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Abstract— We compare the configuration spaces correspond-
ing to various arrangements of sensors on a robotic sensor
network of three agents under the constraints of collision
avoidance and maintenance of communication. We argue for
the superiority of one particular sensor arrangement from the
point of view of hardware complexity. This configuration space
has the topology of a solid double torus. Various techniques
of hyperbolic geometry and algebraic topology have been
employed for motion planning on this configuration space.

I. INTRODUCTION

Robotic multi-agent systems are an emerging application

of networked sensing and control. One of the main chal-

lenges in the efficient design and implementation of these

systems is the effective modeling and analysis of sensory

and communication limitations of the hardware. Moreover,

a systematic comparison of the performance of various

sensing and communication modalities in real systems is also

required.

In this paper, we study the problem of motion planning in

a robotic sensor network under various sensor arrangements

for detecting collision and maintenance of communication.

By a sensor arrangement, we mean a particular configuration

of possibly heterogenous sensors for detecting collisions

and for the maintenance of all-to-all communication. We

emphasize that different choices of sensor arrangements

give rise to different configuration spaces, some of which

have non-trivial topologies. We also note that some sensor

arrangements enable motion planning with a lesser hardware

complexity and communication cost. Our ultimate goal is to

study this problem for an arbitrary number of agents and

to construct proper navigation functions constructively. The

price to pay for this hardware simplicity is a relatively com-

plex motion planning algorithm on a non-trivial configuration

space. In this paper, we have restricted ourselves to the case

of three agents. We shall see later that even for three agents,

the configuration spaces arising from the constraints have

interesting topological and geometrical features. It is hoped

that that the techniques developed here give clues to the

solution of this problem for bigger networks.

The systematic comparison of sensor arrangements for

an arbitrary number of agents is still an open problem.

Some attempts have been made along these lines [1], [2]

from the point of view of minimal sensing and information

spaces. However, much needs to be done that incorporates

communication, sensing and hardware complexity in this

comparison.

The outline of this paper is as follows. In Section II, we

compare and contrast the configuration spaces for various

sensor arrangements on three agents. We explain the merits

of one particular sensor arrangement, whose configuration

space has the topology of a solid double torus. In Section

III, we explicitly construct the universal covering space of

the solid double torus. Moreover, we describe explicit maps

that project the geodesics in the universal cover to the

configuration space. Finally, we present our conclusions in

Section IV.

II. SENSOR ARRANGEMENTS AND CONFIGURATION

SPACES

Consider a robotic network of n agents in a plane, whose

positions are given by p1, . . .pn ∈ R2. Each agent obeys

the simple kinematic model ṗi = ui, where ui is the control

input for actuation in each axis of the plane. Let these agents

be equipped with identical omnidirectional radios, so that

each agent can communicate with other agents within a

communication radius Rc. The value of Rc is limited by

the minimum signal-to-noise ratio at which the radios can

receive messages successfully.

A basic requirements of this robotic network is to move

between different configurations while each agent maintains

contact with all other agents at all times. In other words, the

connectivity graph of this network is required to be complete

at all times. The full connectivity implies that a message

broadcast by any agent is heard simultaneously by all other

agents and no more than one agents can broadcast messages

at the same time.

The full connectivity of the network is only valid for a

proper subset of all possible configurations. Furthermore,

assume that each robot has a collision radius Ro/2, which

may correspond to the largest physical dimension of a robots

in the plane. It is reasonable to assume that Ro << Rc.

Therefore, we study the set of configurations Cn ⊂ (R2)n

that obey for all 1 ≤ i < j ≤ n,

1) the communications constraints, ‖pi − pj‖ < Rc;

2) and the collision constraints, ‖pi − pj‖ > Ro.
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A. Sensor Arrangements

In order to do planning in Cn, we equip each agent with

a suite of sensors that helps compute the relative positions

of the agents with respect to each other and detects the

communication and collision constraints. The set of sensors

given to each agent need not be identical. We call this

hardware setup a sensor arrangement on the robotic network.

More formally, we give the following definition.

Definition 2.1: For a network of n identical agents, each

with a physical dimension R0/2 and a communication radius

Rc, a sensor arrangement is a suite of k sensors fitted on

possibly different agents, such that for any given p ∈ Cn and

for each individual constraint on communication or collision

fi(p) < 0, there exists a function gi such that

gi(Θ(p)) = fi(p),

where Θ(p) is a tuple of all sensory measurements from k
sensors, measured at positions p.

Thus the purpose of a sensor arrangement is to detect and

quantify the satisfaction of constraints while maintaining full

connectivity. A simple protocol can be used to detect network

connectivity. Each agent broadcasts its unique identification

tag in some pre-determined order. If after each round of

broadcasts, every agent has successfully received n − 1
broadcasts at its turn, the connectivity of the network is full.

Although the sensors are distinguished from the commu-

nication radios, nevertheless the radio signals can be used

as a (mostly unreliable) sensory input for deducing the

relative position of a transmitter from the strength of the

received signal. Finally, observe that the sensors need not

measure the absolute positions of the agents as we only need

relevant positions for collision avoidance or maintenance of

communication.

B. Sensor Arrangements for three agents

In this paper, we restrict ourselves to the case of three

agents and study the merits and demerits of different sensor

arrangements for this case. We also study the geometrical

and topological properties of Cn
sa for various sensor arrange-

ments.

1) Two range sensors on two agents: One arrangement

could be a set of range sensors (with a longer sensory range

than the communication radius Rc), fitted on two or more

agents that detect the distances r1 = ‖p2−p3‖, r2 = ‖p1−
p3‖, r3 = ‖p1 − p2‖ directly. Note, that we only need two

range sensors on any two agents, since the presence of a

range sensor on an agent implies that it can detect distances

from all of its neighbors.

The constraints imply that the measured quantities should

be in the range Ro < ri < Rc. Denote by R the set

of all such triplets. It can be easily seen that R is not a

simple direct product of three open intervals, (Ro, Rc)
3. As

an example, consider the triplet (Rc − ǫ, Ro + ǫ, Ro + ǫ),
where ǫ > 0 is small. Let us fix r1, r2 and see how much r3

can vary over (R0, Rc). It is easy to see that r3 can take a

maximum value of min{Rc, r1 + r2} and a minimum value

of max{Ro, |r1 − r2|}. By symmetry, this implies that the

configuration space is bounded by nine planar constraints,

r1 < Rc, r2 < Rc, r3 < Rc,

r1 > Ro, r2 > Ro, r3 > Ro,

r1 + r2 − r3 < 0,

r1 − r2 − r3 < 0,

r1 − r2 + r3 < 0.

One such space has been drawn in Figure 1. It is quite clear

that this space is topologically trivial, i.e. contractible and

has no topological obstacles to global navigation.

Fig. 1. The configuration space R for Rc = 1 and Ro << Rc .

2) One range and one bearing sensor on one agent:

In another arrangement, we can equip one agent with one

range and one bearing sensor. Suppose that both sensors have

been fitted on agent 3 and they measure the distances r1 =
‖p2 − p3‖, r2 = ‖p1 − p3‖, and bearing

θ = cos−1
(p2 − p3)

T (p1 − p3)

‖p2 − p3‖‖p1 − p3‖
.

Similarly, other range and bearing measurements are ob-

tained if the sensors are fitted on a different agent. The

missing distance r3 can be recovered from this data using

the law of cosines, r2

3
= r2

1
+r2

2
−2r1r2 cos(θ). The collision

constraints are translated to r1, r2 > 2Ro, and

r2

1
+ r2

2
− 2r1r2 cos(θ) > 4R2

o. (1)

For the communication constraints, we need r1, r2 < Rc,

along with

r2

1
+ r2

2
− 2r1r2 cos(θ) < R2

c . (2)

We denote the set of all such valid triplets of bearing, range

and range measurements as T . Let us try to visualize this

space in the coordinates (r1, r2, θ).
Let θ vary between −π and π. Then the configuration

space can be visualized as a set in R3 bounded by the linear

constraints r1 > R0, r1 < Rc, r2 < R0, r2 < Rc, θ ≥ −π
and θ ≤ π. The communication and collision constraints

erode this set further. Let us see how the communication

constraints come into action for a fixed θ. From (2),

cos(θ) >
r2

1
+ r2

2
− R2

c

2r1r2

.
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Fig. 2. The configuration space T for Rc = 1 and Ro << Rc. The
planes θ = π and θ = −π are identified. The thick line in the plane θ = 0
depicts the collision constraint for small θ.

Therefore cos(θ) serves as an upper bound for all choices

of valid r1, r2. When θ ∈ [−π/3, π/3], cos(θ) ≤ 1/2.

Therefore, r2

1
+ r2

2
− r1r2 < R2

c .

This inequality is satisfied for all pairs r1, r2 < Rc.

Therefore for θ ∈ [−π/3, π/3], all r1, r2 ∈ (Ro, Rc) satisfy

the communication constraints. For θ outside this range, this

is no longer true. For example, for θ = π/2, the constraint

becomes r2

1
+ r2

2
< R2

c . The valid pairs r1, r2 are within this

disk. For the extreme case of θ = π, we have r1 + r2 ≤ Rc,

which is a linear constraint.

For collision, first consider the case when θ = 0. Inequal-

ity (1) implies that all valid range pairs satisfy |r1 − r2| >
2R0. For θ large enough, it is easy to see that the absolute

difference between r1 and r2 makes no difference. Therefore,

to find the cutoff value of θ at which this constraint vanishes,

let r1 = r2 = r, so that,

cos(θ) < 1 − 2

(

R0

r

)2

.

If we let r → Rc to maximize the right hand side of this

inequality, we have the cutoff angle

θo = cos−1

(

1 − 2

(

R0

Rc

)2
)

.

The result is a cylindrical void in the configuration space

whose axis is r1 = r2 in the θ = 0 plane. These observations

have been illustrated in Figure 2 for a special case of Ro and

Rc.

Let us now analyze the topology of this configuration

space. It is clear that the plane θ = −π is identified with the

plane θ = π which creates a hole in the configuration space.

If there were no other holes, the resulting space would have

the topology of a solid torus. The collision constraint in (1)

introduces another hole in the space via the cylindrical void

mentioned above. Clearly, the two holes do not merge. We

therefore have a configuration space which is homeomorphic

to the interior of a solid double torus denoted by T2 (See

Figure 3). Note that this is different from the standard double

torus which is a surface with hollow interior. This space has

the homotopy type of a wedge sum of two circle S1 ∨ S1

(See Figure 4).

Fig. 3. The double torus as a surface in R
3. By the solid double torus

T
2, we mean the interior of this surface.

3) Other arrangements: The most direct method of imple-

menting a motion planning scheme on C3 would be to have

a sensor arrangement that gives direct measurement of the

absolute positions of the agents, i.e. equip each agent with a

GPS device. These positions can be subsequently shared with

the neighbors to detect the constraints. The set of constraint-

satisfying positions in this sensor arrangement is the space

C3 itself.

Topologically, this configuration space is similar to the

standard configuration space of three points in a plane,

namely, C3(R2) = (R2 × R
2 × R

2) \ ∆, where ∆ =
{(p1,p2,p3) : p1 6= p2,p1 6= p3,p3 6= p2}. In this ideal-

ization, the agents are assumed to have a point-dimension and

the issue of communication (or sensory) constraints between

the agents is ignored.

There can also be other sensor arrangements based on

a combination of relative (range, bearing) and absolute

(GPS) sensors. Most research involving trajectory generation

for robotic networks implicitly assumes either the config-

uration space C3(R2) by ignoring sensory/communication

constraints or the space R due to its topological simplicity.

These idealizations however come at the cost of ignoring

physical limitations as well as issues in economy such as

hardware complexity and communication bandwidth.

We note that for the case of 3 agents, the sensor ar-

rangement corresponding to the space T not only captures

the collision and communication constraints of the system,

but is also more economical than other sensor arrangements

that can be realized by other permutations of GPS, bearing

and range sensors. Not only does this arrangement require

only two sensors, but due to the availability of complete

information on one agent, the other agents can be remotely

actuated by this master agent, using a simple broadcast

strategy whose frequency is only limited by the bandwidth

available in the radios. In the case of R, the measurements

have to be communicated to other agents, which requires

at least two broadcasts per set of measurements. Thus the

bandwidth used in this case is doubled. In the case of the

sensor arrangement with 3 GPS sensors, three rounds of

broadcasts are needed before all three agents are cognizant of

the global picture, and at least two broadcasts are needed for

at least one agent to be knowledgable of all three positions.

In either case, this is more expensive than the arrangement

corresponding to T . It is easy to see that this economy

extends to the case of n agents.

The price to pay for this economy is a relatively compli-

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB17.5

3109



Fig. 4. The universal cover (right) of S1 ∨S1 (top left). The fundamental
domain (bottom left) is obtained after cutting the space at the green and
red points. The fundamental domain is then repeatedly glued at the these
identification points to get the universal cover.

cated motion planning algorithm. Since the the configuration

space T in topologically nontrivial, a relatively complicated

scheme is needed to obtain trajectories on this space. We

present such a scheme in the following sections.

III. MOTION PLANNING ON THE SOLID DOUBLE TORUS

The motion planning problem corresponds to constructing

a method, which takes two configurations xo, xf in C as

an input and produces as an output a continuous trajectory

that starts at xo and ends at xf . One approach towards

obtaining such paths is to study the geodesics on C. However,

depending on the topology of the space, there can be a

number of geodesics between any two points. It is well

known that the presence of holes in a configuration space

in an obstruction towards obtaining a stable motion planner,

where by stability we mean that a small perturbation in the

end points does not create a large variation in the geodesics.

Moreover, it is usually hard to compute geodesics directly

on a C with complicated topology due to the absence of a

trivial parametrization.

In order to do motion planning on such nontrivial con-

figuration space, one method is to obtain a universal cover

of the configuration space, which is easily parameterizable.

Examples include the standard simply connected spaces such

as the Euclidean spaces, unit-spheres and hyperbolic spaces.

Being a local property, the geodesics can be lifted to the

universal cover. The initial and final configurations are also

lifted to the fundamental domain. By tracing the orbits of

one of these points, several geodesics can be obtained that

connect these pre-images of the covering map. Any one these

geodesics, when projected down on configuration space gives

a valid trajectory for motion planning. The main ingredients

of this methods are explicitly constructing the universal cover

and the covering maps. We now employ this method for the

case of the configuration space T .

A. Universal Cover of the Solid Double Torus

The universal cover of the solid double torus T2 can be

constructed by using the standard technique [3] described in

Figure 4. Recall that T2 has the same homotopy type as that

of S1∨S1. From Figures 3 and 4, it can be seen that T2 is a

thickening of S1 ∨ S1. Therefore, π1(T
2) ∼= π1(S

1 ∨S1) ∼=
Z∗Z. If X̃ is the universal cover of T2, then the solid double

torus can be described as a quotient space X̃/(Z∗Z), where

the (free) group actions are described by certain isometries

of the fundamental domain of X̃ . In fact, the universal cover

is just a thickening of the universal cover of S1 ∨ S1.

As mentioned above, the configuration space T is home-

omorphic to T2. Therefore, we explicitly construct the

universal cover of T2 and consequently the necessary home-

omorphisms. We emphasize that the particular construction

explained below will be convenient for the computation of

geodesics.

1) Hyperbolic geometry and Mobius transformations:

We take a brief digression into hyperbolic geometry and its

group of isometries called Mobius transformations. A hyper-

bolic geometry Hn of dimension n, satisfies all of Euclid’s

postulates except the parallel postulate [5]. In hyperbolic

geometry, the sum of angles of a triangle is less than 180
degrees, and triangles with the same angles have the same

areas. Hn has a constant (negative) sectional curvature equal

to −1. This means that geodesics between two points of Hn

are unique. Moreover, Hn is simply connected.

The Poincare disc D is a model of two-dimensional

hyperbolic geometry H2. It is defined as the disc {z =
x + iy ∈ C : |z| < 1}, with the hyperbolic metric

ds2 =
dx2 + dy2

(1 − x2 − y2)2
.

The hyperbolic distance between two points x, y ∈ D,

denoted by dD(x, y) is given by

1

2
(cosh(dD(x, y)) − 1) =

|x − y|2

(1 − |x|2)(1 − |y|2)
.

In D, a line is represented as an arc of a circle whose ends

are perpendicular to the disk’s boundary (and diameters are

also permitted). Two arcs which do not meet correspond to

parallel rays, arcs which meet orthogonally correspond to

perpendicular lines, and arcs which meet on the boundary

are a pair of limits rays.

D admits certain transformations called Mobius Transfor-

mations F : D → D, given by

F (z) =
αz + β

β∗z + α∗
,

where α∗α − β∗β = 1. Each Mobius transformation can be

represented by a matrix

F =

(

α β
β∗ α∗

)

.

Such transformations together with the conjugate map

C(z) = z∗ make the general Mobius group of transforma-

tions, denoted by M(D).
2) Tessellation of the Poincare disc by Schottky groups:

Let us now describe a tessellation or packing of D by means

of certain Mobius transformations that act as group actions

on D. We will see later how to use this construction for

describing a quotient space which is homeomorphic to T .

Let Ci, C
′

i, 1 ≤ i ≤ k be a set of 2n circles in C such that

the interiors of the 2k circles are all pairwise disjoint. Let F
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−1

−1 0

∂D

y
1

−1

q

C1

C ′
1

C ′
2

C2

−1 0

r

∂D

F
x

y

F−1

1
(F)

F
−

1

0
(F

)

F0(F)

F
1 (F

)

Fig. 5. The Schottky domain F ⊂ D and the pairings C1, C′

1
, C2, C′

2
,

depicted by the thicker circles in red and green. The Mobius transformations
respect the identifications on the circles. The smaller circles (along with

C′

i
, Ci), bound the images of the transformations F0, F1, F−1

0
, F−1

1
on

F .

be the intersection of the exteriors of these circles. F is called

a (classical) Schottky domain. A Schottky pairing is a set of k
Mobius transformations, F1, . . . , Fk, where each Fi maps the

exterior of Ci onto the interior of C′

i . {Fi} are called the side

pairings. The group generated by the side-pairing is called a

(classical) Schottky group on the generators F1, . . . , Fk. The

following results are known about these groups.

Theorem 3.1: [5] Let Γ be a classical Schottky subgroup

of M(D) of rank m corresponding to a Schottky domain F .

Then :

1) Γ is a free subgroup of M(D) of rank m.

2) If no two sides of F ⊂ D meet at infinity, then the

space produced by the side-pairings of F is the same

as D/Γ.

The action of Schottky groups on D results in a space

D/Γ by gluing together together the sides of the Schottky

domain via the Schottky pairings. Since the action is free, this

produces a packing of D. The limit points (on ∂D) of these

group actions have interesting properties. If we let L(Γ) ⊂
∂D be the set of all limit points, then we have the following

result.

Theorem 3.2: [5] Let Γ be a Schottky group generated by

a Schottky pairing of a Schottky domain with at least four

sides and in which no two sides meet at ∂D. Then L(Γ) is

a Cantor set.

We now present one particular construction. Let q ∈ C be

the center of a circle of radius r in C given by the equation

(z − q)∗(z − q) = r2. Let this circle cut the unit circle

(identified with ∂D) perpendicularly, as illustrated in Figure

5. Let q be parameterized by

q =
cosh(x0)

sinh(x0)
exp(iα).

As shown in [4], the transformation, given by

Gq :=

(

i cosh(x0) exp(iα) −i sinh(x0)
i sinh(x0) −i cosh(x0) exp(−iα)

)

,

is a Mobius transformation on D, where x0 = sinh−1(1/r).
This transformation produces a reflection about the circle

at center q and radius r =
√

|q|2 − 1. It is an isometry in

which all points on the circle centered at q remain fixed.

Furthermore, the points outside this circle are mapped to its

interior and vice versa.

Now construct a Schottky domain using four circles

of equal radius C1, C
′

1
, C2, C

′

2
centered at four symmetric

points q0, q1, q2, q3 on the axes. In order to keep the circles

from intersecting, the radii should satisfy 0 < r < 1. This

means that sinh−1(1) < x0 < ∞. Therefore, the Schottky

domain is formally defined by

F = {z ∈ D : (z − qk)∗(z − qk) < r2, k = 0, 1, 2, 3},

where

qk =
cosh(x0)

sinh(x0)
exp(ikπ/2), k = 0, 1, 2, 3;

r =
√

(cosh(x0)/ sinh(x0))2 − 1.

We now define the Schottky (free) group Γ generated by two

transformations F0, F1 ∈ M(D), where

F0(z) = exp(iπ/2)Gq0
(z∗),

F1(z) = exp(iπ/2)Gq2
(z∗).

Note that z 7→ z∗ is a reflection about the y-axis and

the multiplication factor exp(iπ/2) is a 90o anticlockwise

rotation. Therefore, F0 maps the exterior of C1 to the interior

of C′

1
. Similarly, F1 maps the exterior of C2 to the interior

of C′

2
. This satisfies the pairing property of the Schottky

domain.

By Theorem 3.1, Γ is a free group generated by two

generators F0, F1. In other words, any member of Γ
can be written as a composition g1g2 . . . gk, where gi ∈
{F0, F1, F

−1

0
, F−1

1
}. The set {g(F) : g ∈ Γ}, is a packing or

tessellation of D. The free action of Γ ensures that the orbits

of F cover the entire disc D in the limit. An incomplete

picture of this tessellation can be seen in Figure 5. The

members of Γ produce images of F with an infinite detail.

The limit set L(Γ) ⊂ ∂D is fractal as predicted by Theorem

3.2. By Theorem 3.1, the space D/Γ is exactly the space

described by the identification of the Schottky domain by

the side-pairings. Thus D is a universal cover of this space.

We add one final modification to our construction. Con-

sider the space D×(0, 1) as a ‘fat’ Poincare Disc. Also let the

set F× (0, 1) be acted upon by the group of transformations

Γ̄ : D × (0, 1) → D × (0, 1), whose members ḡ are defined

by

ḡ(z, t) = (g(z), t), g ∈ Γ.

Thus Γ̄ produces a (fat) tessellation of the space D × (0, 1).
This has been illustrated in Figure 6.

Returning to the space S1∨S1 introduced in the previous

section, we can see that D/Γ is a planar thickening of

S1∨S1. We also noted that its universal cover X̃ is a fractal

set in R2 and a thickening of S1 ∨S1 produces a thickening

of its universal cover as well. It is easy to see now that in

the construction presented above, the boundary (in the limit)

of this thickened fractal object has been mapped onto L(Γ)
so that the resulting space D is another representation of
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x

y

t

Fig. 6. The space D× (0, 1)/Γ̄. The group Γ̄ acts on F × (0, 1) bounded
by red and green surfaces in D × (0, 1) to produce a (fat) tiling so that
D × (0, 1) is the universal cover.

the universal cover. By the modification discussed above, it

can be seen readily that the space D × (0, 1)/Γ̄ is (upto

homeomorphism) the solid double torus T2, introduced

previously as the topology of the configuration space T . Note

also that

π1(D × (0, 1)) ∼= π1(S
1 ∨ S1) ∼= Z ∗ Z ∼= Γ̄.

Thus we have state our main result.

Theorem 3.3: H2× (0, 1) is a universal covering space of

the solid double torus T2.

For the purpose of calculation we restate that D × (0, 1)
is a universal cover of T . All we need is an explicit

homeomorphism between F × (0, 1) and a corresponding

fundamental domain in T . If we introduce a metric on

D × (0, 1) given by

ds2 =
dx2 + dy2

(1 − x2 − y2)2
+ dt2,

the geodesics on this covering space can be computed. These

geodesics, when projected back to the quotient space provide

motion planning strategies for T via the maps constructed

below.

B. Construction of Homeomorphisms

We now outline briefly the explicit maps that provide the

homeomorphism between the fundamental domain of the

actual configuration space T and F × (0, 1). The full details

of these maps will be given in a future work.

As a first step, we need a map that inverts the constraint

r2

1
+ r2

2
− 2r1r2 cos(θ) < R2

c (See Figure 2), so that the

space is a rectangular open column bounded by the planes

r1 > 0, r2 > 0, r1 < Rc, r2 < Rc and identified at the planes

where θ equal to π and −π. We omit the details of this map

for the sake of brevity. We note however, that the cylindrical

void due to the collision constraints is still preserved.

Next we obtain the fundamental domain of the space

by two cuts at the θ = 0 plane. These cuts split the

cylindrical void into two and results in a (simply connected)

fundamental domain of T . This has been depicted in Fig-

ure 7. Now take a family of rectangular sections of this

column by varying r1 from Ro to Rc. A typical section

would resemble the left most picture in Figure 8, with

Ro exaggerated for illustration. Figure 8 pictorially portrays

how to map each rectangular section to F inside D. The

construction of these maps is quite straightforward and we

omit the details due to the lack of space. As r1 varies over

(Ro, Rc), each rectangular section is mapped onto the set

θ

r2r1

r2r1

π

0

2π

Fig. 7. The configuration space T after the correction of communication
constraints (left) and its fundamental domain (right).

Fig. 8. A series of maps between a rectangular section in the fundamental
domain of T and the Schottky domain F ⊂ D .

F ×{(r1 −Ro)/(Rc −Ro)} in D× (0, 1). We have omitted

the minor details on how to deal with the sections when r1

is close to R0 and Rc.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have focussed on the motion planning

problem on one particular configuration space that has the

topology of a solid double torus. The technique of construct-

ing the universal cover of the configuration space has been

found to be useful for the solution to this problem. We point

out here that although this construction looks specific to one

particular sensor arrangement for a certain number of agents,

the techniques can be employed for various other scenarios.

It is evident from a preliminary study of the configuration

spaces of sensor arrangements for a larger number of agents

that their topologies are handle-bodies of higher genus and

the explicit construction of their universal cover would need

similar techniques from hyperbolic geometry. Finally, we

want to understand the configuration spaces for robotic

sensor network with arbitrary connectivity.
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