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Abstract— This paper studies the output regulation problem
for linear systems subject to input constraints. It presents a new
controller that uses a conditional servocompensator. Previous
work introduced the conditional servocompensator, which acts
as a traditional servocompensator only in a neighborhood of
the zero-error manifold, while acting as a stable system outside
a boundary layer, leading to improvement in the transient
response while achieving zero steady-state regulation error.
Starting with a low-gain stabilizing state feedback controller,
based on the solution of an algebraic Riccati equation, Lya-
punov redesign is used to implement the state feedback control
in a saturated high-gain feedback form that includes the
conditional servocompensator. The design is extended to output
feedback via a full-order high-gain observer.

I. INTRODUCTION

In this paper the problem of output regulation for linear

systems subject to input saturation is considered. The ser-

vomechanism problem deals with the design of a controller

to make the output of a plant asymptotically track refer-

ence signals and reject disturbance signals, both produced

by an autonomous external system called the exosystem.

Stabilization of linear systems under input constraints has

been extensively studied over the past decade, c.f., [4], [5],

[9], [11], [13]. When the open-loop eigenvalues are in the

closed left-half plane, global or semi-global stabilization

can be achieved by low-gain feedback or by a combination

of low-gain and high-gain feedback. The techniques are

extended to the servomechanism problem in [8]. Although

more recent results [6] have also dealt with cases with right-

half plane eigenvalues; we consider here the case of left-half-

plane eigenvalues. The presence of saturation in the input

channel imposes strong limitations to the achievable control

objectives such as transient performance. In order to achieve

desired control objectives we cast the output regulation

problem for linear systems subject to input constraints in the

Lyapunov redesign framework as presented in [10]. The key

feature of this idea is that the conditional servocompensator

acts as a traditional servocompensator only in a neighbor-

hood of the zero-error manifold, while it is a bounded-input-

bounded-state system whose state is guaranteed to be of the

order of a small design parameter. The use of conditional

servocompensators enables us to achieve zero steady-state

tracking error without degrading the transient response of

the system. The goal of this work is to apply the Lyapunov-

redesign-servocompensator approach of [10] to the linear
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regulation problem under input constraints and compare its

performance with the approach presented in [8].

II. OUTPUT REGULATION USING CONDITIONAL

SERVOCOMPENSATORS

In this section we briefly review the Lyapunov redesign

approach to output regulation problem using conditional

servocompensators [10]. Consider the SISO nonlinear system

ξ̇ = f̃(ξ, w) + g̃(ξ, w)u

e = h̃(ξ, w) (1)

where ξ ∈ Rn is the state, u is the control input, e is the

regulation error and the functions f̃ , g̃ and h̃ are sufficiently

smooth. The plant is subjected to a vector of exogenous input

variables, which are generated by the known exosystem

ẇ = S0w (2)

where S0 has distinct eigenvalues on the imaginary axis

and w(t) belongs to a compact set W . Suppose that for all

w ∈ W , there exist a continuously differentiable mapping

ξ = π(w), with π(0) = 0, and a continuous mapping χ(w),
generated by the internal model

∂τ(w)

∂w
S0w = Sτ(w), χ(w) = Γτ(w)

where S has distinct eigenvalues on the imaginary axis, such

that

∂π(w)

∂w
S0w = f̃(π,w) + g̃(π,w)χ(w)

0 = h(π,w) (3)

With the change of variables x = ξ − π, the system (1) can

be represented by

ẋ = f(x,w) + g(x,w)[u − χ(w)] (4)

The system (4) is in the form where the state feedback

regulation problem can be formulated as a state feedback sta-

bilization problem by treating χ(w) as a matched uncertainty.

Suppose there is a locally Lipschitz function ψ(x,w), with

ψ(0, w) = 0, and a continuously differentiable Lyapunov

function V (x,w), possibly unknown, such that

α1(‖x‖) ≤ V (x,w) ≤ α2(‖x‖) (5)

∂V

∂w
S0w +

∂V

∂x
[f(x,w) + g(x,w)ψ(x,w)] ≤ −W (x) (6)

∀x ∈ X⊂ Rn, w ∈ W , where W (x) is a continuous positive

definite function and α1 and α2 are class K functions. The

system (4) can be re-written as

ẋ = f(x,w) + g(x,w)ψ(x,w)

+ g(x,w)u − g(x,w)[χ(w) + ψ(x,w)] (7)
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Let Ω = {V (w, x) ≤ c1} ⊂ X be a compact set for some

c1 > 0 and δ(x) be a function such that

‖χ(w) + ψ(x,w)‖ ≤ δ(x) ∀x ∈ Ω, ∀w ∈ W (8)

Suppose (∂V/∂x)g(x,w) can be expressed as

(∂V/∂x)g(x,w) = υ(x)H(x,w) (9)

where υ(x) is a known, locally Lipschitz function, with

υ(0) = 0, and H(x,w) is a, possibly unknown, function

such that 0 < θ ≤ |H(x,w)| ≤ k, ∀x ∈ Ω, ∀w ∈ W .

A conditional servocompensator [10] is introduced via the

saturated high-gain feedback controller

u = −α(x)̺

(

s

µ

)

(10)

where s = υ(x) +K1σ, the function ̺ is defined as

̺(y) =







y if |y| ≤ 1
−1 if y < −1
1 if y > 1

(11)

and σ is the output of the conditional servocompensator

σ̇ = (S − JK1)σ + µJ̺

(

s

µ

)

(12)

with µ > 0 being the width of the boundary layer. The pair

(S, J) is controllable and K1 is chosen such that S − JK1

is Hurwitz. The function α(x) is chosen to satisfy

α(x) ≥
k

θ
δ(x) + α0, α0 > 0 (13)

It is shown in [10] that if σ(0) is O(µ), the state σ(t) of the

conditional servocompensator (12) will always be O(µ).
The analysis in [10] shows that, for sufficiently small

µ, every trajectory of the closed-loop system (2), (4), (10)

and (12) asymptotically approaches a disturbance-dependant

manifold of the form {x = 0, σ = σ̄}, on which the

regulation error is zero. The state feedback design is extended

to output feedback for a class of minimum-phase, input-

output linearizable systems. For this class of systems, the

state feedback control can be designed as a partial state

feedback law that does not use the states of the internal

dynamics. A reduced-order high-gain observer is used to

estimate the states of the linearizable part of the system,

which are derivatives of the output. The output feedback

controller, obtained by replacing the states by their estimates,

recovers the transient and asymptotic properties of the state

feedback controller. The performance recovery is shown

using the separation principle of [1] and [2].

III. LOW-GAIN DESIGN FOR LINEAR SYSTEMS

In this section we briefly review the approach presented

in [8] for the semiglobal output regulation problem of linear

systems subject to input saturation. Consider a single-input

single-output linear system

ζ̇ = Aζ +B̺(u) + Ew

e = Cζ + Fw (14)

where ζ ∈ Rn is the state, u is the control input, e is the

regulation error and w(t) is an exogenous input that belongs

to a compact set W ∈ Rw, and is generated by the internal

model ẇ = Sw, where S has distinct eigenvalues on the

imaginary axis. It is assumed that A has all eigenvalues in

the closed left-half plane, (A,B) is stabilizable, and (A,C)
is detectable. Moreover, there exist matrices Π, Γ such that

ΠS = AΠ +BΓ + E , 0 = CΠ + F (15)

where |Γw| ≤ 1 − δ for all w ∈ W , for some 0 < δ < 1.

If ζ and w were available for feedback, a stabilizing state

feedback control law can be taken as

u = −K(λ)ζ + [K(λ)Π + Γ]w (16)

where K(λ) = BTP (λ), and P (λ) is the positive definite

solution of the Riccati equation

P (λ)A+ATP (λ) − P (λ)BBTP (λ) +Q(λ) = 0 (17)

where Q(λ) is a positive definite matrix that satisfies

limλ→0 Q(λ) = 0. The parameter λ is chosen small enough

such that the control does not saturate over the domain of

interest. Assuming that

(

[

C F
]

,

[

A E
0 S

] )

is detectable, the state feedback design is extended to an

error feedback design by using the observer

[

˙̂
ζ
˙̂w

]

=

[

A E
0 S

] [

ζ̂
ŵ

]

+

[

B
0

]

̺(u)

+

[

LA

LS

]

(

e−
[

C F
]

[

ζ̂
ŵ

]

)

(18)

where the matrices LA and LS are chosen such that the

matrix

Ā ,

(

A− LAC E − LAF
−LSC S − LSF

)

(19)

is Hurwitz. The error feedback control law is given by

u = −K(λ)ζ̂ + [K(λ)Π + Γ]ŵ (20)

With the change of variables, ξ = ζ − Πw, ζ̃ = ζ − ζ̂ and

w̃ = w − ŵ, the closed-loop system can be written as

ξ̇ = Aξ +B̺[−K(λ)ξ + Γ(w − w̃) +K(λ)(ζ̃ − Πw̃)]

+ (AΠ − ΠS + E)w
˙̃
ζ = (A− LAC)ζ̃ + (E − LAF )w̃ (21)

˙̃w = −LSCζ̃ + (S − LSF )w̃

The key feature of the approach [8] is designing an

observer with much faster dynamics than those of the original

system. Since the last two equations of (21) are homoge-

neous, designing the observer dynamics arbitrarily fast yields

rapid error convergence to zero. Hence, limt→∞ e(t) = 0.
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IV. PROBLEM STATEMENT AND CONTROL DESIGN

We now cast the output regulation problem for linear

systems subject to input constraints in the Lyapunov redesign

framework as presented in [10]. Our goal here is to design

an output feedback controller for the system (14) to stabilize

the system when w = 0 and to asymptotically regulate e to

zero when w 6= 0. With the change of variables x = ζ − π,

the system (14) can be written as

ẋ = Ax+B[̺(u) − Γw]

e = Cx (23)

The system (23) is in a form where the state feedback regula-

tion problem can be formulated as a state feedback stabiliza-

tion problem by treating Γw as a matched uncertainty. We de-

sign a low-gain feedback control law to achieve stabilization

and then introduce a conditional servocompensator through

a saturated high-gain feedback [10], [12]. Towards that end,

let K(λ) = BTP (λ) be the state feedback gain matrix. The

derivative of the Lyapunov function V (x) = xTP (λ)x with

respect to the nominal system ẋ = [A−BK(λ)]x is

V̇ (x) = −xT [Q(λ) + P (λ)BBTP (λ)]x (24)

For convenience we write (∂V/∂x)B = υ(x), where

υ(x) = 2BTP (λ)x. The system (23) can be written as

ẋ = (A−BK)x+B̺(u) +B[Kx− Γw] (25)

We design a saturated high-gain feedback controller for

this system to deal with the uncertain term Γw. Let Ω =
{V (x) ≤ c1} ⊂ X be a compact set for some c1 > 0 and

|K(λ)x − Γw| ≤ 1 − δ0, δ0 > 0 ∀x ∈ Ω, ∀w ∈ W (26)

We introduce the conditional servocompensator [10], [12]

via the saturated high gain feedback controller

u = −

(

s

µ

)

(27)

where s = υ(x)+K1σ and σ is the output of the conditional

servocompensator

σ̇ = (S − JK1)σ + µJ̺

(

s

µ

)

(28)

where µ > 0 is the width of the boundary layer, (S, J) is

controllable and K1 is chosen such that S−JK1 is Hurwitz.

Equation (28) is a perturbation of the exponentially stable

system σ̇ = (S − JK1)σ, with the norm of the perturbation

bounded by µ. In order to show that σ is always O(µ), we

define the Lyapunov function

V0(σ) = σTP0σ

where the symmetric positive definite matrix P0 is the

solution of P0Aσ + AT
σP0 = −I and Aσ , S − JK1.

Consider the compact set
{

σ : V0(σ) ≤ µ2c2
}

, where c2 is

a positive constant. Let σ(0) belong to this set. Using the

inequality

V̇0(σ) ≤ −‖σ‖2
+ 2µ ‖σ‖ ‖P0J‖

it is easy to show that V̇0(σ) ≤ 0 on the boundary V0(σ) =
µ2c2 for the choice c2 = 4 ‖P0J‖

2
λmax(P0). Hence, the set

{

σ : V0(σ) ≤ µ2c2
}

is positively invariant.

V. CLOSED-LOOP ANALYSIS

In this section we will show that, for sufficiently small

µ, every trajectory of the closed-loop system asymptotically

approaches an invariant manifold on which the error is zero.

The closed-loop system is given by

ẇ = S0w

ẋ = [A−BK]x−B̺

(

s

µ

)

+B[Kx− Γw] (29)

σ̇ = Aσσ + µJ̺

(

s

µ

)

We start by showing that the set Ψ = Ω×
{

V0(σ) ≤ µ2c2
}

is

positively invariant and every trajectory in Ψ reaches the pos-

itively invariant set Ψµ = {V (x) ≤ ρ(µ)}×
{

V0(σ) ≤ µ2c2
}

in finite time, where ρ is a class K function.

V̇ =
∂V

∂x
[A−BK]x−

∂V

∂x
B̺

(

s

µ

)

+
∂V

∂x
B[Kx− Γw]

= −xT [Q(λ) + P (λ)BBTP (λ)]x− (s−K1σ)̺

(

s

µ

)

+ (s−K1σ)[Kx− Γw]

= −xT [Q(λ) + P (λ)BBTP (λ)]x− s̺

(

s

µ

)

+K1σ̺

(

s

µ

)

+ s[Kx− Γw] −K1σ[Kx− Γw]

Inside Ψ, ‖σ‖ ≤ µ
√

c2/λmin(P0). Using this along with

(11) and (26), it can be shown that when |s| ≥ µ we have

V̇ ≤ −xT [Q(λ) + P (λ)BBTP (λ)]x+ µγ1 (30)

where γ1 = 2 ‖K1‖
√

c2/λmin(P0). Similarly, when |s| ≤ µ

V̇ ≤ −xT [Q(λ) + P (λ)BBTP (λ)]x+ µγ2 (31)

where γ2 = γ1 + (1/4). From (30) and (31), V̇ ≤
−xT [Q(λ) +P (λ)BBTP (λ)]x+ µγ2, ∀(x, σ) ∈ Ψ. Hence,

from [7, Theorem 4.18], for sufficiently small µ, Ψ is posi-

tively invariant and all trajectories starting in Ψ enter a posi-

tively invariant set Ψµ = {V (x) ≤ ρ(µ)}×
{

V0(σ) ≤ µ2c2
}

in finite time.

Next, we use V1 = 1
2s

2 to show that the trajectories reach

the boundary layer {|s| ≤ µ} in finite time. Since P (λ) is

positive definite, BTP (λ)B > 0. Let kp = 2BTP (λ)B. For

(x, σ) ∈ Ψµ, we have

sṡ = −2sBTPB̺

(

s

µ

)

+ 2sBTP [A−BK]x

+ 2sBTPB[Kx− Γw] + sK1Aσ + µsK1J̺

(

s

µ

)

Outside the boundary layer, i.e. when |s| ≥ µ, we have

sṡ ≤ −kp|s| + ‖2BTP [A−BK]x ‖|s| + kp

∣

∣Kx− Γw
∣

∣|s|

+ (‖σ‖ ‖K1‖ ‖Aσ‖ + µ ‖K1‖ ‖J‖) |s| (32)

Inside Ψµ, ‖σ‖ ≤ µ
√

c2/λmin(P0). Also, the function [A−
BK(λ)]x is continuous and vanishes at x = 0. Therefore, the

norm ‖2BTP (λ)[A − BK(λ)]x ‖ together with the norms
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‖σ‖ ‖K1‖ ‖Aσ‖ and µ ‖K1‖ ‖J‖ can be bounded by a class

K function ρ1(µ). Hence,

sṡ ≤ −kp|s| + kp(1 − δ0)|s| + ρ1(µ)|s|

=⇒ V̇1 ≤ −kp

[

δ0 −
ρ1(µ)

kp

]

|s|

Thus, for sufficiently small µ, all trajectories inside Ψµ

would reach the boundary layer {|s| ≤ µ} in finite time.

Finally, we show that inside the boundary layer the tra-

jectories of the closed-loop system asymptotically approach

an invariant manifold on which the error is zero. Inside the

boundary layer, the closed-loop system (29) is given by

ẇ = S0w

ẋ = [A−BK]x−B

(

s

µ

)

+B[Kx− Γw] (33)

σ̇ = Sσ + Jυ(x)

From [12], there exists a unique matrix Λ such that

SΛ = ΛS and −K1Λ = Γ

We define Nµ = {x = 0, σ = σ̄}, where σ̄ = µΛw. It is

easy to verify by direct substitution that Nµ is an invariant

manifold of (33) for all w ∈ W . Defining σ̃ = σ − σ̄ and

s̃ = υ + K1σ̃, the closed-loop system inside the boundary

layer can be written as

ẇ = S0w

ẋ = [A−BK]x−B

(

s̃

µ

)

+BKx (34)

˙̃σ = Aσσ̃ + Js̃ = Sσ̃ + Jυ

Define the Lyapunov function

V2 = V (x) +
b

µ
σ̃TP0σ̃ +

c

2
s̃2 (35)

where b and c are positive constants to be chosen. Calculating

V̇2 along the trajectories of the system (34), we obtain

V̇2 = V̇ +
b

µ

[

σ̃TP0
˙̃σ + ˙̃σ

T
P0σ̃

]

+ cs̃ ˙̃s (36)

Calculating V̇ along the trajectories of (34), we have

V̇ =
∂V

∂x
[A−BK(λ)]x−

∂V

∂x
B

(

s̃

µ

)

+
∂V

∂x
BK(λ)x

≤−λmin(Q)‖x‖2 −
|υ|2

µ
+
ka

µ
|υ| ‖σ̃‖ + k0|υ|‖x‖ (37)

where ka and k0 are the upper bounds on ‖K1‖ and ‖K‖,

respectively. The second term of V̇2 satisfies the inequality

b

µ

[

σ̃TP0
˙̃σ + ˙̃σ

T
P0σ̃

]

≤ −
b

µ
‖σ̃‖2

+
2bk1

µ
‖σ̃‖ |s̃|λmax(P0) (38)

where k1 is the upper bound on ‖J‖. Next, we have

˙̃s =
∂υ

∂x
[A−BK(λ)]x−

∂υ

∂x
B

(

s̃

µ

)

+
∂υ

∂x
BK(λ)x

+K1(Sσ̃ + Jυ)

cs̃ ˙̃s ≤ −c(kp/µ)|s̃|2 + ck2|s̃|‖x‖ + ck3|s̃| ‖σ̃‖

+ ck4|s̃||υ| (39)

where k2, k3 and k4 are some positive constants. From (37),

(38) and (39), we have

V̇2 ≤ −λmin(Q)‖x‖2 −
1

µ
|υ|2 −

b

µ
‖σ̃‖2 − c(kp/µ)|s̃|2

+ k0|υ|‖x‖ +
ka

µ
|υ| ‖σ̃‖ + ck4|s̃||υ| + ck2|s̃|‖x‖

+ [(2bk1/µ)λmax(P0) + ck3] ‖σ̃‖ |s̃| (40)

The right-hand side of (40) can be arranged in the following

quadratic form of Π = [ ‖x‖ |υ| ‖σ̃‖ |s̃| ]T :

V̇2 ≤ −ΠT ∆Π (41)

where the symmetric matrix ∆ is given by

∆ =























λmin(Q) −k0

2 0 −c k2

2

1
µ

− ka

2µ
−c k4

2

b
µ

− bk1λmax(P0)
µ

− ck3

2

ckp

µ























Similar to [10], the leading principal minors of ∆ can

be made positive by first choosing b large enough, and

then, choosing c large. Finally, by choosing µ sufficiently

small, V̇2 will be negative definite. Therefore, inside the

boundary layer, the trajectories of the closed-loop system

will asymptotically approach Nµ as t→ ∞. Our conclusions

can be summarized in the following theorem.

Theorem 1: Under stated assumptions, there exists µ∗ > 0
such that ∀µ ∈ (0, µ∗], the state variables of the closed-loop

system comprising of the system (23), the servocompensator

(28) and the state feedback control (27) are bounded and

limt→∞ e(t) = 0.

VI. OUTPUT FEEDBACK DESIGN

In this section we extend the state feedback controller

of the previous section to output feedback by using a full-

order high-gain observer. This is different from [10] where a

reduced-order high-gain observer was used because the state

feedback control was a partial one. In the current problem,

because of the constraint on the control, the mechanism of

solving the stabilization problem through ARE necessitates

the use of full-state feedback. We use the singular perturba-

tion approach to the observer design described in [3].

The state feedback control (27) is implemented as an

observer-based controller
˙̂x = Ax̂+B̺(u) + L(e− Cx̂)

u = −

(

ŝ

µ

)

(42)

where L is the vector of observer gains to be designed and

ŝ = 2BTP (λ)x̂ + K1σ. The estimation error, η = x − x̂,

satisfies the equation

η̇ = (A− LC)η −BΓw (43)

The observer design starts by transforming the system into

the normal form. There is a nonsingular matrix T such that
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x = T

(

xa

xf

)

transforms the system (23) into the form

ẋa = Aaaxa +Aafy (44)

ẋf = Afxf +Bf [Eaxa + Efxf + ̺(u)] (45)

y = Cfxf (46)

where (Af , Bf , Cf ) represents a chain of integrators. The

eigenvalues of Aaa are the invariant zeros of the triplet

(A,B,C). The observer gain L is designed as [3]

L(ε) = T

(

Aaf

M(ε)Lf

)

(47)

where Lf assigns the eigenvalues of (Af − LfCf ) in the

open left-half plane, M(ε) = blkdiag[1
ε
, 1

ε2 , · · · ,
1
εq ], q =

dim(xf ), and ε is a small positive constant. The observer

gain L(ε) assigns the observer eigenvalues into two groups:

(n − q) eigenvalues are assigned at the open-loop invariant

zeros and q eigenvalues are assigned at O(1/ε) locations,

approaching the eigenvalues of (Af − LfCf )/ε as ε → 0.

The state component xa is estimated by the observer

˙̂xa = Aaax̂a +Aafy (48)

and the state xf is estimated using a high-gain observer

˙̂xf = Af x̂f +M(ε)Lf (y − Cf x̂f ) +Bf̺(u) (49)

The change of variables η =
(

T1 T2

)

(

ηs

η̄f

)

trans-

forms the error equation (43) into

η̇s =Aaaηs (50)

˙̄ηf =[Af −M(ε)LfCf ]η̄f +Bf [Eaηs + Ef η̄f − Γw](51)

where ηs = xa − x̂a and η̄f = xf − x̂f . To bring the system

(50)-(51) into the standard singularly perturbed form we need

to scale η̄f as

ηf = N−1(ε)η̄f (52)

where N(ε) = blkdiag[εq−1, · · · , ε, 1]. With the special

structure of the matrices N(ε), Af , Bf , Cf , M(ε) and Lf ,

it is shown in [3] that

N−1(ε)Bf = Bf

N−1(ε)[Af −M(ε)LfCf ]N(ε) =
1

ε
[Af − LfCf ]

where [Af −LfCf ] is Hurwitz. The scaling (52) transforms

(50)-(51) into the standard singularly perturbed system

η̇s =Aaaηs

εη̇f =[Af − LfCf ]ηf + εBf [Eaηs + EfN(ε)ηf − Γw]

We notice that the perturbation term Γw is multiplied by ε
so that its effect diminishes asymptotically as ε→ 0.

We now analyze the closed-loop system composed of (23),

(28) and (42). Using (x, σ, ηs, ηf ) as the state vector, the

closed-loop system is given by

ẋ = Ax+B̺
[

−
1

µ

(

2BTP (λ)x +K1σ

− 2BTP (λ)
[

T1 T2N(ε)
]

[

ηs

ηf

]

)]

−BΓw

σ̇ = Aσσ + µJ̺
[ 1

µ

(

2BTP (λ)x +K1σ

− 2BTP (λ)
[

T1 T2N(ε)
]

[

ηs

ηf

]

)]

(53)

η̇s = Aaaηs

εη̇f = [Af − LfCf ]ηf + εBf [Eaηs + EfN(ε)ηf − Γw]

The system (53) is a standard singularly perturbed system

with (x, σ, ηs) as the slow variable and ηf as the fast variable.

The slow model of (53) is obtained by setting ε = 0 in the

last equation of (53). Since [Af − LfCf ] is Hurwitz, hence

non-singular, we obtain the unique root ηf = 0. Substitution

of ηf = 0 in (53) results in the slow model

ẋ = Ax+B̺
[

−
1

µ

(

2BTP (λ)x +K1σ

− 2BTP (λ)T1ηs

)]

−BΓw (54)

σ̇ = Aσσ + µJ̺
[ 1

µ

(

2BTP (λ)x+K1σ

− 2BTP (λ)T1ηs

)]

(55)

η̇s = Aaaηs (56)

which appears as the cascade connection of (56) and the

closed-loop system under the state feedback (29). Let Ps be

the positive definite solution of the Lyapunov equation

PsAaa +AT
aaPs = −I

The function Vs = ηT
s Psηs satisfies V̇s ≤ −‖ηs‖2. Using

the fact that Aaa is Hurwitz and the origin of (54)-(55) is

exponentially stable when ηs = 0, it can be shown that (54)-

(56) is exponentially stable with a region of attraction

{(xT , σT , ηT
s )T : V (x) ≤ c1, V0(σ) ≤ µ2c2, Vs ≤ c3}

for some c3 > 0. The zero-error manifold is rewritten as

Nµ = {x = 0, σ = σ̄, ηs = 0}

Let the initial states (x(0), σ(0), ηs(0)) ∈ G and ηf (0) ∈
H, where G is a compact set which contains Nµ. From [1],

[2], it can be shown that there is a neighborhood M of the

origin of the system (54)-(56), independent of ε, and ε1 > 0
such that for every 0 < ε ≤ ε1, the origin is exponentially

stable and every trajectory in M converges to the origin as

t → ∞. From [1], [2], there is ε2 > 0 such that for every

0 < ε ≤ ε2, the solutions starting in G × H enter M in

finite time. Hence, for every 0 < ε ≤ ε3 = min {ε1, ε2},

the origin is exponentially stable and G × H is a subset of the

region of attraction. Thus, for sufficiently small ε, the closed-

loop system (53), under the output feedback controller (42),

is uniformly exponentially stable with respect to the set Nµ

× {ηf = 0}. Hence, limt→∞ e(t) = 0.

VII. SIMULATION EXAMPLE

Consider a minimum-phase SISO linear system, that cor-

responds to (14) with
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Design − I

Design − II

Fig. 1. Performance comparison of the two control designs (a) Regulation
error ’e’ during the transient period (b) Corresponding control input, ’u’

A =





0 1 0
0 0 1
0 0 −5



 , B =





0
0
1



 , E =





0 0
0 0
1 0





C =
(

1 1 0
)

, F =
(

0 0
)

with the signal w generated by the exosystem

ẇ =

[

0 ω
−ω 0

]

w, wT (0) = [0, w0]

We show the performance of two designs: Design I incor-

porates the saturated high-gain feedback using a conditional

servocompensator and the full-order observer (48)-(49). For

this design, K1 is chosen so as to assign the eigenvalues of

S − JK1 at −0.5 and −1, and the observer gain L(ε) is

designed such that the eigenvalue of (48) is assigned at the

location of the invariant zero of the triplet (A,B,C), i.e. at

−1, and Lf =

(

g1
g2

)

is chosen such that the polynomial

̟2 + g1̟ + g2 is Hurwitz. Design II is based on the

linear observer-based error-feedback control approach [8],

reviewed in Section III. For this design, a fifth-order linear

observer of the form (18) is constructed where the matrices

LA and LS are chosen such as to assign the eigenvalues

of the matrix Ā at [−22,−23,−24,−25,−26]. We use the

following numerical values in the simulation: ω = 1 rad/s,

w0 = 0.5, µ = 0.1, g1 = 2, g2 = 1, λ = 0.05 and ε = 0.05.

Figure 1(a) shows the regulation error during the transient

period for the two designs and Figure 1(b) shows the

corresponding control input. The regulation error goes to zero

sharply in the case of Design I, where as in Design II, the

same oscillates before eventually converging to zero. Note

that due to the fact that a higher dimensional (fifth-order)

observer is used in Design II, in order to achieve reasonable

performance, the observer gains were required to be pushed

very high e.g. O(107), in contrast to O(103) for those in

Design I. Figure 2 shows the performance of the two control

designs when the control coefficient is perturbed from 1 to

1.4. The results suggest that Design I may be more robust

than Design II, however, further investigation is needed to

confirm this observation.
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Nominal
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Nominal 

Perturbed

Fig. 2. Transient performance of the two control designs when control
coefficient is perturbed by 40 percent (a) Design II - Nominal vs Perturbed
(b) Design I - Nominal vs Perturbed

VIII. CONCLUSIONS

This paper studies the output regulation problem of linear

systems subject to input constraints. We presented a novel

control design that includes a conditional servocompensator,

introduced via Lyapunov redesign and saturated high-gain

feedback. The use of a conditional servocompensator enables

us to achieve zero steady-state regulation error, without

degrading the transient response. The output feedback control

is implemented using a two-time-scale observer design of [3]

and the performance recovery is shown using the separation

principle of [1], [2]. The performance of the control design

is demonstrated by a simulation example.
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