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Abstract— In this work we concentrate on the problem of
path planning in a scenario in which two different vehicles
with complementary capabilities are employed cooperatively to
perform a desired task in an optimal way. In particular we
consider the case in which a vehicle carrier, typically slow
but with virtually infinite operativity range, and a carried
vehicle, which on the contrary is typically fast but with a
shorter operative range, can be controlled together to pursuit a
certain mission while minimizing a pre-defined cost function. In
particular we will concentrate on a particular scenario, which
we denoted as “fast-rescue” problem, providing optimal and
heuristic solutions to various cases.

I. INTRODUCTION

The complexity of many applications envisioned for fu-

ture autonomous vehicle networks, ranging from planetary

exploration to security missions, requires a broad range of

capabilities for individual units—ranging from air, ground or

sea mobility, to sophisticated multi-modal sensor suites and

actuation devices—which cannot be implemented on a single

platform class. Rather, it may be necessary to coordinate

diverse specialized units to attain complex objectives in a

reliable, timely, and efficient fashion [14]. While consid-

erable progress has been made on cooperative control of

networks of homogeneous vehicles (see for example [1], [2],

[6], [8], heterogeneous networks are still relatively poorly

understood. In particular, it is of interest to understand how

to optimally exploit the different capabilities of individual

vehicles.

In this paper, we concentrate on a very simple system of

heterogeneous vehicles, arising from the combination of (i)

a slow autonomous surface carrier (typically a ship), with

long range operational capabilities, and (ii) a faster vehicle

(typically an helicopter, an UAV or an offshore vehicle) with

a limited operative range. The carrier is able to transport the

faster vehicle, as well as to deploy, recover, and service it.

Even though this two-vehicle system is very simple, many

interesting problems can be stated, involving optimization

and coordination problems [7], [12], [13].

Here we will deal mostly with the so-called “fast rescue

problems.” By “fast rescue problems” we mean those scenar-

ios in which one (or eventually many) “targets” with known

and non-changing position have to be visited in the shortest

possible time. This is the case of rescue or event monitoring

Corresponding author: Roberto Naldi, CASY-DEIS University of
Bologna, Via Risorgimento 2, 40136 Bologna, Italy. Tel: 0039 051 2093875,
Fax: 0039 051 2093073, email: roberto.naldi@unibo.it

missions in which it is important to arrive quickly at one or

more desired locations.

As a preliminary work, in this paper we studied such prob-

lems by assuming holonomic dynamic models to represent

the behavior of both the carrier and carried vehicles.

The paper is organized as follows. Section 2 introduces

the carrier-vehicle systems, its dynamics and the constraints

related. In Paragraph 3 the rescue problems are stated and in

Paragraph 4 some solutions to the most common cases are

proposed. Finally some conclusion and some indication on

future research end the paper.

Fig. 1. The carrier-vehicle system on a rescue scenario.

II. THE CARRIER-VEHICLE HYBRID SYSTEM

The system we are going to deal with is composed by

two different vehicles, a vehicle carrier (also denoted in the

following as carrier), whose variables and functions will be

denoted by subscript ·c, and a carried vehicle, denoted by

subscript ·v. In the following we will refer to the combined

system as the carrier-vehicle system.

To derive a mathematical model for the system, we will

consider the vehicles as points belonging to the Euclidean

space R
2. The admissible path followed by each vehicle is

a continuous curve Γ : [0, tf ] 7→ R
2. Let us fix an inertial

frame Fi = {Oi,
−→
i ,

−→
j } and define with the notation vi

vectors v ∈ R
2 expressed in Fi. The following state variables

are introduced

pc =
[

xi
c yi

c

]T
pv =

[
xi

v yi
v

]T
. (1)

with pc(t) ∈ R
2, pv(t) ∈ R

2 respectively the position of

the vehicle carrier and the vehicle at time t in the inertial

frame Fi. We will assume that the position of the carrier

pc(t) evolves accordingly to the first order O.D.E

ẋc = Vc cos(φc) ẏc = Vc sin(φc) (2)
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with Vc ∈ R
+ the fixed velocity of the carrier and φc ∈ R

the control input.

To model the dynamics of the carried vehicle we distinguish

between two different situations:

1) when it is not carried it evolves following its free

behavior:

ẋv = Vv cos(φv) ẏv = Vv sin(φv) (3)

with Vv ∈ R
+, Vv > Vc and φv ∈ R the control input

for the vehicle.

2) when it is carried is a function of the carrier dynamics

and in particular it will coincide with the carrier

position, pv (t) = pc (t).

From the above arguments it appears that the carried vehicle

dynamics show an intrinsically hybrid behavior. For such a

reason let us introduce a binary variable c (t) ∈ {0, 1} with

the following semantic:

1) c (t) = 1 if the vehicle is carried;

2) c (t) = 0 if it is not carried .

By means of c(t) we define a 2 states automaton (see also

[17]) (c(t) = 0 and c(t) = 1) that changes his status

accordingly to the following guard conditions:

1) an input command, uw (t) ∈ {0, 1}, that denote the

“will” of change the actual state c(t);
2) “compatibility constraints” that denote the conditions

in term of system’s state under which approach of the

two vehicles are possible, nominally pc(t) = pv(t).

Since one of the distinguish feature of the carried-vehicle is

to have a finite operativeness (e.g. fuel), we introduce the

internal dynamics

ȧ (t) =

{
−1
0

if c (t) = 0
if c (t) = 1

(4)

where a ∈ R is the operativeness of the vehicle.

The operativeness of the vehicle is indeed decreasing when

the vehicle is not carried (c(t) = 0), since it is assumed it

has to use its own power, while it remains constant when

the vehicle is on the deck of the carrier (c(t) = 1). For the

sake of simplicity, it is supposed that anytime an approach

occurs, a(t) is restored to a certain constant default value

ā. The faster vehicle is constrained to have non-negative

operativeness; if this condition fails to be true an event occurs

which bring the system to a fault state. This faulty situation

is captured by adding a further state to the automaton

describing the vehicle’s dynamics, i.e. c(t) = −1 (faulty

state).

III. THE RESCUE PROBLEMS FAMILY

In this paper we are interested in studying and provide

solutions for the so called “fast rescue problems. By fast

rescue problems we mean those missions in which an ordered

collection of n points, namely q1, . . . , qn where qi ∈ R
2,

have to be visited ordinately in the “shortest possible time”

by the fast vehicle, eventually satisfying a prescribed takeoff-

visit-landing sequence.

More formally, if we define by ti ∈ R
+ the time in which

qi is visited, we can state the general rescue problem in the

following form:

Given a carrier-vehicle system with initial conditions

pc (0) = pv (0) = pc,0 ∈ R
2 and c(0) = 1, and a set

of objective points q̂list = {q1, q2, ...., qn} with q1 ∈ R
2, i =

1, .., n
find the optimal inputs (û (t))t:[0,∞)

minimizing a certain objective function obj (t1, ..., tn)
such that a certain given sequence of c(t) state changes and

visits events is satisfied

and eventually the vector t̂ =
[

t1 ... tn
]

belongs to a

certain admissible set T

where û(t) = [φc(t), φv(t), uw(t)]T is the vector

representing all the inputs of the system.

In the next section we will introduce and solve some

problems belonging to this family.

IV. SOME SOLUTION

A. Fastest approach to a point

Given an initial point p0 and a point to reach q1, we want

to find a trajectory for the carrier-vehicle system described

above such that t1 is minimized. Because the time spent

in any trajectory between two points by each one of the

two vehicles can be always equal or grater of the time to

follow a straight line (we recall that the admissible path

is a continuous curve), the problem can be reshaped into

finding a take-off point pto such that the carried vehicle

has enough operativeness to take-off at pto, and to reach

q1: ||pto − q1||2 ≤ Vva.

A formal definition of the problem is then




min
p0

t1

||pto − q1||2
Vv

≤ ā

||po − pto||2
Vc

+
||pto − q1||2

Vv

≤ t1

(5)

A straightforward lower bound on the cost, that is valid in all

the missions we will introduce here, is the optimal path of

a vehicle that can always go at velocity Vc and it is allowed

for certain amount of time (ā) to go at velocity Vv . Such a

fastest path is obtained by means of a straight line between

the starting point p0 and the arrival point q1 such that for

the maximum allowed time ā it goes to velocity Vv , and for

the remaining time at velocity Vc, i.e.

tlb =

= min

{
ā,

||p0 − q1||2
Vv

}
+ max

{
0,

||p0 − q1||2 − Vv ā

Vc

}

(6)

The optimal solution for problem (5) is then

pto =





p0 if
‖p0 − q1‖2

Vv

≤ ā

p0 + Vv ā (q1 − p0)
(7)

since it’s cost coincides with the lower bound (6).
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The simple geometric intuition behind such a solution is

the following.

Vv ā

q1
p0

Fig. 2. Geometry of the fastest approach to a point problem.

The carried object can be launched only after that the vehicle

is inside a circle of radius Vv ā. Then, because carried vehicle

is faster of the carrier, as soon as the carrier is inside this

circle, it has to launch the carried one that has to follow a

straight line to the objective. It is trivial to see that no other

choice is faster then this one. Moreover by simple geometric

consideration, the shortest path for the carrier to approach

the circle is a straight line directed to its center.

Remark - Notice that since Vv > Vc, the optimal solution

always impose c(t) = −1, ∀t > t1, The reason is that it has

to use all the operativeness a to reach qi as fast as possible.

This implies that there is no fuel to come back to the carrier

that being slower can’t arrive in that point at the same time.

2

B. Fastest approach to a point and re-entry mission

Given an initial point p0 and a point to reach q1 we want

to find a trajectory for the carrier-vehicle system described

above such that the arrival time at q1 is minimized and, after

the point is visited, the fast vehicle is able to come back to

the carrier. The problem can be reshaped in finding a take-

off point pto and the landing point pl and trajectories such

that the following constraints are satisfied:

1) the carried vehicle trajectory is such that it has enough

operativeness to take-off at pto, to reach the objective

and to arrive in pl. This implies that the points have

to be such that ||pto − q1||2 + ||q1 − pl||2 ≤ Vv ā;

2) the carrier vehicle trajectory is such that it is able to

arrive from pto to pl in a time that is not greater than

the maximum operativeness ā. This implies that the

two points have to be at distance ||pto − pl||2 ≤ Vcā.

We want to minimize the “safe” arrival time tl which is

the sum of two contributions:

1) the time t1,0 used by the carrier vehicle to reach pto

from p0. Because for such a kind of vehicle the fastest

path is always the straight line, t1,0 = 1
Vc
||p0 − pt0||2;

2) the time t2,0 used by the carried vehicle to arrive at q1.

Again the fastest path is the straight line then t1,1 =
1

Vv
||pt0 − q1||2.

As a consequence we can reduce the core of the problem to

the following optimization problem




min
1

Vv

||pt0 − q1||2 +
1

Vc

||p0 − pt0||2

||pto − q1||2 + ||q1 − pl||2 ≤ Vv ā

||pto − pl||2 ≤ Vcā

(8)

Even in this case is possible to avoid numerical solutions

and instead to find a closed form solution. Let us start from

the geometry of the problem.

Vv(ā − a1)

Vva1

q1
p0

Fig. 3. Geometry of the fastest approach to a point an re-entry mission
problem.

By exploiting the symmetry of the “operativeness circle”, we

know that the carried vehicle will be launched when it will

enter in a certain circle of radius Vva1 ≤ Vv ā. From that

point the launched vehicle will follow the fastest trajectory

to q1, i.e. the straight line. Exactly like in the previous case,

the optimal path for the carrier between the starting and the

launching points is the straight line between p0 and q1. It

remains now to discuss the choice of a1 and how to build a

feasible re-entry trajectory.

The main idea is that the optimum is obtained if the time

to follow the straight line between po and q1 is minimized,

or, equivalently, if we choose the maximum a1 such that the

recovery is possible. Then, the carrier at time t1,0 + ā has

to be as near as possible to q1. For such a reason it will

continue on the straight line to q1. By following this idea,

we have then

a1 = min

{
(Vc + Vv)

2Vv

ā,
||p0 − q1||2

Vv

}

Remark - This is because the space the carrier will cover

during the flight of the carried vehicle Vcā has to be equal

to the difference of space between the “go” and the “come

back” path of the launched vehicle i.e. Vva1−Vv (ā − a1) =
2Vva1 − Vv ā. 2

The only further case to be analyzed is when q1 is already

inside the circle of radius a1, in which trivially there is an

instantaneous take-off. From the above discussion it follows

that the minimum time to reach the objective q1 is

t1 = max

{
0,

||p0 − q1||2
Vc

−
Vc + Vv

2Vc

ā

}
+

+ min

{
Vc + Vv

2Vv

ā,
||p0 − q1||2

Vv

}
.

(9)

C. Fastest approach to 2 far points with re-entry mission

Let us consider the case in which the carried vehicle has

to reach two different points in an ordered way, minimizing

the time t2 and providing that, after each visit, it comes

back to the carrier. Hereafter, in order to avoid the analysis

of cases of low practical interest, it will be supposed that the

starting point and the two points to reach are “far enough”

with respect to the carried vehicle operativeness, nominally

we have d0,1 = ||q1−p0||2 > Vv ā. and d1,2 = ||q2−q1||2 >
2Vvā.
Because the shortest path between two different points in the

Euclidean space R
2 is represented by the straight line and
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because both the vehicles have the ability to “wait in a point”,

it is possible to recast the original problem of finding the

optimal trajectory as the problem of fixing 4 (distinguished)

points: the two take-off points pto1, pto2 and the two landing

points pl1, pl2. We can then state the following optimization

problem:

min tp0,pto1
+ tpto1,pl1

+ tpl1,pto2
+ tpto2,q2

‖p0 − pto1‖2

Vc

= tp0,pto1

‖pto1 − pl1‖2

Vc

≤ tpto1,pl,1

‖pto,1 − q1‖2

Vv

+
‖pto1 − q1‖2

Vv

≤ tpto1,pl1

‖pl1 − pto2‖2

Vc

= tpl1,pt−o,2

‖pto2 − q2‖2

Vv

≤ tpto2,q2

‖q2 − pl2‖2

Vv

≤ tq2,pl2

‖pl,2 − pto,2‖2

Vc

≤ tpto,2,pl,2

0 ≤ tpto1,pl1
≤ ā 0 ≤ tpto2,pl2

≤ ā
0 ≤ tpto2,q2

+ tq2,pl2
≤ ā

(10)

With an eye at (10), we observe that the last two terms

of the cost function represent the objective of the 1-point

fastest approach problem (8) with an initial condition that

corresponds to the given landing point pl1. For this reason

the last term of the objective function can be optimized

independently, allowing to further reduce the problem to the

determination of two points pto1 and pl1, i.e.

min tp0,pto1
+ tpto1,pl1

+ tq2

‖p0 − pto1‖2

Vc

= tp0,pto1

‖pto1 − pl1‖2

Vc

≤ tpto1,pl,1

‖pto1 − q1‖2

Vv

+
‖pto1 − q1‖2

Vv

≤ tpto1,pl1

||pl1 − q2||2
Vc

−
Vc + Vv

2Vc

ā +
Vc + Vv

2Vv

ā = tq2

0 ≤ tpto1,pl1
≤ ā

(11)

The solution of such an optimization problem can be com-

putationally hard. For such a reason, geometric solutions

(eventually sub-optimal) have been investigated. In order to

proceed we first derive an upper bound and two distinguished

lower bounds to be used in the analysis.

An upper bound to the optimal cost can be found considering

the case in which the carried vehicle never takes off (or

equivalently has an instantaneous take-off and landing) and

goes straight to the first point. Then, to reach the last point,

it follows the optimal 1-point strategy with cost given by (9).

The overall cost of this solution is given by

tup =
d0,1

Vc

+
d1,2

Vc

− ā

(
Vc + Vv

2Vc

)
+ ā

(
Vc + Vv

2Vv

)
.

(12)

Remark - The upper bound (12) coincides with the optimal

solution when the starting point p0 and the objective points

q1 and q2 are placed on the same line. 2

A first lower bound to the optimal cost can be calculated

assuming that the trajectory of the system is characterized

by a speed Vv for ā seconds, in the shortest-path between p0

and q1, and a speed Vc for the remaining time. Again from

q1 to the second objective q2 we can make use of the 1-point

optimal solution (9). The cost of such a lower bound is

tlow =
d0,1

Vc

+̄a

(
1 −

Vv

Vc

)
+
d1,2

Vc

−̄a

(
Vc + Vv

2Vc

)
+ā

(
Vc + Vv

2Vv

)
.

(13)

A second straightforward lower bound is the cost of the 1-

point optimal solution between p0 and q2, discarding the fact

we need to visit q1. Such a lower bound has cost:

tlow =
||q2 − p0||2

Vc

− ā

(
Vc + Vv

2Vc

)
+ ā

(
Vc + Vv

2Vv

)
(14)

In many significant cases it is possible to find a geometric

solution whose cost is equal to those two lower bounds, and

then optimal.

The main idea, underling the geometric constructions that we

will present here, is to take advantage of the possibility of the

carrier to launch the carried vehicle (that will visit q1) and to

take a shortcut in order to have a rendezvous somewhere on

the straight line to q2 before the carried vehicle has exhausted

the fuel. This idea is depicted in Fig. 4.

Vva2

Vva1

q1

q2p0

pto1

pto2

pl1

pl2

θ0̂12

Fig. 4. The geometric construction behind Proposition 1.

The following propositions can be stated:

Proposition 1: Let θ0̂12 be the smallest angle formed by

the segments p0q1 and q1q2. If θ0̂12 ≤ acos
(
1 − 2(V 2

c /V 2
v )

)

then it exists at least one optimal solution to the problem such

that the total cost is equal to lower bound (13)

Proof. Let us proceed with a constructive proof. As shown

in Fig. 4, the idea is that the carried vehicle will be released

at distance Vva1 from q1 on the line segment p0q1 and will

be recovered at distance Vva2 from q1 on the straight path

q1q2. In order to satisfy the hypothesis of the lower bound

(13) and the operativeness constraints,

a1 + a2 = ā (15)

has to be imposed.

As it is clear from the Fig. 4, between the take-off and the

landing events, the carrier will “cut the edge” by following

the straight segment qto1, ql1 whose length will be denoted

by Vctcarrier. Because of operativeness constraints, this

proposed solution will be a feasible one to the given problem

if

tcarrier ≤ ā. (16)
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By simple triangle consideration it is possible to see that

Vctcarrier ≤ Vva1 + Vva2 = Vv ā. In particular by using

Carnot theorem it is possible to write that

(Vctcarrier)
2

= (Vva1)
2

+ (Vva2)
2
− 2V 2

v a1a2 cos
(
θ0̂12

)
.

(17)

Because of the condition (15), it is of interest, for a given

angle θ0̂12, to choose a1 and a2 in order to minimize tcarrier.

Let us rewrite (17) by using (15)

(tcarrier)
2

=
1

Vc

[
(Vva1)

2
+ (Vv (ā − a1))

2
+

−2V 2
v a1 (ā − a1) cos

(
θ0̂12

)]
=

=
1

Vc

[
2V 2

v a2
1 + V 2

v ā − 2V 2
v āa1 − 2V 2

v āa1 cos
(
θ0̂12

)
+

−2V 2
v a2

1 cos
(
θ0̂12

)]
(18)

Being tcarrier ≥ 0, the minimum is reached when the

minimum of t2carrier is reached. Then by nullifying the

derivative of (18) w.r.t. a1, we have
[
4a1 − 2ā − 2ā cos

(
θ0̂12

)
− 4a1 cos

(
θ0̂12

)]
= 0 .

Consequently the choice of a1 and a2 that minimize tcarrier

is

a1 = a2 =

(
1 + cos (θ)

2 + 2 cos (θ)

)
ā =

1

2
ā

and the minimum tcarrier is:

tcarrier = ā
Vv

Vc

√
1

2
−

cos
(
θ0̂12

)

2

By imposing condition (16) it is possible to find that

the maximum angle for which this solution is feasible:√
0.5

(
1 − cos

(
θ0̂12

))
< Vc/Vv . This inequality holds true

if cos
(
θ0̂12

)
≤ 1 − 2(V 2

c /V 2
v ) that for θ0̂12 ∈ [0, π) is

θ0̂12 ≤ acos
(
1 − 2V 2

c /V 2
v

)
2

Vv ā
2 q1

q2p0 c1 pto2
c2 pl2

θmax

Fig. 5. The geometric interpretation behind Proposition 2.

Proposition 2: If the straight line between p0 and q2

touches in 2 points, respectively c1 and c2, the circle of

center q1 and radius Vv ā/2 and if the smallest angle defined

by the segments c1q1 and q1c2 is bigger or equal than

acos
(
1 − 2

V 2

c

V 2
v

)
then it exists at least one solution such that

the total cost is equal to lower bound (14) .

Proof. The carrier will go directly to the last point through

a straight line. By hypothesis, such a straight line will

intersect a triangle, built like the one in Fig. 5, with angle

θmax = acos
(
1 − 2

V 2

c

V 2
v

)
. Following the proof of Proposition

1, it is known that the time used by the carrier to follow the

basis of that triangle is equal to the time the fast vehicle uses

to follow the other two sides. Then using those intersection

point as take-off and rendezvous point, a feasible solution of

cost (14) is reached. 2

For the case not covered by the two proposition above

some heuristics have been developed.

A first heuristic can be simply obtained by using the 1-

point solution. The idea is two perform two time a “single

point” iteration. Such an idea it is very simple and has

guaranteed results both for the 2-point cases and for the

generalized one and will be described in the next subsection.

A second heuristic here proposed is built in the following

way. Let us build a triangle with one vertex on q1 and the

other two on the circle of center q1 and radius 1
2 āVv and

whose angle on q1 is equal to θmax, such that it is included in

the angle θ0̂12 and such that it does not intersect the segment

p0q2 as depicted in Fig. 6. If we fix the two points determined

by the intersection of such a triangle and the circle as the

take-off point and the rendezvous one

Vvā
2 q1

q2

p0 pto2

pto1

pto1

pl1

pl1

pl2

θmax

θ1

α

c1

c2

qt

Fig. 6. The geometric interpretation behind the algorithm used for the 2

point case.

the total cost of the strategy will be

teu =

√(
1
2 āVv

)2
+ d2

1 − (āVv) d1 cos (θ1)

Vc

+ ā+

+

(
1
2 āVv

)2
+ d2

2 − (āVv) d2 cos
(
θ0̂12 − θmax − θ1

)

Vc

+

−ā

(
Vc + Vv

2Vc

)
+ ā

(
Vc + Vv

2Vv

)

where θ1 ∈
[
0, θ0̂12 − θmax

]
is the one defined in Fig. 6.

In order to determine an optimal θ1, a simple numerical

optimization can be performed, as in Fig. 7.

It is possible to prove that it always exist at least a choice

of θ1 ∈
[
θ0̂12 − θmax

]
such that this solution, in the case

Proposition 1 & 2 doesn’t apply, it is always lower then

the upper bound (12). For this purpose let us consider the

particular solution θ1 =
[
θ0̂12 − θmax

]
/2 as depicted in

Figure 6, where, by construction, the angle denoted as α
is always grater than π/2

Then let us draw the lines p0pto1 and q2pl1 until they

touch the height segment of the triangle. Let us denote by

c1 and c2 such an intersection point and by qt the center of

the basis of the triangle.
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Fig. 7. The cost resulting from local search techniques applied to the free
paramenter θ1.

Because α > π/2 then, from the properties of the

triangles, ‖c1 − p0‖2 < ‖q1 − p0‖2 and ‖cc − p1‖2 <
‖q2 − q1‖2. Let us concentrate on ‖c1 − p0‖2 < ‖q1 − p0‖2

(the same will be on the other inequalities, by symmetry).

We observe that ‖pto1 − p0‖2 + ‖c1 − pto1‖2 < ‖q1 − p0‖2.

Since ‖c1 − pto1‖2 is the hypotenuse of a square triangle

of basis 1/2 āVc, we have also that 1
2 āVc < ‖c1 − pto1‖2

and finally 1
2 āVc + ||c1 − p0|| < ||q1 − p0||2. By using this

result it is straightforward to prove that this heuristic gives

always results that are lower then (12).

D. Fastest approach to n far points with re-entry mission

As well as the 2 points case, to visit a certain number n of

ordered point q1, q2, ...qn starting from an initial point p0 is

not an easy problem.

Let us denote with di,i+1 the Euclidean distance between

the point i and the next desired point i + 1, where for sake

of simplicity d0,1 denotes the distance between the initial

position of the carrier p0 and q1. An upper bound to the

optimal solution can be given for the case when the carried

vehicle never takes-off, except to reach the last point, and

the carrier itself visits all the points. Such an upper bound

has the following total cost

tn,up =

[
n∑

i=1

di−1,i

Vc

]
−

(Vc + Vv)

2Vc

ā +
(Vc + Vv)

2Vv

ā (19)

The lower bound can be reached in the same way of the 2
points case by supposing that the carrier-carried couple can

be seen as a vehicle able to go at velocity Vv for a time ā
for each point to reach. This would mean that the carrier is

always able to “cut the edge”: just like in the 2 points case

this optimal solution is practically reachable only for small

angles between the lines connecting 2 consecutive points).

Such a lower bound has the following cost

tn,low =
n−1∑
i=1

[
di−1,i − āVv

Vc

+ ā

]
+

+

[
dn−1,n

Vc

+

(
(Vc + Vv)

2
ā

) (
1

Vv

−
1

Vc

)]

=
n−1∑
i=1

[
di−1,i

Vc

]
+ (n − 1) ā

(
1 −

Vv

Vc

)
+

+

(
(Vc + Vv)

2
ā

) (
1

Vv

−
1

Vc

)

(20)

While the problem itself can be hard to solve, it is pos-

sible to build heuristic solutions able to guarantee some

performances. Here we will introduce and discuss one of

them based on the 1-point fastest approach with re-entry

mission solution. Further possible better heuristic will be

only mentioned in this paper and can be build based on the

results proposed for the 2 points case.

The basic idea of the “1-step heuristic” is the one of using,

at each time step, the 1-step solution: the carrier will proceed

straight to the next objective point and the vehicle will

take-off only when at a distance dto = (Vc + Vv)a/2 from

the objective. The carrier will keep going straight while

the carried vehicle will visit the point and come back.

The rendezvous point will be on the same line at distance

dl = (Vv − Vc) a/2 from the objective. From this rendezvous

point the ship will go towards to the next point to visit. By

exploiting Carnot theorem, the total cost for such a strategy

can be expressed in closed form

t′n =

d1 − dl +
n−1∑
i=2

[√
d2

l + d2
i − 2didl cos (θi) − dl

]

Vc

+

+

√
d2

l + d2
n − 2dndl cos (θi) − dto

Vc

+
dto

Vv
(21)

Where θi is the angle resulting from the line between pi−1pi

and pipi+1. Simple computations show that the cost (21) has

the interesting property of satisfying the following inequality

tn,low ≤ t′n ≤ tn,up .

q1

q2

q3

q4

p0

Fig. 8. The geometric interpretation behind the algorithm proposed to visit
a set of n (4 in the figure) ordered points.

Inspired by the the results for the 2 points case, we propose

also a second euristic solution which is based on the idea of
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satisfying the condition of Proposition 1 by suitably ”slow

down” the velocity of the vehicle such that the rendezvous

is possible. Let us denote with θlist = {θ1, θ2, ...θn−1} the

set of the n − 1 angles ∈ [0, π] between the straight lines

that connect consecutive points. For each element i of θlist

we compute the maximum rendezvous velocity v̄i according

to the following algorithm

• if θi ≡ 0, v̄i = Vv

• else v̄i = min



Vv,

√
2V 2

c

1 − cos θi





The maximum rendezvous velocity v̄i is then used in order to

bound the velocity of the vehicle to reach the desired point

i following the shortest path depicted in Fig. 9. The cost of

this solution can be computed as

t”n =
n−1∑
i=1

[
di−1,i − āv̄i

Vc

+ ā

]
+

+

[
dn−1,n

Vc

+

(
(Vc + Vv)

2
ā

) (
1

Vv

−
1

Vc

)]

(22)

Simple computations shows that the cost (22) verify

tn,low ≤ t”n ≤ tn,up .

and moreover if v̄i = Vv for all i = 1, ..n−1, which in turns

reduces to conditions on the angles and the ratio between the

velocity of the carrier and the vehicle, then it coincides with

the lower bound (20).

q1

q2

q3

q4

p0

θ1

θ2

θ3

r11

r12

r21

r22

r31

r32

Fig. 9. The geometric interpretation behind the second algorithm proposed
to visit a set of n (4 in the figure) ordered points. Notation: r11 = v̄1a11,
r12 = v̄1a12, r21 = v̄2a21, r22 = v̄2a22, r31 = v̄3a31, r32 = v̄3a31,
with ai,1 + ai,2 = ā.

V. CONCLUSIONS AND FUTURE WORK

In this paper we dealt with the problem of path planning

for two complementary vehicles: a slow long-range carrier

and a fast vehicle with a limited operativeness. In particular

we focused on the “fast rescue problems” i.e. the family of

problems in which one has to visit an ordered set of point

in minimum time. Several results about optimal solutions

and approximation heuristics have been presented. Work is

being currently done to extend the results to vehicles with

nonholomic constraints.
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