ q̃−1, ẽ3〉

˙̃ωb = q−1
0 ∗ ω̇b ∗q0 = 0,

whereas the output (5) is compatible since






ṽ

q̃∗ ṽ∗ q̃−1

q̃−1 ∗ B̃∗ q̃

h̃







= ρ(p0,q0,h0,ω0)







v

q∗ v∗q−1

q−1 ∗B∗q

h







.

B. Construction of the general invariant pre-observer

We solve for (p0,q0,h0,ω0) the normalization equations

p0 ∗q∗q0 = 1

p0 ∗ ei ∗ p−1
0 = ẽi with i = 1,2,3 (6)

h+h0 = 0

q−1
0 ∗ωb ∗q0 +ω0 = 0

where (ẽ1, ẽ2, ẽ3) defines a new orthonormal frame. The

moving frame γ(q,h,ωb,e1,e2,e3) is then defined by

q0 = q−1 ∗ p−1
0

h0 = −h

ω0 = −p0 ∗q∗ωb ∗q−1 ∗ p−1
0
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where p0 represents the rotation between the two frames

(e1,e2,e3) and (ẽ1, ẽ2, ẽ3). We slightly generalize the con-

struction in [3] since we normalize not only with respect to

ϕ but also with respect to ψ .

We can then find the 10 scalar invariant errors which

correspond to the projections of the output error

ργ(q̂,ĥ,ω̂b,e1,e2,e3)





ŷv

ŷV

ŷB



−ργ(q̂,ĥ,ω̂b,e1,e2,e3)





yv

yV

yB





on the new frame (ẽ1, ẽ2, ẽ3) and to the output error for yh

which is directly invariant. We get

Evi = 〈q̂∗ (ŷv − yv)∗ q̂−1,ei〉

EVi = 〈ŷV − yV ,ei〉

EBi = 〈B− q̂∗ yB ∗ q̂−1,ei〉

Eh = ĥ−h,

where i = 1,2,3. We detail how to get Evi:

〈ργ(q̂,ĥ,ω̂b,e1,e2,e3)

(
ŷv

)
−ργ(q̂,ĥ,ω̂b,e1,e2,e3)

(
yv

)
, ẽi〉

= 〈p0 ∗ q̂∗ ŷv ∗ q̂−1 ∗ p−1
0 − p0 ∗ q̂∗ yv ∗ q̂−1 ∗ p−1

0 , ẽi〉

= 〈q̂∗ ŷv ∗ q̂−1 − q̂∗ yv ∗ q̂−1, p−1
0 ∗ ẽi ∗ p0〉

= 〈q̂∗ (ŷv − yv)∗ q̂−1,ei〉.

We get also the 9 scalar complete invariants which corre-

spond to the projections of

φγ(q̂,v̂,ω̂b,e1,e2,e3)

(
v̂
)

and ψγ(q̂,v̂,ω̂b,e1,e2,e3)

(
ωm

a

)

on the new frame (ẽ1, ẽ2, ẽ3). We find

Iv̂i = 〈q̂∗ v̂∗ q̂−1,ei〉

Iωmi = 〈q̂∗ (ωm − ω̂b)∗ q̂−1,ei〉

Iai = 〈q̂∗a∗ q̂−1,ei〉 where i = 1,2,3.

Notice that Iv̂i, Iωmi, Iai, Evi, EVi, EBi’s and Eh are functions

of the estimates and the measurements. Hence they are

known quantities which can be used in the construction of

the preobserver. It is straightforward to check they are indeed

invariant. For instance,

〈q̂∗ v̂∗ q̂−1,ei〉

= 〈p0 ∗ q̂∗ v̂∗ q̂−1 ∗ p−1
0 , p0 ∗ ei ∗ p−1

0 〉

= 〈(p0 ∗ q̂∗q0)∗ (q−1
0 ∗ v̂∗q0)∗ (p0 ∗ q̂∗q0)

−1, ẽi〉.

To find invariant vector fields, we solve for w(q,v,h,ωb)
the 10 vector equations







Dϕγ(q,v,ωb,e1,e2,e3)







q

v

h

ωb












·w(q,v,h,ωb)

=







ẽi

0

0

0







,







0

ẽi

0

0







,







0

0

e7

0







,







0

0

0

ẽi







i = 1,2,3.

Since






Dϕ(p0,q0,h0,ω0)







q

v

h

ωb












·







δq

δv

δh

δωb







=







p0 ∗δq∗q0

q−1
0 ∗δv∗q0

δh

q−1
0 ∗δωb ∗q0







,

this yields the 10 independent invariant vector fields

(i = 1,2,3)






ei ∗q

0

0

0







,







0

q−1 ∗ ei ∗q

0

0







,







0

0

e7

0







,







0

0

0

q−1 ∗ ei ∗q







.

Indeed for instance the equations p0 ∗δq∗q0 = ẽi gave us

δq = p−1
0 ∗ ẽi ∗q−1

0 = (p−1
0 ∗ ẽi ∗ p0)∗ (q0 ∗ p0)

−1 = ei ∗q.

It is easy to check that these vector fields are invariant. The

general invariant preobserver then reads

˙̂q =
1

2
q̂∗ (ωm − ω̂b)

+
3

∑
i=1

( 3

∑
j=1

(lvi jEv j + lVi jEV j + lBi jEB j)+ lhiEh

)
ei ∗ q̂

˙̂v = v̂× (ωm − ω̂b)+ q̂−1 ∗A∗ q̂+a+ q̂−1 ∗
( 3

∑
i=1

(
mhiEh

+
3

∑
j=1

(mvi jEv j +mVi jEV j +mBi jEB j)
)
ei

)

∗ q̂

˙̂
h = 〈q̂∗ v̂∗ q̂−1,e3〉+

3

∑
j=1

(nv jEv j +nV jEV j +nB jEB j)+nhEh

˙̂ωb = q̂−1 ∗
( 3

∑
i=1

( 3

∑
j=1

(ovi jEv j +oVi jEV j +oBi jEB j)

+ohiEh

)
ei

)
∗ q̂,

where the lvi j, lVi j, lBi j, lhi, mvi j, mVi j, mBi j, mhi, nv j, nV j,

nB j, ovi j, oVi j, oBi j, ohi’s and nh are arbitrary scalars which

possibly depend on Evi, EVi, EBi, Eh, Iv̂i, Iωmi and Iai’s.

Noticing
3

∑
i=1

( 3

∑
j=1

(lvi jEv j)
)
ei = LvEv

where Ev = q̂∗(v̂−v)∗ q̂−1 and Lv is the 3×3 matrix whose

coefficients are the lvi j’s, and defining EV , EB, LV , LB, Lh,

Mv, MV , MB, Mh, Nv, NV , NB, Nh, Ov, OV , OB and Oh in

the same way, the correction terms can be rewritten with the

matrices E,L,M,N and O such as E = (Ev EV EB Eh)
T and

LvEv +LV EV +LBEB +LhEh = LE,

and the same notation for M,N and O.

Then we can rewrite the preobserver as

˙̂q =
1

2
q̂∗ (ωm −ωb)+(LE)∗ q̂ (7)

˙̂v = v̂× (ωm −ωb)+ q̂−1 ∗A∗ q̂+a+ q̂−1 ∗ (ME)∗ q̂ (8)

˙̂
h = 〈q̂∗ v̂∗ q̂−1,e3〉+(NE) (9)

˙̂ωb = q̂−1 ∗ (OE)∗ q̂. (10)
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The preobserver is indeed invariant by considering the pro-

jection of the output errors Ev, EV and EB on the frame

(e1,e2,e3). As a by-product of its geometric structure, the

preobserver automatically has a desirable feature: the norm

of q̂ is left unchanged by (7), since LE is a vector of R
3 (see

section VIII in [14]).

C. Error equations

The state error is given by







η
ν
λ
β







= ϕγ(q,v,ωb,e1,e2,e3)







q̂

v̂

ĥ

ω̂b







−ϕγ(q,v,ωb,e1,e2,e3)







q

v

h

ωb







=







q̂∗q−1 −1

q∗ (v̂− v)∗q−1

ĥ−h

q∗ (ω̂b −ωb)∗q−1







.

It is in fact more natural –though completely equivalent–

to take η = q̂ ∗ q−1 (rather than η = q̂ ∗ q−1 − 1), so that

η(x,x) = 1, the unit element of the group of quaternions.

As we did above it can be easily checked that λ and the

projections of η , ν and β on the frame (e1,e2,e3) are

invariant. Hence for (i, j) = 1,2,3,

˙︷ ︸︸ ︷

〈η ∗ ei ∗η−1,e j〉 = 〈η̇ ∗ ei ∗η−1 −η ∗ ei ∗η−1 ∗ η̇ ∗η−1,e j〉

= 2〈(−
1

2
η ∗β ∗η−1)× (η ∗ ei ∗η−1),e j〉

+2〈(LE)× (η ∗ ei ∗η−1),e j〉

〈ν̇ ,ei〉 = 〈(η−1 ∗ Iv̂ ∗η)×β +η−1 ∗A∗η −A,ei〉

+ 〈η−1 ∗ (ME)∗η ,ei〉

λ̇ = ˙̂
h− ḣ

= 〈Iv̂ −η−1 ∗ Iv̂ ∗η −η−1 ∗ν ∗η ,e3〉+(NE)

〈β̇ ,ei〉 = 〈(η−1 ∗ Iωm ∗η)×β +η−1 ∗ (OE)∗η ,ei〉.

Since we can write

Ev = η ∗ν ∗η−1 EV = Iv̂ −η−1 ∗ Iv̂ ∗η +ν

EB = B−η ∗B∗η−1 Eh = λ ,

we find as expected that the error system

˙︷ ︸︸ ︷

η ∗ ei ∗η−1 = 2(−
1

2
η ∗β ∗η−1)× (η ∗ ei ∗η−1)

+2(LE)× (η ∗ ei ∗η−1) (11)

ν̇ = (η−1 ∗ Iv̂ ∗η)×β +η−1 ∗A∗η −A

+η−1 ∗ (ME)∗η (12)

λ̇ = 〈Iv̂ −η−1 ∗ Iv̂ ∗η −η−1 ∗ν ∗η ,e3〉+(NE)
(13)

β̇ = (η−1 ∗ Iωm ∗η)×β +η−1 ∗ (OE)∗η (14)

depends only on the invariant state error (η ,ν ,λ ,β ) and the

“free” known invariants Iv̂ and Iωm , but not on the trajectory

of the observed system (1)–(4). The error system (11)–

(14) is invariant by considering the projection of the equa-

tions (11),(12) and (14) on the frame (e1,e2,e3).
The linearized error system around

(η ,ν ,λ ,β ) = (1,0,0,0), i.e. the estimated state equals

the actual state, is given by

δ η̇ = −
1

2
δβ +(LδE) (15)

δ ν̇ = Iv̂ ×δβ +2A×δη +(MδE) (16)

δ λ̇ = 〈−Iv̂ ×δη −δν ,e3〉+(NδE) (17)

δ β̇ = Iωm ×β +(OδE), (18)

where

δEv = δν δEV = δν −2Iv̂ ×δν

δEB = 2B×δη δEh = δλ .

We notice that the normalization equation (6) let us

to consider the velocity error ν in the Earth-fixed frame.

Instead, choosing q−1
0 ∗ ei ∗q0 = ẽi would lead us a velocity

error ν̃ = v̂− v in the body-fixed frame which seems more

“natural” since the equation (2) is written in body-fixed

coordinates. But in this case, the output error δEB would

become δ ẼB = 2(q̂−1 ∗B∗ q̂)×δν ; so the error system, and

its convergence behavior, would depend on the trajectory

q̂(t).

IV. POSITION WITH RESPECT TO PREVIOUS WORKS

The invariant observer (7)–(10) supersedes several previ-

ous works, which are detailed in this section.

A. No velocity measurements: [8]-[14]-[16]

In [8]-[14]-[16] only inertial and magnetic sensors are

used. So the linear acceleration v̇− v×ω is supposed small

enough to approximate the accelerometers measurements by

ya = −q−1 ∗A∗q. We recover the observer described in [8]-

[14]-[16] considering only (1) and (4) as the physical system

and ya and yb as the output.

B. Ideal measurements: [1]

The nonlinear complementary filter presented in [1] use

ideal measurements: pose estimation (computationally de-

manding) and no biases.

C. Transformation incompatible with body-fixed velocity:

[17]

In [17] only the Earth-fixed measurements are used. The

constructed observer can not be adapted to the body-fixed

measurements since with the chosen transformation group

the output yv is not compatible.

D. No body-fixed velocity: [15]

The observer proposed in [15] is written in the Earth-

fixed frame because no body-fixed velocity measurements

are considered. We recover this observer transposing (8) in

the Earth-fixed frame.
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E. Transformation incompatible with Earth-fixed velocity:

[3]

In [3] only the body-fixed measurements are used and no

biases are considered. The constructed observer can not be

adapted to the body-fixed measurements since the output yv

is not compatible with the chosen transformation group.

F. Particular case: [2]

The observer (7)–(10) generalizes the observer presented

in [2]. Indeed we recover it taking

LvEv = −l1Ev− l2Ev ×A− l3〈Ev,A〉A

MvEv = −l4Ev− l5Ev ×A− l6〈Ev,A〉A

and considering no bias and no Earth-fixed measurements.

V. CHOICE OF THE OBSERVER PARAMETERS

Up to now, we have only investigated the structure of the

observer. We now must choose the gain matrices Lv, LV , LB,

Lh, Mv, MV , MB, Mh, Nv, NV , NB, Nh, Ov, OV , OB, Oh to meet

the following requirements locally around any trajectory:

• at a low velocity “normal” flight, which is common for

UAVs in an urban area, i.e. Iv̂ and Iωm are first order

terms: the error must converge to zero and its behavior

should be easily tunable; the magnetic measurements

should not affect the attitude, velocity and altitude

estimations, but only the heading

• at a level flight, i.e. Iv̂ = V1e1 +V2e2 +δV3e3 where

V1,V2 are constant and Iωm ,δV3 are first order terms, the

behavior of the roll angle error towards the direction of

Iv̂, which is the most important estimation for a flight

control, should not be affected by V1,V2,δV3 and any

magnetic disturbance.

Therefore we choose

LvEv = lvA×Ev LV EV = lV A×EV

LBEB = lB〈B×EB,A〉A

MvEv = −mvEv MV EV = −mV EV

NhEh = −nhEh

OvEv = −ovA×Ev OV EV = −oV A×EV

OBEB = −oB〈B×EB,A〉A

with (lv, lV , lB,mv,mV ,nh,ov,oV ,oB) > 0 and the other matri-

ces equal to 0. At a low velocity “normal” flight the error

system (15)–(18) splits into three decoupled subsystems and

two cascaded subsystems:

• the longitudinal subsystem




δ η̇2

δ ν̇1

δ β̇2



 =





0 g∗ (lv + lV ) − 1
2

−2g −(mv +mV ) 0

0 −(ov +oV ) 0









δη2

δν1

δβ2





• the lateral subsystem




δ η̇1

δ ν̇2

δ β̇1



 =





0 −g∗ (lv + lV ) − 1
2

2g −(mv +mV ) 0

0 ov +oV 0









δη1

δν2

δβ1





• the vertical subsystem

δ ν̇3 = −(mv +mV )δν3

• the heading subsystem
(

δ η̇3

δ β̇3

)

=

(
−2gB2

1lB − 1
2

2gB2
1oB 0

)(
δη3

δβ3

)

+

(
2gB1B3lB
−2gB1B3oB

)

δη1

• the altitude subsystem

δ λ̇ = −nhδλ −δν3.

Thanks to this decoupled structure, the tuning of the gains

lv, lV , lB,mv,mV ,nh,ov,oV ,oB is straightforward. Obviously

the lateral, longitudinal, vertical and altitude subsystems do

not depend on the magnetic measurements, so will not be

affected if the magnetic field is perturbed. We do not detail

in this article how the choice of matrices meet the preceding

requirements during a level flight. We only illustrate it

through simulation and experimental results.

VI. SIMULATION RESULTS

We first illustrate on simulation the behavior of the invari-

ant observer

˙̂q =
1

2
q̂∗ (ωm − ω̂b)+(LE)∗ q̂+α(1−‖q̂‖2)q̂

˙̂v = v̂× (ωm − ω̂b)+ q̂−1 ∗A∗ q̂+a+ q̂−1 ∗ (ME)∗ q̂

˙̂
h = 〈q̂∗ v̂∗ q̂−1,e3〉+(NE)

˙̂ωb = q̂−1 ∗ (OE)∗ q̂

with the choice of gain matrices described in section V. The

added term α(1−‖q̂‖2)q̂ is a well-known numerical trick to

keep ‖q̂‖ = 1. Notice this term is invariant.

We choose here time constants around 20s by tak-

ing lv = lV = 1e−2, lB = 5.2e− 3, mv = mV = 2.4, nh = 1,

ov = oV = 5.3e−3, oB = 2.8e− 3 and α = 1. The system

follows the trajectory defined by

a =





.4g∗ sin(t)
.4g∗ sin(.5t +π/4)
−g− .4gcos(.5t)





ω =





.5sin(.5t)

.9sin(.3t)
−.5sin(.25t)



 ωb =





.01

.008

−.01



 ,

which is representative of a small UAV flight. We see on the

Fig. 1–4 the results of the following experiment:

• for t < 40s the observer converges well. Though we

have no proof of convergence but local, the domain

of attraction seems to be large enough since the states

are initialized far from their true values and the system

moves quite fast

• at t = 40s the “GPS correction terms” are switched off,

i.e. the gains lV , mV and oV are set to 0. The observer

still behaves well

• at t = 60s the magnetic field is changed from

B = (1 0 1)T to B = (0.5 − 0.8 0.7)T . As expected,
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Fig. 1. Estimated Euler angles (simulation)
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only the estimated yaw angle ψ is strongly affected by

the magnetic disturbance. Because of the coupling terms

Iv̂ and Iωm , there is some dynamic influence on the other

variables.

VII. EXPERIMENTAL RESULTS

We do not have yet measurements from an air-data sys-

tem, so we will use only Earth-fixed velocity, inertial and

magnetic measurements provided by the commercial INS-

GPS device MIDG II from Microbotics Inc and altitude

measurement given by the barometer module Intersema

MS5534B. For each experiment we first save the raw mea-

surements from the MIDG II gyros, acceleros and magnetic

sensors (at a 50Hz refresh rate), the velocity provided by

the navigation solutions of its GPS engine (at a 5 Hz

refresh rate) and the raw measurements from a barometer

module (at a 12.5 Hz refresh rate). A microcontroller on a

development kit communicate with these devices and send

the measurements to a computer via the serial port (see

Fig. 5). On Matlab Simulink we feed offline the observer

with these data and then compare the estimations of the

observer to the estimations given by the MIDG II (computed
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according to the user manual by some Kalman filter). In order

to have similar behaviors and considering the units of the

raw measurements provided by the MIDG II, we have cho-

sen lV = 2.8e−5, lB = 1.4e−6, mV = 9e−3, nh = 5e−2,

oV = 4e−7, oB = 2e−8 and α = 1 and we initialized the

altitude measurement to 0 at the beginning of the experiment.

A. Dynamic behavior (Fig. 6–8)

We wait a few minutes until the biases reach constant

values, then move the system in all directions. The observer

and the MIDG II give very similar results (Fig. 6–8). To do

comparison in the same frame we compare the Earth velocity

provided by the MIDG II and V̂ = q̂∗ v̂∗ q̂−1 given by our

observer. We can notice that the estimation of Vz given by

our observer seems to be closer to the real value than the

estimation provided by the MIDG II: we know that we let

the system motionless at t = 42s, which is coherent with our

estimated V̂z.

B. Influence of magnetic disturbances (Fig. 9–12)

Once the biases have reached constant values, the system

is left motionless for 60s. At t = 72s a magnet is put close to
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Fig. 5. Experimental protocol
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the sensors for 10s. As expected the estimated roll and pitch

angles, longitudinal and lateral velocities are not affected by

the magnetic disturbance (Fig. 9–10); the MIDG II exhibits

a similar behavior. However we notice that the yaw angle

estimated by our algorithm is much more affected by the

disturbance that the estimation provided by the MIDG II.

And thus the estimated vertical velocity and altitude are also

perturbed (Fig. 9–11). Indeed for the experiments related to

the Fig. 9–11 we used the gain values detailed above, which

are constant whatever the norm of the magnetic field is. If the

norm of the magnetic measurements change, which means

that there is some magnetic disturbance, we would like this

to affect the gain values of the magnetic correction terms.

For instance if the norm of yB increases we want to decrease

the gains lB and oB of the “magnetic correction terms”. A

first possibility is to consider the gains lB and oB divided by

‖yB‖
1.5

, supposing ‖yB‖ 6= 0. On the Fig. 12 we see that the

estimated vertical velocity, altitude and yaw angle are really

less disturbed, and are now close to the estimations given by

the MIDG II.
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VIII. CONCLUSION AND FUTURE WORKS

In this paper we proposed a general nonlinear observer

for aided attitude heading reference systems. It can merge

several kinds of measurements from Earth-fixed and body-

fixed low-cost sensors. We illustrated its well-behavior and

nice properties on simulation and preliminary experimental

results. Further work is in progress to implement the observer

on a cheap microcontroller, see [16], [15], to demonstrate the

computational simplicity of the observer.
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