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Abstract— It is well known that a negative feedback inter-
connection of passive systems is passive. However, the extension
of this fundamental property to the case when there are time
delays in communication, remains largely unaddressed. In this
paper we demonstrate that a negative feedback interconnection
of output strictly passive systems, under appropriate assump-
tions, is passive for non-increasing time delays and may loose
passivity for increasing time delays. Passivity can be retained
by inserting time-varying gains in the communication path,
provided a bound on the maximum rate of change of delay is
known. If the dynamical systems are passive, we appeal to the
results in bilateral teleoperation [2], [13], to recover passivity of
the feedback interconnection. We show that by transforming the
two systems into their scattering representation, transmitting
the scattering variables as the new outputs, and using time-
varying gains in the communication path, passivity of the
feedback interconnection can be guaranteed independent of the
time-varying delays. Finally we discuss the applicability of the
proposed results for networked control of nonlinear mechanical
systems.

I. INTRODUCTION

In this paper we study passivity of a feedback intercon-
nection of two passive systems when there are time-varying
delays in communication. It is well known that a feedback
interconnection of two passive systems is passive [7], [26].
This simple but powerful paradigm for feedback intercon-
nection of linear and nonlinear systems, has led to a wide
variety of constructive control designs [3], [23], [22]. Due
to the ubiquity of modern communication networks, it is
important to extend the standard passivity and dissipativity
results for feedback interconnections that may have time
delays in communication. Some preliminary results in this
direction have been reported in [15], [19], [9], [6], [12], [4],
[17], [27], [16].

Inspired by the results in bilateral teleoperation and syn-
chronization of nonlinear systems [13], [5], it was demon-
strated in [6] that under appropriate assumptions, a negative
feedback interconnection of output strictly passive systems,
with constant time delays in communication, is passive.
In this note, we extend the aforementioned result to in-
clude time-varying delays in communication. Using previous
results in the problem of bilateral teleoperation [13], we
demonstrate that under appropriate assumptions, a feedback
interconnection of output strictly passive systems, with non-
increasing time delays, is passive independent of the time-
varying delays. In the general case, when the time delay
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may be increasing or decreasing, we show that passivity of
the feedback interconnection can no longer be guaranteed.
However, passivity can be recovered provided time-varying
gains [13], dependent on the maximum rate of change of
delay, are used in the communication path.

We also address the case when the two systems are
passive, and not output strictly passive as required in the
previous results. If the passive systems are transformed using
the scattering representation [7], [26] and the scattering vari-
ables are transmitted as the new outputs, then the feedback
interconnection is passive independent of the constant time
delays. A specific application of this general result [2] is
well studied in the telerobotics literature, where the two
subsystems are the master-slave robots. However its general
formalization, as treated in this paper, is relatively new. In
addition, we show that the addition of time-varying gains,
dependent on the maximum rate of change of delay, can be
used to guarantee passivity independent of the time-varying
delays.

The outline of the paper is as follows. We briefly discuss
standard the passivity result for a feedback interconnection
in Section II, which is followed by the main results in
Section III. We point out the relevance of the proposed results
to networked control of mechanical systems in Section IV
and finally summarize the results in Section V.

II. BACKGROUND

The concept of passivity is one of the most physically
appealing concepts of system theory [23] and, as it is based
on input-output behavior of an system, is equally applicable
to both linear and nonlinear systems. Most of the ideas
presented in this section are from [11]. Consider a dynamical
system represented by the state space model

ẋ = f(x, u) (1)
y = h(x) (2)

where f : Rn ×Rp → Rn is locally Lipschitz, h: Rn ×Rp

→ Rp is continuous, f(0, 0) = 0, h(0) = 0 and the system
has the same number of inputs and outputs.

Definition The dynamical system (1)-(2) is said to be pas-
sive if there exists a continuously differentiable non-negative
definite scalar function S(x): Rn → R (called the storage
function) such that

uT y ≥ Ṡ(x), ∀(x, u) ∈ Rn ×Rp

Moreover, the system is said to be
• strictly passive if uT y ≥ Ṡ(x)+D(x) for some positive

definite function D(x)
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Fig. 1. A feedback interconnection of passive systems

• lossless if uT y=Ṡ(x)
• input strictly passive if uT y ≥ Ṡ(x) + uTψ(u), where
uTψ(u) > 0 for some function ψ and ∀u 6= 0

• output strictly passive if uT y ≥ Ṡ(x) + yT ρ(y), where
yT ρ(y) > 0 for some function ρ and ∀y 6= 0

A. Feedback Interconnection of Passive Systems

At this point we recall a fundamental property of intercon-
nection of passive systems. Consider the feedback connection
of Figure 1, where each of the feedback components is
a time-invariant dynamical system represented by the state
model

ẋi = fi(xi, ei)
yi = hi(xi)

(3)

The closed-loop (composed of the components
∑

1 and
∑

2)
then takes the form

ẋ = f(x, u)
y = h(x) (4)

where x(t) =
(
x1(t)
x2(t)

)
, u(t) =

(
u1(t)
u2(t)

)
, y(t) =(

y1(t)
y2(t)

)
. A fundamental result on the feedback intercon-

nection of passive system is the following
Theorem 2.1: The feedback connection of two passive

systems is passive.
We refer the reader to [11] for a proof of this result. A
similar property follows when the two systems are output
strictly passive with

eT
i yi ≥ Ṡi(xi) + δiy

T
i yi δi > 0 i = 1, 2 (5)

In this case it is possible to show that

uT y ≥ Ṡ(x) + δyT y

where S(x) = S1(x1) + S2(x2) and δ = min{δ1, δ2}.
Consider the feedback interconnection with time-varying

delays in communication, as shown in Figure 2, The time
delays are assumed to satisfy 0 ≤ Ti(t) < h, i = 1, 2,
where h is an unknown constant. However, the subsequent
results are independent of the upper bound of the time delay.
The delays are also assumed to be continuously differentiable
with

Ṫi(t) ≤ Ṫmax
i < 1, i = 1, 2 (6)

u1e1 ∑
1

∑
2

u2

y1

y2 e2+

T2(t) T1(t)

+

+

Fig. 2. A feedback interconnection of passive systems with time delays

The above condition implies that the time delays cannot grow
faster than time itself, and hence is a statement about the
causality of the system. An upper bound on the rate of change
of delay is often assumed [18] in the analysis of continuous
time plants and controllers with input,output or state delays.
However, it is to be noted that several other variants of this
assumption have also been used in the literature [8]. Denote
by C = C([−h, 0], R2n), the Banach space of continuous
functions mapping the interval [−h, 0] into R2n, with the
topology of uniform convergence. Define xt = x(t + φ) ∈
C,−h < φ < 0 as the state of the system [10]. We assume in
this note that x(φ) = η(φ), η ∈ C and that all signals belong
to L2e, the extended L2 space.

III. MAIN RESULTS

Consider the feedback interconnection with time-varying
delays in communication, as shown in Figure 2. The time
delay in communication networks, for example the Internet,
are often time-varying and may be increasing or are non-
increasing at any particular time instant. As we demonstrate
in the subsequent results, the passivity of the closed loop
system crucially depends on the time-varying nature of the
delay. Our first result in this section studies passivity of the
feedback interconnection for non-increasing time delays.

Theorem 3.1: Consider two output strictly passive sys-
tems described by Σ1,Σ2, (5), (6) and Figure 2. Assuming
that the feedback interconnection is well defined, if the
time-varying delays are non-increasing, then the feedback
interconnection is

1) Passive if δ1 = δ2 = 1.
2) Strictly output passive if δ1, δ2 > 1

Proof: Consider the case when δ1 = δ2 = 1. The output
strict passivity condition (5) for the individual systems can
then be written as

Ṡi(xi) ≤ uT
i yi − yT

i yi i = 1, 2 (7)
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Adding the above inequalities for i = 1, 2 and using the
feedback interconnection in Figure 2 yields

Ṡ1(x1) + Ṡ2(x2) ≤ uT
1 y1 + uT

2 y2 − yT
1 y1 − yT

2 y2

≤ (e1 − y2(t− T2(t)))T y1 + (e2 + y1(t− T1(t)))T y2

−||y1||2 − ||y2||2

≤ eT
1 y1 + eT

2 y2 − y2(t− T2(t))T y1 + y1(t− T1(t))T y2

−||y1||2 − ||y2||2

≤ eT
1 y1 + eT

2 y2 +
1
2

(||y2(t− T2(t))||2 + ||y1||2)

+
1
2

(||y1(t− T1(t))||2 + ||y2||2)− ||y1||2 − ||y2||2

≤ eT
1 y1 + eT

2 y2 −
1
2

(||y2||2 − ||y2(t− T2(t))||2)

−1
2

(||y1||2 − ||y1(t− T1(t))||2)

≤ eT
1 y1 + eT

2 y2 − φ(t) (8)

where || · || is the Euclidean norm of the enclosed signal and
φ(t) := 1

2 (||y2||2 − ||y2(t− T2(t))||2) + 1
2 (||y1||2 − ||y1(t−

T1(t))||2). Integrating φ(t) from [0, t] we get∫ t

0

φ(τ)dτ =
∫ t

0

(1
2

(||y2(τ)||2 − ||y2(τ − T2(τ))||2)

+
1
2

(||y1(τ)||2 − ||y1(τ − T1(τ))||2)
)
dτ

Rewriting the non-delayed terms in the above equation yields

=
1
2

(∫ t

t−T1(t)

||y1(τ)||2dτ +
∫ t

t−T2(t)

||y2(τ)||2dτ

+
∫ t−T1(t)

0

||y1(τ)||2dτ +
∫ t−T2(t)

0

||y2(τ)||2dτ

−
∫ t

0

(||y1(τ − T1(τ))||2 + ||y2(τ − T2(τ))||2)dτ
)

Performing a change of variables [13], σ = τ − Ti(τ) :=
gi(τ) in the last term in the above equations, we note from (6)
that

g′i = 1− dTi

dτ
≥ 0 ; i = 1, 2 (9)

which is a statement that the change of variables is causal
and (by the Implicit Function Theorem) invertible [13].
Performing this change of variables it can be shown after
some calculations that∫ t

0

φ(τ)dτ =
1
2

(∫ t

t−T1(t)

||y1(τ)||2dτ +
∫ t

t−T2(t)

||y2(τ)||2dτ

−
∫ t−T1(t)

0

T ′1(σ)
1− T ′1(σ)

||y1(σ)||2dσ

−
∫ t−T2(t)

0

T ′2(σ)
1− T ′2(σ)

||y2(σ)||2dσ
)

(10)

where

T ′i (σ) :=
dTi

dτ |τ=g−1(σ)

We note that the last two terms in (10) are negative when
the time-delay is increasing (T ′i > 0) and are non-positive

u1e1 ∑
1

∑
2

u2

y1

y2 e2+

T1(t)T2(t)

d1

d2

+

+

Fig. 3. A feedback interconnection with time-varying delays and gains

for non-increasing delays. Thus,
∫ t

0
φ(τ)dτ ≥ 0 for non-

increasing time delays. Integrating (8) and from the above
discussion, passivity of the feedback interconnection follows
for non-increasing time-varying delays.

To prove the second claim, using the above calculations,
for non-increasing delays and δi > 1, i = 1, 2, the
inequality (8) can be rewritten as

Ṡ1(x1) + Ṡ2(x2) ≤ eT
1 y1 + eT

2 y2 − φ(t)− (δ1 − 1)yT
1 y1

− (δ2 − 1)yT
2 y2

Integrating the above inequality from [0, t], and using (10) it
follows that

S(x(t))− S(x(0))≤
∫ t

0

e(τ)T y(τ)dτ − δc
∫ t

0

y(τ)T y(τ)dτ

where S(x) = S(x1) +S(x2) and δc = min{(δ1− 1), (δ2−
1)}. Hence the feedback interconnection is output strictly
passive for non-increasing time delays.
In Theorem 3.1, passivity of the feedback interconnection
was shown for non-increasing time delays. In a practical
scenario, it is important to ensure passivity of the feedback
interconnection independent of the time-varying delays. To
this end, we propose the addition of time-varying gains in
the communications as shown in Figure 3. The closed loop
system is now given as

Σ1 =
ẋ1 = f1(x1, u1)
y1 = h1(x1, u1)

u1(t) = e1(t)− d2(t)y2(t− T2(t))
(11)

Σ2 =
ẋ2 = f2(x2, u2)
y2 = h2(x2, u2)

u2(t) = e2(t) + d1(t)y1(t− T1(t))
(12)

Theorem 3.2: Consider the feedback interconnection∑
1,2 described by (11), (12), (5), (6) and Figure 3. Assuming

that the feedback interconnection is well posed, if d2
i (t) ≤

1− Ṫmax
i , i = 1, 2, where Ṫmax

i is the maximum rate of
change of the delay Ti(t), then the feedback interconnection∑

1,2, with (e1, y1), (e2, y2) as the input-output pairs, is
1) Passive if δ1 = δ2 = 1.
2) Strictly output passive if δ1, δ2 > 1
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Proof: Consider the first case when δ1 = δ2 = 1.
Summing the storage functions (5) for the individual systems∑

1,
∑

2 yields

Ṡ1(x1) + Ṡ2(x2) ≤ uT
1 y1 + uT

2 y2 − yT
1 y1 − yT

2 y2

≤ (e1 − d2(t)y2(t− T2(t)))T y1 + (e2
+d1(t)y1(t− T1(t)))T y2 − ||y1||2 − ||y2||2

≤ eT
1 y1 + eT

2 y2 − d2(t)y2(t− T2(t))T y1

+d1(t)y1(t− T1(t))T y2 − ||y1||2 − ||y2||2

≤ eT
1 y1 + eT

2 y2 +
1
2

(d2
2(t)||y2(t− T2(t))||2 + ||y1||2)

+
1
2

(d2
1(t)||y1(t− T1(t))||2 + ||y2||2)− ||y1||2 − ||y2||2

≤ eT
1 y1 + eT

2 y2 −
1
2

(||y2||2 − d2
2(t)||y2(t− T2(t))||2)

−1
2

(||y1||2 − d2
1(t)||y1(t− T1(t))||2)

≤ eT
1 y1 + eT

2 y2 −
1
2

(||y2||2 − (1− Ṫmax
2 )||y2(t− T2(t))||2)

−1
2

(||y1||2 − (1− Ṫmax
1 )||y1(t− T1(t))||2)

≤ eT
1 y1 + eT

2 y2 −
1
2

(||y2||2 − (1− Ṫ2(t))||y2(t− T2(t))||2)

−1
2

(||y1||2 − (1− Ṫ1(t))||y1(t− T1(t))||2)

As before, integrating the above inequality from [0, t] we get

S(x(t))− S(x(0)) ≤
∫ t

0

e(τ)T y(τ)dτ −
∫ t

t−T1(t)

||y1(τ)||2dτ

−
∫ t

t−T2(t)

||y2(τ)||2dτ

Hence, the feedback interconnection
∑

1,2 is passive with
(e1 y1), (e2 y2) as the input-output pairs.

If δ1, δ2 > 1, output strict passivity of the feedback
interconnection follows from the above discussion and the
proof developed in Theorem 3.1

We next consider the case when the individual systems
are passive in comparison to the stronger notion of output-
strict passivity that has been used in the previous results. It
is well known 1 [1], [7], [26] that passive systems, under
appropriate assumptions [7], can be transformed into their
scattering representation. We study passivity of the feedback
interconnection when scattering variables (defined subse-
quently) are transmitted between the two systems. It turns
out in this case that passivity of the feedback interconnection
can be guaranteed for constant time delays. In the time-
varying delay case, as before, time-varying gains are used
to guarantee passivity of the feedback interconnection. We
first investigate the constant time delay case.

The two systems Σi i = 1, 2 are assumed to be passive.
Therefore, ∃Si(xi) i = 1, 2 such that

Ṡi(xi) ≤ uT
i yi

1The author would like to thank Dr. M. Vidyasagar for pointing to the
work on scattering representation [1] by Dr. B.D.O. Anderson.

u1e1 ∑
1

∑
2

u2

y1

y2 e2

+

Scattering Representation

z1

z2 v2

v1

T2 T1

+

y1s

y2s

Scattering Representation

+

Fig. 4. A feedback interconnection with delays and the scattering
transformation

The feedback interconnection of Σ1,Σ2 with the scattering
representation (to be defined) is shown in Figure 4, and
hence,

u1(t) = e1(t)− y1s(t) , u2(t) = e2(t) + y2s(t) (13)

Passivity of the individual systems then dictates that

Ṡ1(x1) ≤ (e1 − y1s)T y1
Ṡ2(x2) ≤ (e2 + y2s)T y2

(14)

Assuming well-posedness [7], the scattering representa-
tion [26] of the dynamical system in Figure 4 is defined
as

v1 = 1√
2
(y1s + y1) ; z1 = 1√

2
(y1s − y1)

v2 = 1√
2
(y2s + y2) ; z2 = 1√

2
(y2s − y2) (15)

In the transformed system, the scattering variables v1, z2 are
transmitted between the two systems. The dynamical systems
Σi i = 1, 2, coupled using the scattering variables, can then
be represented as

Σ1s =


ẋ1 = f1(x1, u1)
y1 = h1(x1, u1)
v1 = 1√

2
(y1s + y1)

z1 = 1√
2
(y1s − y1)

(16)

Σ2s =


ẋ2 = f2(x2, u2)
y2 = h2(x2, u2)
v2 = 1√

2
(y2s + y2)

z2 = 1√
2
(y2s − y2)

(17)

Theorem 3.3: Assuming well-posedness, consider the
feedback interconnection Σ1s,2s described by (13), (16)
and (17). Then Σ1s,2s is passive independent of the constant
time delay with (e1, y1), (e2, y2) as the input-output pairs.

Proof: The sum of the storage functions (14) for the
individual systems can be rewritten using (15) as,

Ṡ1(x1) + Ṡ2(x2) ≤ (e1 − y1s)T y1 + (e2 + y2s)T y2

≤ eT
1 y1 + eT

2 y2 − yT
1sy1 + yT

2sy2

≤ eT y +
1
2

(
||z1||2 − ||v1||2 + ||v2||2 − ||z2||2

)
(18)

The transmission equations dictate that

z1(t) = z2(t− T2); v2(t) = v1(t− T1) (19)
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u1e1 ∑
1

∑
2

u2

y1

y2 e2

+

Scattering Representation

z1

z2
v2

v1

+

y1s

y2s

Scattering Representation

T1(t)T2(t)

d1

d2

+

Fig. 5. Scattering transformation and the delay-rate dependent gains d1, d2

are used to ensure passivity of the feedback interconnection

Using (19), the inequality (18) can be rewritten as

Ṡ1(x1) + Ṡ2(x2) ≤ eT y +
1
2

(
||z2(t− T2)||2 − ||z2||2

+||v1(t− T1)||2 − ||v1||2
)

Integrating the above equation from [0, t] yields

S(x(t))− S(x(0)) ≤
∫ t

0

e(τ)T y(τ)dτ

−1
2

(∫ t

t−T1

||v1(τ)||2dτ +
∫ t

t−T2

||z2(τ)||2dτ
)

(20)

where S(x) = S1(x1)+S2(x2). Therefore, Σ1s,2s is passive
independent of the constant time delay with (e1, y1), (e2, y2)
as the input-output pairs.
A similar result was recently shown in the context of
networked control systems in [15]. However, the authors
demonstrated L2 stability of the controller-plant intercon-
nection using the scattering representation.

If the delays are time-varying, then as before, the time-
varying delays are assumed to continuously differentiable
and Ṫi(t) ≤ Ṫmax

i < 1, i = 1, 2. As shown in Figure 5,
the scattering variables z1(t), v2(t) are scaled by the two
gains d2(t), d1(t) > 0 respectively, and the new scattering
equations can be written as

v1 = 1√
2
(y1s + y1) ; d2z1 = 1√

2
(y1s − y1)

d1v2 = 1√
2
(y2s + y2) ; z2 = 1√

2
(y2s − y2) (21)

The delay-dependent gains d1(t), d2(t) are selected as

d2
1(t) ≤ (1− Ṫmax

1 ) ; d2
2(t) ≤ (1− Ṫmax

2 ) (22)

The feedback interconnection Σis i = 1, 2 is then defined
as

Σ1s =


ẋ1 = f1(x1, u1)
y1 = h1(x1, u1)
v1 = 1√

2
(y1s + y1)

d2z1 = 1√
2
(y1s − y1)

(23)

Σ2s =


ẋ2 = f2(x2, u2)
y2 = h2(x2, u2)
d1v2 = 1√

2
(y2s + y2)

z2 = 1√
2
(y2s − y2)

(24)

The next claim follows
Theorem 3.4: Assuming well-posedness of the scattering

representation and the feedback interconnection, consider the
closed loop systems described by (23), (24), (14), (13), (6)
and (22). Then the feedback interconnection is passive inde-
pendent of the time-varying delays with (e1, y1), (e2, y2) as
the input-output pairs.

Proof: The new transmission equations can be written
as

z1(t) = z2(t− T2(t)) ; v2(t) = v1(t− T1(t)) (25)

Following the proof of Theorem 3.3, we have

Ṡ1(x1) + Ṡ2(x2) ≤ (e1 − y1s)T y1 + (e2 + y2s)T y2

≤ eT y +
1
2

(
d2
2(t)||z1||2 − ||v1||2 + d2

1(t)||v2||2 − ||z2||2
)

≤ eT y +
1
2

(
(1− Ṫmax

2 )||z2(t− T2(t))||2 − ||v1||2

+(1− Ṫmax
1 )||v1(t− T1(t))||2 − ||z2||2

)
≤ eT y +

1
2

(
(1− Ṫ2(t))||z2(t− T2(t))||2 − ||v1||2

+(1− Ṫ1(t))||v1(t− T1(t))||2 − ||z2||2
)

As before, integrating the above inequality yields

S(x(t))− S(x(0)) ≤
∫ t

0

e(τ)T y(τ)dτ

−1
2

(∫ t

t−T1(t)

||v1(τ)||2dτ +
∫ t

t−T2(t)

||z2(τ)||2dτ
)

(26)

Therefore, the feedback interconnection Σ1s,2s is passive
with (e1, y1), (e2, y2) as the input-output pairs.

IV. NETWORKED CONTROL OF MECHANICAL SYSTEMS

Starting with the work of [25], passivity-based control [21]
has emerged as a powerful paradigm for control design in
mechanical systems. Several algorithms have been devel-
oped [20], [14] where the controller and the mechanical
system can be represented as a negative feedback inter-
connection of passive systems. Invoking the fundamental
passivity theorem, it is then possible to guarantee passivity
of the closed loop system.

The passivity results in the previous section demonstrate a
constructive methodology to guarantee passivity of the closed
loop system when there are time delays in communication
between the mechanical system and the controller. To this
end, we revisit the set-point control problem for mechanical
systems. Following [24], in the absence of gravitational
forces, the Euler-Lagrange equation of motion for an n-
degree-of-freedom system is given as

M(q)q̈ + C(q, q̇)q̇ = up + ug = u (27)

where q ∈ Rn is the vector of generalized configuration
coordinates, up ∈ Rn is the motor torque acting on the
system, ug ∈ Rn is the set of external forces acting
on the system, M(q) ∈ Rn×n is a symmetric, positive
definite inertia matrix and C(q, q̇)q̇ ∈ Rn is the vector of
Coriolis/Centrifugal forces.
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It is well known [14] that the PI control strategy (assuming
zero initial conditions)

up(t) = −KP q̇(t)−KI(q(t)− qd)

where KP ,KI > 0, drives the system to the desired config-
uration given by q(t) = qd ∈ Rn. The coupled mechanical
system and the controller can be represented as a feedback
interconnection of passive systems where the mechanical
system (27) is passive with (u, q̇) as the input-output pair
and the controller

Controller =
{
ẋc = uc = q̇
yc = KPuc +KI(xc − qd) (28)

is passive from uc → yc. It can be shown [14] that the
negative feedback interconnection with up(t) = −yc(t) is
passive from ug → q̇ with

S(q, q̇) = Sp + Sc

=
1
2

(
q̇TM(q)q̇ +KI(xc − qd)T (xc − qd)

)
(29)

as the storage function. Therefore, in the presence of time-
varying delays, using the scattering representation and the
time-varying gains (see Theorem 3.4), the feedback intercon-
nection recovers the passivity property from ug → q̇. This
can be demonstrated by following the proof of Theorem 3.4
with (29) as the storage function. A detailed study on
networked control of mechanical systems will be addressed
in a sequel.

V. CONCLUSIONS

In this paper we studied input-output passivity of a
negative feedback interconnection of passive systems with
time delays in communication. Extending the previously
developed results in [6], we demonstrated that a negative
feedback interconnection of output strictly passive systems,
under appropriate assumptions, is passive for non-increasing
time delays and may loose passivity for increasing time
delays. Passivity can be recovered by inserting time-varying
gains [13], that depend on the maximum rate of change of
delay, in the communication path. If the dynamical systems
are passive instead of the output strict passivity property re-
quired for the above results, inspired by previous algorithms
for bilateral teleoperation [2], [13] we demonstrated that by
transforming the two systems into the scattering represen-
tation, transmitting the scattering variables, and using time-
varying gains in the communication path, passivity of the
feedback interconnection can be guaranteed independent of
the time-varying delays. Finally, using the remote set-point
control problem for mechanical systems, we presented a brief
overview of the relevance of the results for networked control
of nonlinear mechanical systems.
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