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Abstract— This paper addresses the mixed H−/H∞ fault
detection observer design issue for a class of linear parameter
varying (LPV) system. Based on the quadratic H∞ performance
and affine quadratic H∞ performance concepts, as well as
the corresponding quadratic H− index performance and affine
quadratic H− index performance for measuring the worst-case
fault sensitivity of the underlying LPV system, the existence
conditions of such an observer are given in terms of linear
matrix inequalities (LMIs). Iterative algorithms are given to
achieve the solutions.

I. INTRODUCTION

Model based fault detection has received much attention
and significant progress has been achieved, see [2][3][10]
and the references therein. One of the particular interesting
techniques among all the model based techniques is the
observer based fault detection filter design. It has been
shown that it is very effective in detecting sensor, actu-
ator, and system component faults. Nevertheless, finding
systematic design methods for system subjected to unknown
disturbances and model uncertainties has been proven to be
difficult. Since both disturbance and faults contribute to the
residual generated by the observer, it is essential to isolate
their effects to the residual. A fault detection observer should
be robust to the disturbance but sensitive to the faults [3][7].
Some recent results aiming at this goal on this issue for
LTI systems are reported in [3][10] [8][9] [6][5] and the
references therein.

This paper concerns the mixed H−/H∞ observer design
issue for a class of linear parameter (LPV) system. Analo-
gous to the definition of the quadratic H∞ performance for
LPV systems [1] and the H− index for linear time invariant
systems, the H− index for LPV systems is defined in terms
of a linear matrix inequality (LMI). The first algorithm
for designing the mixed H−/H∞ observer is proposed
based on the quadratic stability condition and quadratic
H− index condition. For reducing the conservativeness of
this algorithm, the affine quadratic stability (AQS) [4] and
affine H− index for LPV systems proposed in this paper
are utilized. To this end, the robustness conditions and
affine H− index conditions for the underlying system are
recast as parameter dependent LMIs. Furthermore, gridding
technique and multiconvexity concept are applied to reduce
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the parameter dependent LMIs to a finite set of LMI con-
starints. Correspondingly, two algorithms are proposed and
implemented by iterative LMI methods.

II. NOTATIONS AND PRELIMINARIES

A. Notations

Ξ∞(A, B,C, D, X, γ) and Ξa
∞(A,B, C,D, X, γ), respec-

tively, denotes⎛
⎝ AT X + XA XB CT

BT X −γI DT

C D −γI

⎞
⎠

and ⎛
⎝ AT X + XA + Ẋ XB CT

BT X −γI DT

C D −γI

⎞
⎠

Ξ−(A,B, C, D, P, β) and Ξa
−(A,B, C,D, P, β), respec-

tively, indicates(
AT P + PA + CT C PB + CT D

(PB + CT D)T DT D − β2I

)

and (
AT P + PA + CT C + Ṗ PB + CT D

(PB + CT D)T DT D − β2I

)

The symmetric entries below diagonal are denoted as ∗.

B. Quadratic H∞ performance for LPV systems

Consider a general polytopic linear parameter-varying
system of the following form

G(θ) :
{

ẋ = A(θ)x + B(θ)u
y = C(θ)x + D(θ)u (1)

where x ∈ Rnx is the state vector, u ∈ Rnu is the input
vector, y ∈ Rny is the measurement vector and θ ∈ Rnθ is
the scheduling variable measurable online.

Each parameter θi ranges between known extremal val-
ues θi and θi, θi ≤ θi ≤ θ̄i, i = 1, 2, · · · , nθ, which
corresponds to a polytope R of vertices ω1, ω2, ....ωr; that
is θ ∈ R := Co{ω1, ω2, · · · , ωr, r = 2nθ}. Additionally,
its time derivative ν = θ̇ is bounded and satisfies νi ≤
νi ≤ ν̄i, i = 1, 2, · · · , nθ. It defines an hyper-rectangle
V := Co{υ1, υ2, · · · , υr, r = 2nθ}. The parameters of
A(θ), B(θ), C(θ) and D(θ) are affine to the scheduling vari-
able θ. For instance, A(θ) = A0+A1θ1+A2θ2+· · ·+Anθ

θnθ

and it has the polytopic property A(θ) =
∑nθ

i=1 αiA(ωi)
with

∑nθ

i=1 αi = 1 and αi ≥ 0.
Definition 2.1: (Quadratic H∞ performance)[1] The LPV

system in (1) is said to have quadratic H∞ performance γ
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if and only if there exists a positive definite constant matrix
X > 0 which satisfies the following LMI

Ξ∞(A(θ), B(θ), C(θ), D(θ), X, γ) < 0

for all values of the parameter vector θ ∈ R.
Quadratic H∞ performance guarantees global asymptotic

stability and L2-gain of the map from u to y less than γ
for all possible parameter trajectories θ ∈ R, that is ‖y‖2 <

γ‖u‖2 where ‖y‖2 :=
(∫ ∞

0
yT ydt

) 1
2 .

It must be noticed that the quadratic H∞ performance is
more conservative than standard H∞ performance for each
fixed θ, since it requires the existence of a fixed Lyapunov
function for the entire operation range.

Lemma 2.2: (Vertex property) [1] Considering the poly-
topic LPV plant described by (1), we can have the following
equivalent statements:

i The LPV system is stable with quadratic H∞
performance γ;

ii There exists a single matrix X > 0 such that

Ξ∞(A(θ), B(θ), C(θ), D(θ), X, γ) < 0

iii For all the vertex of the polytopic LPV system,
there exists X > 0 such that

Ξ∞(A(ωi), B(ωi), C(ωi), D(ωi), X, γ) < 0,

where i = 1, 2, ..., r.

C. Quadratic H− index for LPV systems

The H− index as a sensitivity measure for LTI systems is
stated as the following lemma in [7].

Lemma 2.3: Let β > 0 be a constant scalar, and denote
G(s) = C(sI − A)−1B + D as a stable system. Then
‖G(jw)‖[0,∞)

− > β, if and only if there exists a symmetric
matrix P such that

Ξ−(A,B, C, D, P, β) > 0
It is reasonable that we define the following H− index for

LPV systems as follows and it will be explained later.
Definition 2.4: (Quadratic H− index performance for

LPV systems) The LPV system (1) is said to have H− index
performance if there exists a symmetric constant matrix P
such that

Ξ−(A(θ), B(θ), C(θ), D(θ), P, β) > 0

for all θ ∈ R.

D. Affine quadratic H∞ performance for LPV systems

Definition 2.5: [4](Affine Quadratic H∞ performance)
The LPV system in (1) has affine quadratic H∞ performance
γ if and only if there exist nθ + 1 symmetric matrix
X0, X1, · · · , Xnθ

such that

X(θ) = X0 + θ1X1 + · · · + θnθ
Xnθ

> 0

and
Ξa
∞(A(θ), B(θ), C(θ), D(θ), X(θ), γ) < 0

satisfied for all admissible parameter trajectory θ ∈ R.

Remark 2.6: As mentioned in [4], the affine quadratic H∞
stability test is less conservative than the quadratic stability
test.

Lemma 2.7: ([4]) (Vertex property) Consider the system
(1) which depends on θ affinely. Assume that the parameter
trajectories range in the hyper-rectangles R and V . The
system has affine quadratic H∞ performance γ if there exist
nθ + 1 symmetric matrices X0, X1, · · · , Xnθ

such that

X(θ) = X0 + θ1X1 + · · · + θnθ
Xnθ

> 0

Ξa
∞(A(ωi), B(ωi), C(ωi), D(ωi), X(ωi), γ) < 0

and (
AT

j Xj + XjAj XjBj

BT
j Xj 0

)
≥ 0

for all (ω, ν) ∈ R × V where i = 1, 2, · · · , r and j =
1, 2, · · · , nθ.

E. Affine quadratic H− index performance for LPV systems

Here we define the affine quadratic H− index for LPV
system, which is a dual of the affine quadratic H∞ perfor-
mance.

Definition 2.8: (Affine quadratic H− index performance
for LPV systems) The LPV system (1)is said to have affine
H− index performance if there exist nθ+1 symmetric matrix
Pj , j = 1, 2, · · · , nθ such that

Ξa
−(A(θ), B(θ), C(θ), D(θ), X(θ), β) > 0

for θ ∈ Θ, where P (θ) = P0 + θ1P1 + · · · + θnθ
Pnθ

.
Remark 2.9: The two definitions of the H− index perfor-

mance for LPV systems actually can be derived from the
definition of the H− index of linear time varying systems
stated in the following.

Definition 2.10: [5] For a stable linear time varying sys-
tem G : ω → y,

G(t) :=
{

ẋ = A(t)x + B(t)ω
y = C(t)x + D(t)ω (2)

Its H− index for the infinite horizon case is defined as

‖G‖− = inf
ω∈L2

‖Gω‖2

‖ω‖2
(3)

Then we can have the following theorem, which is the
modified version of theorem 3 in [7].

Theorem 2.11: The stable time varying system (2) can
achieve the H− index performance β, i.e. ‖G‖− ≥ β if
there exists a symmetric matrix P (t) such that

Ξa
−(A(t), B(t), C(t), D(t), P (t), β) > 0

The proof is omitted due to space limitation.
The following lemma is useful for the relaxation we need

later on.
Lemma 2.12: [4] Consider a quadratic function of θ ∈ R

f(θ1, θ2, · · · , θK) = α0 +
∑

i

αiθi +
∑
i<j

βijθiθj +
∑

i

λiθ
2
i

(4)
The scalar function f(·) is positive in R if it takes positive

values at the corners at the polytope R and λi = ∂2f
∂θ2

i
(θ) ≤ 0

for i = 1, 2, · · · ,K.
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III. PROBLEM FORMULATION

The considered linear parameter varying system described
by state space equations of the form:

Σ(θ) :=
{

ẋ = A(θ)x + Bd(θ)d + Bu(θ)u + Bf (θ)f
y = C(θ)x + Dd(θ)d + Du(θ)u + Df (θ)f (5)

where x ∈ Rnx is the state vector, w ∈ Rnw is the
unknown input vector including modeling error, uncertain
disturbance, process and measurement noises, y ∈ Rny is
the measurement vector, f ∈ Rnf is the fault vector, and
θ ∈ Rnθ is the scheduling variable measurable online.

Assume that the designed LPV observer F (θ) has the
following formulation:

F (θ) :=

⎧⎨
⎩

˙̂x = A(θ)x̂ + Bu(θ)u + L(y − ŷ)
ŷ = C(θ)x̂ + Du(θ)u
r = y − ŷ

(6)

Define e = x − x̂, the residual error dynamic equations
can be described by:

⎧⎨
⎩

ė = (A(θ) − LC(θ))e + (Bd(θ) − LDd(θ))d
+(Df − LDf (θ))f
r = C(θ)e + Dd(θ)d + Df (θ)f

(7)

The objective is to design the gain matrix L for the
observer which maximizes the robustness against the dis-
turbance d and also maximized the sensitivity to fault f .

IV. MIXED H−/H∞ DESIGN METHODOLOGY I

In this section, we concern the mixed H−/H∞ design
based on the quadratic H∞ performance and the quadratic
H− index performance for affine LPV systems.

A. LPV Observer Synthesis Based on the Robustness Con-
ditions

The observer error dynamic system without faults de-
scribed by

{
ė = (A(θ) − LC(θ))e + (Bd(θ) − LDd(θ))d
r = C(θ)e + Dd(θ)d

(8)

Lemma 4.1: Consider the error dynamical system (8), the
following robustness conditions are equivalent:

1) The quadratic H∞ performance γ from d to r is
achieved.

2) There exists a matrix L and a symmetric matrix X > 0
such that

Ξ∞(A(θ) − LC(θ), Bd(θ) − LDd(θ),
C(θ), Dd(θ), X, γ) < 0 (9)

for θ ∈ R
3) There exists a matrix L and a symmetric matrix X > 0

such that

Ξ∞(A(ωi) − LC(ωi), Bd(ωi) − LDd(ωi),
C(ωi), Dd(ωi), X, γ) < 0 (10)

where ωi, i = 1, 2, ..., r are the vertices.

4) There exists a matrix Fd and symmetric matrix X > 0
such that⎛

⎝ Q WT CT (ωi)
W −γI DT

d (ωi)
C(ωi) Dd(ωi) −γI

⎞
⎠ < 0 (11)

where Q = A(ωi)T X − C(ωi)T FT
d + XA(ωi) −

FdC(ωi),W = Bd(ωi)T − Dd(ωi)FT
d ,i = 1, 2, ..., r

and the observer filter

L = X−1Fd (12)

5) There exist matrices L, L0 and a symmetric matrix
X > 0 such that⎛

⎜⎜⎝
M1 M3 M4 X
∗ M2 0 −DT

d (ωi)LT

∗ ∗ −I 0
∗ ∗ ∗ −I

⎞
⎟⎟⎠ < 0

(13)

where

M1 = XA(ωi) + A(ωi)T X + CT (ωi)C(ωi) +
(L0C(ωi))T (LC(ωi)) − (LC(ωi))T

(L0C(ωi)) + (L0C(ωi))T (L0C(ωi)
−2X0X − 2XX0 + 2X0X0

M2 = Dd(ωi)T Dd(ωi) − γ2I −
(LDd(ωi))T (L0Dd(ωi)) − (LDd(ωi))T

(L0Dd(ωi)) + (L0Dd)T ((L0Dd(ωi)))
M3 = XBd(ωi) + C(ωi)T Dd(ωi)
M4 = X − (LC(ωi))T

where i = 1, 2, ..., r
(The proof is omitted.)

B. H− Index Sensitivity Conditions

Consider the observer error dynamics without disturbance{
ė = (A(θ) − LC(θ))e + (Bf (θ) − LDf (θ))f
r = C(θ)e + Df (θ)f (14)

then we can have the following lemma.
Lemma 4.2: Consider the error dynamical system (14), for

a given β, its H− index performance is greater than β if one
of the following conditions is satisfied:

1) There exists a symmetric matrix P and a gain matrix
L such that

O :=
(

H1 H2

HT
2 DT

f (ωi)Df (ωj) − β2I

)
> 0

(15)

where H1 = P (A(ωi) − LC(ωi)) + (AT (ωi) −
LC(ωi))P + CT (ωi)C(ωj),H2 = PBf (ωi) +
CT (ωi)Df (ωj),i = 1, 2, ..., r, j = 1, 2, · · · , r.

2) There exist symmetric matrix P and Ff such that(
H3 H4

HT
4 DT

f (ωi)Df (ωj) − β2I

)
> 0 (16)
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where H3 = PA(ωi) − FfC(ωi) + AT (ωi)P −
CT (ωi)Ff + CT (ωi)C(ωj), H4 = PBf (ωi) +
CT (ωi)Df (ωj), i = 1, 2, ..., r, j = 1, 2, · · · , r, Ff =
PL.

3) There exists matrices L, L0, and symmetric matrices
P and P0 such that

⎛
⎜⎜⎝

Ň11j Ň12j Ň13j P
∗ Ň22j 0 Df (ωi)T LT

∗ ∗ I 0
∗ ∗ ∗ I

⎞
⎟⎟⎠ > 0

(17)

where

Ň11j = 2P0P + 2PP0 − 2P0P0 + C(ωi)T

LT
0 LC(ωj) + C(ωi)T LT L0C(ωj)

+PA(ωi) + A(ωi)T P + C(ωi)T C(ωj)
Ň12j = PBf (ωi) + C(ωi)T Df (ωj)
Ň13j = P + C(ωi)T LT

Ň22j = Df (ωi)T Df (ωj) − β2I + Df (ωi)T

LT
0 LDf (ωj) + Df (ωi)T LT L0Df (ωj)

−Df (ωi)T LT
0 L0Df (ωj)

where i = 1, 2, · · · , r, j = 1, 2, · · · , r.
(The proof is omitted.)

C. H−/H∞ Fault Detection Observer Design for LPV sys-
tems

Analogous to the theorem in [10], we can have the
following theorem on the H−/H∞ observer design for the
underlying LPV system.

Theorem 4.3: Given scalars γ > 0, β > 0 and consider
the error dynamical system (7), its H∞ performance is
smaller than γ and H− index greater than β if there exists
matrices L, L0, symmetric matrix P0 and P , X > 0 and
X0 > 0 such that inequalities (13) and (17) hold.

Algorithm 4.4: Mixed index observer design algorithm
I: Given the system model Σ(θ) as in (5).

1) Maximize β subject to P < 0, (11) and (16) with
Fd = −Ff and P = −X . Then calculate the optimal
filter gain matrix Lopt using (12). Let L0 = Lopt.

2) With L = L0, maximize β subject to (15) to get Popt,
and minimize Tr(X) subject to X > 0 and (10) to get
Xopt > 0. Let X0 = Xopt and P0 = Popt.

3) With L0, X0 and P0, maximize γ2 − β2 subject to
X > 0, (13) and ( 17) to get Lopt, Xopt > 0, Popt and
βopt. Let L0 = Lopt, X0 = Xopt, P0 = Popt.

4) Repeat step 3 till a certain number of iterations are
reached or γ2 − β2 reaches almost a constant.

V. MIXED H−/H∞ DESIGN METHODOLOGY II

In this section, we use the affine quadratic H∞ perfor-
mance which bases on parameter dependent Lyapunov func-
tion and affine quadratic H−index performance techniques
to design the mixed H−/H∞ observer.

A. Robustness Conditions Based on Parameter Dependent
Lyapunov Functions

Lemma 5.1: Consider the error dynamical system (8), the
following robustness conditions are equivalent:

1) The error dynamical system has the affine quadratic
H∞ performance γ.

2) (Bounded Real Lemma) if there exist nθ + 1 matrix
X0, X1, · · · , Xnθ

such that

X(θ) = X0 + θ1X1 + · · · + θnθ
Xnθ

> 0
Ξa
∞(A(θ) − LC(θ))T , Bd(θ) − LDd(θ)

C(θ), Dd(θ)(θ), X(θ), γ) < 0

for all admissible parameter trajectory θ ∈ R.
3) There exist matrices L, L0 and symmetric matrix

X0, X1, · · · , Xnθ
and X0

0 , X0
1 , · · · , X0

nθ
such that

X(θ) = X0 + θ1X1 + · · · + θnθ
Xnθ

> 0 (18)⎛
⎜⎜⎝

J1(θ) J3(θ) J4(θ) P (θ)
∗ J2(θ) 0 −DT

d (θ)LT

∗ ∗ −I 0
∗ ∗ ∗ −I

⎞
⎟⎟⎠ < 0 (19)

where

J1(θ) = X(θ)A(θ) + AT (θ)X(θ) + CT (θ)C(θ) −
(L0C(θ))T (LC(θ)) − (LC(θ))T (L0C(θ))
+(L0C(θ))T (L0C(θ)) + 2X0(θ)X(θ) −
2X(θ)X0(θ) + 2X0(θ)X0(θ)
+Σnθ

j=1Xj θ̇j .

J2(θ) = DT
d (θ)Dd(θ) − (LDd(θ))T (L0Dd(θ))

−(LDd(θ))T (L0Dd(θ)) − γ2I +
(L0Dd(θ))T ((L0Dd(θ)))

J3(θ) = X(θ)Bd + CT (θ)Dd(θ)
J4(θ) = X(θ) + (LC(θ))T

where X0(θ) = X0
0 + θ1X

0
1 + · · · + θnθ

X0
nθ

> 0
Proof: The proof is omitted due to space limitation.

The robustness conditions derived in lemma 5.1 are non-
convex problem in general and there are infinite set of LMI
constraints. To reduce the robustness conditions to a finite
set of LMI, we propose two methods. As suggested in [11],
we can use the gridding method. It has the risk of achieving
an unreliable result if the grid density is not high enough. It
also has the computation burden issue if the density is too
high. A trade off must be done between the reliability and
the computation complexity. The other strategy is to use the
so-called multiconvexity condition to reduce the infinite LMI
set to a finite set. This is stated in the following lemma.

Lemma 5.2: Consider the error dynamical system (8), it
has the affine quadratic H∞ performance γ if one of the
following conditions is satisfied:
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1) There exists a matrix L and nθ +1 symmetric matrices
Xj > 0, j = 0, 1, · · ·nθ such that

X(ωi) > 0 (20)⎛
⎝ T1 T2 CT (ωi)

TT
2 −γI DT

d (ωi)
C(ωi) D(ωi) −γI

⎞
⎠ < 0

(21)

where T1 = (A(ωi) − LC(ωi))T X(ωi) +
X(ωi)(A(ωi) − LC(ωi)) +

∑nθ

j=1 Xj{νj , ν̄j}.
Here the Σnθ

j=1Xj θ̇j is replaced by
∑nθ

j=1 Xj{νj , ν̄j}
since θ̇ is affine to the inequality and we only need
to check their extremal points. This notation is also
used in [11]. In the following the same replacement
applies if the θ in Σnθ

j=1Xj θ̇j needs to be replaced
by the vertex ωi. T2 = X(ωi)(Bw(ωi) − LDd(ωi)),
X(ωi) = X0 + θi

1X1 + θi
2X2 + · · · + θi

nθ
Xnθ

,
i = 1, 2, ..., r. and(

Tj Xj(Bd,j − LDd,j)
∗ 0

)
≥ 0 (22)

where Tj = (Aj − LCj)T Xj + Xj(Aj − LCj),j =
1, 2, ..., nθ.

2) There exist matrices L, L0 and nθ+1 symmetric matrix
Xj , j = 1, 2..., nθ such that

X(ωi) > 0 (23)⎛
⎜⎜⎝

J1(ωi) J3(ωi) J4(ωi) X(ωi)
∗ J2(ωi) 0 J5

∗ ∗ −I 0
∗ ∗ ∗ −I

⎞
⎟⎟⎠ < 0

(24)

and (
Š11 XjBd,j + CT

j Dd,j

∗ Š22

)
≥ 0 (25)

where

J5 = −DT
d (ωi)LT

Š11 = AT
j Xj + XjAj − (L0Cj)T (LCj) + CT

j Cj

−(LCj)T (L0Cj) − (L0Cj)T (L0Cj)
Š22 = DT

d,jDd,j − (LDd,j)T (L0Dd,j)

−(L0Dd,j)T (LDd,j) + (L0Dd,j)T (L0Dd,j)

where i = 1, 2, ..., r, j = 1, 2, ..., nθ

Proof: The proof of this lemma is straightforward by
using the multiconvex conditions in [4].

B. H− Index Sensitivity Conditions

Lemma 5.3: Consider the dynamical system (14),it is said
to have the H− index performance of the LPV system great
than β if one of the following conditions is satisfied:

1) There exists nθ + 1 symmetric matrixes Pj , j =
1, 2 · · · , nθ and L such that

Ξa
−(A(θ) − LC(θ), Bf (θ) − LDf (θ), (26)

C(θ), Df (θ), P (θ), β) > 0

where P (θ) = P0 + θ1P1 + ... + θnθ
Pnθ

.
2) There exist matrices L, L0, and nθ + 1 symmetric

matrices Pj , j = 1, 2 · · · , nθ and P 0(θ) such that

⎛
⎜⎜⎝

Ň1(θ) Ň3(θ) Ň4(θ) P (θ)
∗ Ň2(θ) 0 Df (θ)T LT

∗ ∗ I 0
∗ ∗ ∗ I

⎞
⎟⎟⎠ > 0 (27)

where

Ň1(θ) = 2P 0(θ)P (θ)(θ) + 2P (θ)P 0(θ)
−2P 0(θ)P 0(θ) + C(θ)T LT

0 LC(θ) +
C(θ)T LT L0C(θ) + P (θ)A(θ) +
A(θ)T P (θ) + C(θ)T C(θ) + Σnθ

j=1Pj θ̇j

Ň2(θ) = Df (θ)T Df (θ + Df (θ)T LT
0 LDf (θ)

+Df (θ)T LT L0Df (θ) −
Df (θ)T LT

0 L0Df (θ)) − β2I

Ň3(θ) = P (θ)Bf (θ) + C(θ)T Df (θ)
Ň4(θ) = P (θ) + C(θ)T LT

P (θ) = P0 + θ1P1 + ... + θnθ
Pnθ

P 0(θ) = P 0
0 + θ1P

0
1 + ... + θnθ

P 0
nθ

Proof: The proof is omitted.
The affine H− index sensitivity conditions above are param-
eter dependent and they can be reduced to finite LMI set
constraints by the multiconvexity technique.

Lemma 5.4: The dynamical system (14) can achieve a H−
index performance β if one of the following conditions is
satisfied:

1) There exists nθ + 1 symmetric matrix Pj , j =
1, 2 · · · , nθ and L such that

Ξa
−(A(ωi) − LC(ωi), Bf (ωi) − LDf (ωi), (28)

C(ωi), Df (ωi), P (ωi), β) > 0

and (
Hj Pj(Bf,j − LDf,j)
∗ −DT Dj

)
≤ 0 (29)

where Hj = (Aj − LCj)T Pj + Pj(Aj − LCj) +
CT

j Cj ,i = 1, 2, ..., nθ.
2) There exist matrices L, L0, and nθ + 1 symmetric

matrices Pj , j = 1, 2 · · · , nθ and P 0(ωi) such that

⎛
⎜⎜⎝

Ň1(ωi) Ň3(ωi) Ň4(ωi) P (ωi)
∗ Ň2(ωi) 0 Ň5

∗ ∗ I 0
∗ ∗ ∗ I

⎞
⎟⎟⎠ > 0

(30)

and (
B̌11 PjBf,j

∗ B̌22

)
≤ 0 (31)
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Ň5 = Df (ωi)T LT

B̌11 = AT
j Pj + PjAj − (L0Cj)T (LCj)

−(LCj)T (L0Cj) − (L0Cj)T (L0Cj)
B̌22 = DT

f,jDf,j − (LDf,j)T (L0Df,j)

−(L0Df,j)T (LDf,j) + (L0Df,j)T (L0Df,j)

where i = 1, 2, ..., r and j = 1, 2, ..., nθ.
Proof: The proof is straightforward by using multicon-

vex lemma 2.12.

C. H−/H∞ Fault Detection Observer Design for LPV sys-
tems

Theorem 5.5: Consider the system (5), the fault detection
observer (6) and the associated residual error dynamics (7),
then the observer has the robustness performance γ from
d to r, and the H− index performance β from f to r if
there exist matrix L , L0, symmetric matrices X(θ) > 0,
X0(θ) > 0, P 0(θ) and P (θ) such that inequalities (19) and
(27) are satisfied.

The inequalities (19) and (27) have infinite LMI set to be
solved. By using the Gridding Method in [11], a numerical
solution can be achieved. In order to solve the problem
iteratively, we need the start values of P 0, X0. For this
reason, we need to know all the initial values of P 0

j , X0
j , j =

0, 1, 2, ..., nθ. These can not be trivially solved by the same
trick in algorithm 4.4. However, we can use the method in
algorithm 4.4 for a constant P and X to initialized P 0

0 and
X0

0 and set P 0
j , X0

j , j = 1, 2, ..., nθ as 0. At each griding
point, a LMI set can be constructed. An algorithm can be
derived similar to algorithm 4.4. We refer to this algorithm
as algorithm II or gridding algorithm. The detailed steps are
omitted due to space limitation.

The gridding algorithm provides a numerical solution for
handling the infinity LMI set. It can achieve almost the best
performance if the grid density is high enough. Clearly, the
computation burden will be also high, especially when the
system has a high order. An alternative strategy is to reduce
the infinite LMI sets to be finite by using the multiconvex
technique which are stated in lemma 5.2 and 5.4. Now we
can have the following theorem and algorithm.

Theorem 5.6: Given scalars γ > 0, β > 0 and consider
the error dynamical system (7), its H∞ performance is less
than γ and its H− index performance greater than β if there
exist matrices L, L0, symmetric matrix P 0(ωi) and P (ωi),
X(ωi) > 0 and X0(ωi) > 0 such that inequalities (24), (25)
and (30), (31) hold.

Algorithm 5.7: Mixed index Observer design algorithm
III: Given the system model Σ(θ) as in (5)

1) Maximize β subject to P < 0, (11) and (16) with
Fd = −Ff and P = −X . Then calculate the optimal
filter gain matrix Lopt using (12). Let L0 = Lopt.

2) With L = L0, maximize β subject to (15) to get Popt,
and minimize Tr(X) subject to X > 0 and (10) to
get Xopt > 0. Let X0

0 = Xopt and P 0
0 = Popt and

X0
j = 0, P 0

j = 0, j = 1, 2, ..., nθ.

3) With L0, X0(ωi) and P 0(ωi), maximize γ2 − β2

subject to X(ωi) > 0, (24), (25) and (30), (31) to
get Lopt, Xj,opt, Pj,opt and βopt. Let L0 = Lopt,
X0(ωi) = Xopt(ωi), P 0(ωi) = Popt(ωi).

4) Repeat step 3 till a certain number of iterations are
reached or γ2 − β2 reaches almost a constant.

VI. CONCLUSIONS

This paper has investigated the mixed H−/H∞ observer
design for a class of linear parameter varying system. Three
algorithms are proposed in terms of linear matrix inequali-
ties. The first algorithm mainly bases on the vertex property
of polytopic LPV systems. Since constant matrix X and P
are used for the robustness and sensitivity conditions, it is a
conservative algorithm. To reduce the conservatism, param-
eter dependent matrix X(θ) and P (θ) are introduced for the
robustness condition and sensitivity condition, respectively.
Gridding method is applied to achieve a numerical solution,
which is our second algorithm. To avoid using the gridding
method and reduce the computation burden, multiconvex
technique is utilized to achieve a finite LMI set constraints
(algorithm III).
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