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Abstract— This paper addresses the design of static output
feedback controller for singular discrete-time LPV systems.
Sufficient synthesis conditions are derived in Linear Matrix
Inequalities (LMI) formulation. To introduce more of relax-
ation, polyquadratic Lyapunov functions is proposed instead of
quadratic method, the number of LMI conditions is reduced
and extra degrees of freedom are included. Academic example
is proposed to illustrate the effectiveness of the derived results.
Keyword: Singular systems, LPV systems, static output control,
Lyapunov method, LMI.

I. INTRODUCTION

These last years, many efforts have been carried out for
singular systems [1]. Many works dealing with the control of
impulsive and switching singular systems and singular LPV
systems have been studied recently for the theoretical and
practical point of view (see for example [2], [3], [4], [6],
[10], [9]). For the switching systems the control techniques
based on switching between different controllers have been
applied extensively in recent years, due to their advantages
in achieving stability [15], [7], [8], [10], [13] whereas gain-
scheduling controllers techniques are used for LPV systems
[12], [14]. For singular LPV systems, stability and stabilisa-
tion are studied using gain-scheduling controllers techniques
[19] and recently using multiple state feedback controllers
for the class of polytopic LPV [20]. However, if there exist
a lot of works on singular linear systems (see for exampe
[16], [17] and references therein), to our knowledge there are
few studies on singular LPV systems and their corresponding
control problems.

In this paper we consider the stabilisation of the class of
polytopic singular LPV systems using static output feedback
controller. While a single control is often used, this paper
proposes to design multiple static output feedback controller
obtained by interpolation of linear static output feedback
control law. In fact, such controller introduces more of
relaxation since a single/common gain fails to solve many
control problems.

This paper studies the design of static output controllers
for singular LPV systems in polytopic form. LMI formu-
lation and polyquadratic Lyapunov approach are used to
design static output controller obtained by interpolation of
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multiple linear static output gain. For more of relaxation, a
transformation technique of the system is proposed to reduce
the number of LMI constraints and extra degree of freedom
is introduced and exploited.

The paper is organized as follows. In section 2, the
considered class of a discrete-time singular LPV systems
is described. In section 3, a static static output controller
is introduced and the stabilisation of the considered class of
singular LPV systems is studied. The main result is proposed
in section 3-B where relaxations are introduced to design
multiple controller gains in LMI formulation. Example is
given in section 4.

Notation. The following notations are used. Rn and
Rn×m denote, respectively, the n dimensional Euclidean
space and the set of all n×m real matrices. The superscript
“T” denotes matrix transposition, the notation X ≥ Y (re-
spectively, X > Y ) where X and Y are symmetric matrices,
means that X − Y is positive semi-definite (respectively,
positive definite) and the symbol (∗) denotes the transpose
elements in the symmetric positions. I is the identity matrices
with compatible dimensions and IN = {1, 2, · · · , N}.

II. PROBLEM STATEMENT

The considered singular LPV system is as follows

Ex(t+ 1) = A(ρ(t))x(t) +B(ρ(t))u(t)
y(t) = Cx(t) (1)

Two important classes of LPV systems can be distinguished;
the affine LPV where the state space matrices depend
affinely on ρ(t) and the polytopic LPV where the parameter
ρ(t) varies in polytope of vertices ρi such that ρ(t) ∈
Co{ρ1, ρ2, ..., ρr} [12]. In the sequel only the second class
is used in the following form

Ex(t+ 1) =
∑N

i=1 ξi(ρ(t))(Aix(t) +Biu(t))
y(t) = Cx(t)

(2)

where

ξi(ρ(t)) ≥ 0,
N∑

i=1

ξi(ρ(t)) = 1 (3)

with x(t) ∈ Rn is the state vector, y(t) ∈ Rp is the output
vector, u(t) ∈ Rm is the input vector, Ai ∈ Rn×n, Bi ∈
Rn×m and C ∈ Rp×n. The matrix E may be singular with
0 ≤ rank(E) = nE < n.
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Before studding the static output feedback stabilisation,
let us now recall some basic stability conditions for the un-
forced singular system (2). Consider the Lyapunov dependant
parameter function of the form [20]:

V (x(t), ρ(t)) = x(t)>P(ρ(t))x(t) (4)

with

P(ρ(t)) =
N∑

i=1

ξi(ρ(t))E>PiE,E
>PiE ≥ 0, i ∈ IN (5)

The difference of (4) along the solution of the unforced
system of (2) is given by

∆V = V (x(t+ 1), ρ(t+ 1))− V (x(t), ρ(t))
= x(t+ 1)>P(ρ(t+ 1))x(t+ 1)− x(t)>P(ρ(t))x(t)

(6)
Thus, the unforced singular system of (2) is stable if

there exist nonsingular symmetric matrices Pi such that the
following hold for all (i, j) ∈ I2

N :

E>PiE ≥ 0 (7)
A>i PjAi − E>PiE < 0 (8)

To design control laws, introduction of extra degrees of
freedom is largely used in literature (see for example [18],
[15] and references therein). Theses techniques are very
helpful for the development of an LMI-based conditions for
controllers design and particulary for static output feedback
controller. Thus the unforced singular system of (2) is stable
if there exist nonsingular symmetric matrices Pi, matrices Fi

and Gi such that the following LMI hold for all (i, j) ∈ I2
N

[20]:

EPiE
> ≥ 0 (9)(

−EPiE
> +AiFi + (AiFi)> −F>i +AiGi

(∗) Pj − (Gi +G>i )

)
< 0

(10)

The stability conditions (10) and (8) are equivalents.
However, this last formulation is very helpful for the control
problem design.

In this paper our objective is to synthesis static output
controller for discrete-time singular systems. Sufficient con-
ditions for controller design will be derived based on the
Lyapunov theory and LMI formulation.

III. STABILISATION OF DISCRETE-TIME LPV SINGULAR
SYSTEMS

A. Static output feedback controller design

Consider the following control law obtained by interpola-
tion of linear static output controller:

u(t) =
N∑

i=1

ξi(ρ(t))Kiy(t) (11)

where Ki ∈ Rm×p. The closed loop system is

Ex(t+ 1) =
N∑

i=1

N∑
j=1

ξi(ρ(t))ξj(ρ(t))Aijx(t) (12)

with

Aij = Ai +BiKjC (13)

In the sequel, we assume

Assumption 1: The matrix C is full row rank.

To derive stability conditions of (12) it is possible to sub-
stitute Ai by Aij = Ai+BiKjC in conditions (10). However
the obtained conditions are Bilinear Matrix Inequalities in
Ki, Fi and Gi. LMI conditions can be obtained by using
the transformation used in [21] and choosing Fi = Gi = G.

Theorem 1: The singular system (12) is stable if there
exist nonsingular matrices G, Pi, M and Nj such that the
following LMI hold for all (i, j, k) ∈ I3

N :

EPiE
> ≥ 0 (14)(

−EPiE
> + Φij + Φ>ij −G> + Φij

(∗) Pk − (G+G>)

)
< 0

(15)
CG = MC (16)

with

Φij = AiG+BiNjC (17)

The controller gains are defined by:

Ki = NiM
−1 (18)

Proof: Multiplying (15) by
∑N

i=1

∑N
j=1 ξi(ρ(t))ξj(ρ(t))

and according to (18) and (16), we obtain∑N
i=1

∑N
j=1 ξi(ρ(t))ξj(ρ(t)).(

−EPiE
> + AijG+ (AijG)> −G> + AijG

(∗) Pk − (G+G>)

)
< 0

(19)
Which is only stability conditions (10) by substituting Ai

by Ai +BiKjC and Fi = Gi by G.

In the following subsection, we introduce multiple ma-
trices Gi instead of single matrix G which leads to more
relaxation.
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B. Main result

To give more relaxation, we propose to derive LMI
conditions, to introduce different matrices Gi and to reduce
the number of LMI constraints. For this, we propose to
write the model (2) and the controller (11) as follows

Ex(t+ 1) =
N∑

i=1

ξi(ρ(t))Aix(t) (20)

Where

x(t) =
(
x(t)>, u(t)>

)
,Ai =

(
Ai Bi

KiC −I

)
(21)

E =
(
E 0
0 0

)
(22)

Thus, to design static output controller it suffices to
substitute Ai by Ai in conditions (10). However the obtained
conditions are BMI in Ki, Fi and Gi even if we choose
Fi = Gi.

Without lost of generality, we will further assume that
C has a specific structure C = (I, 0) where I ∈ Rp×p is
the identity matrix and 0 ∈ Rp×(n−p) is the null matrix.
Note that this is not a restricting condition. Indeed, if C is
a full rank matrix (assumption 1) then there always exist a
transformation matrix that transforms C into the above form.

In the following we propose LMI conditions obtained by
considering the output matrix structure C = (I, 0) and also
specific structure of matrices Fi = Gi.

Theorem 2: The singular system (20) is stable if there
exist nonsingular symmetric matrices P1i, P3i and matrices
P2i, G2i, G3i and G1i of the form

G1i =
(
G11i 0
G12i G13i

)
(23)

such that the following LMI hold for all (i, j) ∈ I2
N .

EP1iE
> ≥ 0 (24)



Σi

(
BiG3i+
N̄>

i −
G>2i

) (
−G>1i

+AiG1i

+BiG2i

) (
−G>2i

+BiG3i

)
(∗)

(
−G3i

−G>3i

) (
N̄i−
G2i

) (
−G>3i

−G3i

)
(∗) (∗)

(
P1j−
G1i

−G>1i

) (
P2j−
G>2i

)
(∗) (∗) (∗)

(
P3j−
G3i

−G>3i

)


< 0 (25)

with

Σi = −EP1iE
> +AiG1i +BiG2i + (AiG1i +BiG2i)> (26)

N̄i = (Ni, 0) (27)

The controller gains are defined by:

Ki = NiG
−1
11i (28)

Proof: Substituting Ai by Ai in conditions (10) with Fi =
Gi we get

EPiE> ≥ 0 (29)(
−EPiE> + AiGi + (AiGi)> −G>i + AiGi

(∗) Pj − (Gi +G>i )

)
< 0

(30)

The obtained conditions (30) are BMI in Ki and Gi. To
derive LMI conditions we propose to chose matrix Gi with
the following structure

Gi =
(
G1i 0
G2i G3i

)
(31)

and G1i has the structure (23). Thus

AiGi =
(
AiG1i +BiG2i BiG3i

KiCG1i −G2i −G3i

)
(32)

Tacking account the structure of the matrices G1i (23) and
C and condition (28), we get

AiGi =
(
AiG1i +BiG2i BiG3i

N̄i −G2i −G3i

)
(33)

Writing the symmetric matrices Pi as follows

Pi =
(
P1i P2i

P>2i P3i

)
(34)

and according to (33) we obtain (25) from (30). Conditions
(24) are obtained directly from (29).

The result of theorem 2 leads to more relaxation compared
with the result of the theorem 1 by reducing the number of
constraint to (N2 +N) LMI instead of (N3 +N) and by
introducing different matrices Gi.

IV. NUMERICAL EXAMPLE

Consider a numerical example with the following data:

A1 =


2.018 1.326 −0.08691 −0.1644
2.277 2.018 −0.1359 −0.2908
0.4259 0.1666 0.5714 0.1732
0.6659 0.4259 −0.4822 −0.152

 (35)

A2 =


1 1 −0.06988 −0.1351
0 1 −0.07577 −0.1835
0 0 0.5807 0.1894
0 0 −0.4546 −0.1013

 (36)
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B1 =


0.6047
1.644
−1.709
−1.732

 , B2 =


0.5422
1.351
−1.747
−1.894

 (37)

C =
(

1 0 0 0
0 1 0 0

)
(38)

The singular matrix, E, are given by:

E =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 (39)

Solving LMI (24)-(25), we get feasible problem:

G11 =


0.0058 −0.0042 0 0
−0.0043 0.0056 0 0
−0.0027 −0.0018 0.0786 0.0020
0.0012 −0.0026 0.0490 0.1963

(40)

G12 =


0.0071 −0.0019 0 0
−0.0029 0.0053 0 0
0.0027 −0.0028 0.0790 0.0030
0.0188 −0.0046 0.0470 0.1924

(41)

which give the controller gains

K1 =
(
−2.3661 −2.4425

)
(42)

K2 =
(
−0.3311 −0.8934

)
(43)

We note that the synthesis conditions of theorem 1 fail to
prove the stabilisation of the given example.

V. CONCLUSION

This paper deals with the output stabilisation of class of
singular LPV systems. Thus, static output stabilisation con-
troller is studied for polytopoic singular LPV systems. Using
polyquadratic Lyapunov functions, sufficient conditions to
design multiple static output controllers are developed in
LMI terms. For more of relaxation, a technique to reduce
the number of LMI constraints is proposed and different
extra degrees of freedom are introduced. Numerical example
is given to illustrate the benefit of derived results.
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