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Abstract—In this paper we consider the Norm-Optimal 
Iterative Learning Control (ILC) problem for discrete-time 
linear multi-input, multi-output systems.  The solution to this 
problem is well known and naturally factors into a form with a 
filter on the previous control, Lu and a filter on the previous 
error, Le.  We show that this solution can always be factored 
into a Q,L form where Q filters the previous control and QL 
filters the previous error.  This latter form is popularized with 
frequency domain ILC designs, and this common factorization 
suggests some general relationships between Norm-Optimal 
and frequency domain design, which are explored.  Although 
the Q,L factorization is well known for some special cases, the 
results here are general and include differently dimensioned 
control and observation windows. 

I. INTRODUCTION 
TERATIVE learning control (ILC) [1],[2] is used to 
improve the performance of systems that repeat the same 

operation many times.  ILC uses the tracking errors from 
previous iterations of the repeated motion to generate a 
feedforward control signal for subsequent iterations.  
Convergence of the learning process results in a feedforward 
control signal that is customized for the repeated motion, 
yielding very low tracking error. 

Many ILC design methods for linear discrete-time, time-
invariant (LTI) systems can be categorized as either 
frequency domain methods [3]-[5] ([6],[7] for continuous-
time frequency domain) or Norm-Optimal methods [8]-[10].  
Frequency domain design methods often assume a learning 
algorithm of the form [3],[5],  
 ( )1j j ju u e+ = +Q L  (1) 

where ju  is the Fourier Transform (FT) of the control 

signals, je  is the FT of the error signal, and Q  and L  are 
LTI filters.  Although designed in the frequency domain, 
these algorithms are typically applied as finite-horizon time-
domain filters.  In the time-domain (1) can be written as 
[11], 
 ( )1j j j+ = +u u eQ L , (2) 

where ju  is a vector of control inputs, je  is a vector of 
error outputs, and Q ,L  are lifted [11] time-domain 
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constructions of Q , L  respectively. 
Norm-Optimal ILC is analogous to linear quadratic 

optimal control for feedback systems.  In this method the 
designer selects several time-domain weighting matrices in a 
particular quadratic cost function [8]-[10].  The optimal 
solution to this cost function is well known [9],[10] and 
naturally takes the form, 
 1 ej j j+ = +uu u eL L , (3) 

where uL  and eL  are given later in this article. 

For some special cases, a factorization of the { }e,uL L  

form into a { },Q L  form may be obvious [2].  However, in 
the general case the existence of such a factorization may 
not be obvious, for example, when ju  and je  are 
differently dimensioned.  The difference in the structure of 
the { }e,uL L  Norm-Optimal solution and { },Q L  frequency 
domain solution creates a discontinuity that makes bridging 
these two design approaches challenging.  While in Norm-
Optimal framework we may build intuition regarding 
{ }e,uL L , it is unclear how this transmits to our intuition of 

{ },Q L . 
In this paper we show that the Norm-Optimal algorithm 

always admits a solution that factors into { },Q L .  We find 

several properties of Norm-Optimal filters { },Q L  and 
discuss some relationships to frequency domain filters 
{ },Q L .  It is not our intention to advocate one design 
method over the other, but rather to find similarities between 
the methods in order to bridge the gap.  Therefore, our 
comparison focuses on structural similarities between the 
Norm-Optimal { },Q L  and frequency-domain { },Q L , 
instead of performance metrics. 

The remainder of this paper is organized as follows.  In 
Section II we present Norm-Optimal ILC.  The { },Q L  
factorization of Norm-Optimal ILC is developed in Section 
III.  Properties of the Norm-Optimal { },Q L  are presented 
and discussed in Section IV.  Finally, conclusions are given 
in Section V. 

II. NORM-OPTIMAL ILC 
Consider the discrete-time multi-input multi-output 

(MIMO) LTI dynamic system, 
 ( ) ( ) ( ) ( )0zj je k P u k e k= + , 1, 2,j = …  (4) 
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where k is the time index, 1, 2,j = …  is the iteration index, 

( ) n
ju k ∈R  is the control input, ( ) m

je k ∈R  is the tracking 

error, and ( )0
me k ∈R  is the initialization error signal.  Let 

z-1 be the backward time-shift operator ( ) ( )1z 1x k x k− = − .  

We assume that ( )zP  is an n-input, m-output 
asymptotically stable system that can be written as 

 ( ) ( )
0

z z k

k

P p k
∞

−

=

= ∑ , (5) 
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and ( ) m np k ×∈R .  ( ) ( )0 , 1 ,p p …  are the Markov 

parameters of ( )zP  and the sequence 

( ) ( ) ( ){ }0 , 1 , 2 ,p p p …  is the impulse response.  Repeating 

disturbances [11], repeated nonzero initial conditions [4], 
and systems augmented with feedback and feedforward 
control [11] can be captured in ( )0e k . 

 Consider the control window ( )0ju ,…, ( )j uu N  and the 

observation window ( )je o ,…, ( )j ee o N+ , where o ∈Z  is 

the offset, and assume that ( ) 0ju k =  for 0k <  and uk N> .  
Now consider the vector description of u and e as, 
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Then (4) can be written compactly as a lifted system [12], 
 0j j= +e Pu e , (6) 

where e umN nN×∈P R  is the convolution matrix composed of 
the Markov parameters ( ) ( )0 , 1 ,p p … .  The reader may be 

most familiar with the special case 0o =  and u eN N N= = , 
where, 
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The goal of Norm-Optimal ILC is to select 1j+u  as 

 
1 1arg min

j j+ +u J , (8) 

where 

 ( ) ( )1 1 1 1 1 1 1

TT T
j j j j j j j j j+ + + + + + += + − − +J e Qe u u R u u u Su , (9) 

and 0T= ≥Q Q , 0T= ≥R R , and 0T= ≥S S  are 
appropriately sized real matrices.  The solution to this 

problem is well known [9],[10] and is obtained by 
substituting system dynamics from (6) into (9), 
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and setting 1 1 0j j+ +∂ ∂ =J u .  If T + +P QP R S  is 
nonsingular, the optimal control is then given by, 

 ( ) ( )1

1 0
T T

j j

−

+ = + + +u P QP R S Ru P Qe . (10) 

Rewriting (6) as 0 j j= − +e Pu e  and substituting into (10), 

we get 

 ( ) ( )( )1

1
T T T

j j j

−

+ = + + + +u P QP R S P QP R u P Qe . (11) 

The result in (11) can naturally be written as separate filters 
on ju  and je  as in (3) where, 

 
( ) ( )
( )

1

1

e
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T T
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−
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P QP R S P Q
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In the following section we factor { }e,uL L  into { },Q L . 

III. { },Q L  FACTORIZATION OF THE NORM-OPTIMAL 

ALGORITHM. 

Before showing the { },Q L  equivalency of the { }e,uL L  
algorithm in (3), (12), we present some definitions and 
supporting lemmas.  Let m n×∈A R , m m×∈B R , 0T= ≥B B .  
We define 1

2B  as the factorization of B  satisfying 

( )1 1
2 2

T
=B B B .  †A  is the pseudo-inverse of A  [13].  The 

null space of A  is defined as ( ) { }: 0, n= = ∈A x Ax xN R  

and the orthogonal complement of the null space is defined 
as ( )⊥AN . 

Lemma 1:  For m n×∈P R , m m×∈Q R , 0T= ≥Q Q , then, 

 ( )1 1
2 2

†T T=P Q P QP Q P Q  (13) 

Proof:  ( )1 1
2 2

T
=Q Q Q  because 0T= ≥Q Q , so, 

 ( )1 1
2 2 .

TT =P Q Q P Q  

For a real matrix A, we have †T T=A A AA , and thus we can 
write 

 
( ) ( )( )

( )

1 1 1 1
2 2 2 2

1 1
2 2

†

†

,

,

TT

T

=

=

P Q Q P Q P Q P Q

P QP Q P Q
 

which completes our proof. ■ 
Lemma 2:  For m n×∈P R , m m×∈Q R , 0T= ≥Q Q , 

n n×∈R R , 0T= ≥R R , then, 
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 ( )( )†T T T T= + +P QP P QP R P QP R P QP . (14) 

 Proof:  Let TUΣU  be the singular value decomposition 
(SVD) of T +P QP R , where [ ]1 2=U U U  and 2U  is the 

basis for ( )T +P QP RN .  Then, the SVD of ( )†T +P QP R  

is † TUΣ U , from which we conclude that 

 ( ) ( )( )†T T+ = +P QP R P QP RN N . 

Furthermore, 

 ( )( )† †T T T+ + =P QP R P QP R U ΣΣ U , 

where 

 † 0
0 0
r⎡ ⎤

= ⎢ ⎥
⎣ ⎦

I
ΣΣ , 

rI  is the r r×  identity matrix and ( )Tr rank= +P QP R .   

Therefore, 

  ( ) ( )( )( )†T T T+ = + +P QP R P QP R P QP RN N , 

and 

( )( )†T T x x+ + =P QP R P QP R  for ( )Tx
⊥

∈ +P QP RN . 

Finally, because 

 
( ) ( ) ( )

( ) ,

T T

T

+ =
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N N N
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∩
 

we conclude that 

 ( )( )†T T T Tx x= + +P QP P QP R P QP R P QP  

for all ( )Tx
⊥

∈ P QPN , which proves (14). ■ 

We are now able to show that the Norm-Optimal  
{ }e,uL L  algorithm in (3), (12) can always be factored into 

the { },Q L  algorithm in (2). 
Theorem 1:  Given P , Q , R , S  as defined above, the 

learning algorithm given in (3), (12) is equivalent to the 
learning algorithm in (2), where, 
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 Proof:  The proof follows from the substitutions provided 
by lemmas 1 and 2.  From (3), (12) and Lemma 1 we have, 
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Using Lemma 2, 
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The factorization into { },Q L  follows directly.  ■ 

IV. SOME PROPERTIES OF  THE NORM-OPTIMAL Q  AND L . 

In this section, we present and discuss some properties of 
Norm-Optimal filters Q  and L .  When possible, we relate 
these properties to properties of frequency-domain designs 
for Q  and L .  We begin with a discussion of the Norm-
Optimal Q . 

A. The Norm-Optimal Q  
The Norm-Optimal Q  has the following two properties. 
PQ 1) 2 1=Q Q Q , where 1 1 0T= >Q Q , 2 2 0T= ≥Q Q . 
PQ 2) 0 1iσ≤ ≤ , 1, 2, , ei mN= … , where iσ  is the ith 

singular value of Q . 

PQ 1) follows directly by selecting ( ) 1

2
T −

= + +P QP R SQ  

and 1
T= +P QP RQ .  The bound on iσ  in PQ 2) follows 

from the fact that T T+ + ≥ +P QP R S P QP R  and positive 
semi-definiteness of Q , R , and S .  We discuss some 
analogous properties for frequency-domain Q  in the 
following two subsections. 

1) Symmetric Q  and Zero-Phase Q  
In frequency-domain design it is sometimes advocated [4] 

that the Q -filter be designed with zero-phase to prevent 
time shifts in the control signal that may lessen performance.  
One popular method of achieving zero-phase shift is the so-
called filtfilt method [4].  In the filtfilt method a signal is 
filtered through a causal, nonzero-phase filter, then reversed 
and filtered again through the same filter, and finally 
reversed again.  The forward and then backward filtering 
results in zero phase shift of the signal.  In the time domain, 
the filtfilt process can be represented by the product of a 
lower-triangular matrix and its upper-triangular transpose.  
Using the Cholesky factorization, we can find lower 
triangular ,1CQ  and ,2CQ  such that 1 ,1 ,1

T
C C=Q Q Q  and 

2 ,2 ,2
T
C C=Q Q Q .  Therefore, ( )( ),2 ,2 ,1 ,1

T T
C C C C=Q Q Q Q Q  is a 

filtfilt operation with ,1CQ  and another filtfilt operation with 

,2CQ . 
2) Unit norm-bounded Q  and Q  

The unit norm bound in PQ 2) identifies that Q  is an 
attenuating filter.  In frequency-domain design Q  is also an 
attenuating filter with ∞H -norm less than one.  Q  is 
usually a lowpass filter that is designed for robust learning.  
Because Q  has very low gain at high frequencies, high-
frequency learning is effectively disabled and robust to high-
frequency model uncertainty that may otherwise cause 
instability.  Q  may also serve in a similar robustifying role. 
Consider the SVD of T= ΣV UQ Q QQ , where 

{ },1 ,2,diagΣ = Σ ΣQ Q Q , ,2 0Σ ≈Q  are small singular values, 
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and ,1 ,2⎡ ⎤= ⎣ ⎦U U UQ Q Q , where ,2UQ  are the directions 

associated with ,2ΣQ .  Then, control signals in { },2span UQ  

are essentially disabled.  When Q , R , S  are selected in 

such a way that { },2span UQ  maps to high frequency 

control, Q  acts in a similar role as the frequency domain 
Q . 

B.  The Norm-Optimal L . 
In this section we begin by presenting a further 

factorization of the learning filter L  that will be useful for 
relating to the frequency domain.  We factor L  as, 
 inv= ΗPL  (16) 
where, 

 ( )†T T= +Η P QP R P QP , (17) 

is u unN nN×  and 

 ( )1 1
2 2

†

inv =P Q P Q  (18) 

is u enN mN× .  Here, we call Η  the learning rate filter and 

invP  the weighted system inverse filter. 
1) invP  and Model Inversion 

 We begin with invP  and consider the weighted least-
squares model-inversion problem, 
 argmin −x Q

Px b . (19) 

Using relationships between the pseudo-inverse and the 
least-squares problem, we find that 

 ( )

1 1
2 2

1 1
2 2

†

argmin argmin

,inv

− = −

=

=

x xQ
Px b Q Px Q b

Q P Q b

P b

 

and therefore invP  is the optimal filter for the Q -weighted 
inverse of P . 

 Consider now a special case where Q  is full rank and P  
is full row rank.  We interpret this as the fully controllable 
case because we can reach any je  with ju , and fully 
weighted because no directions of Q  have zero weighting.  
The following corollary shows that for this case a simpler 
form of invP  can be obtained. 

 Corollary 1:  If ( ) erank mN=Q  and ( ) erank mN=P , 
then 
 †

inv =P P . 
 Proof:  Because Q  is full rank and P  is full row rank, 

then 1
2Q P  is full row rank.  For a real matrix A  with full 

row rank we have ( ) 1† T T −
=A A AA .  Therefore, we find 

that, 

 

( ) ( ) ( )( )
( ) ( ) ( ) ( )
( )

1 1 1 1 1 1
2 2 2 2 2 2

1 1 1 1
2 2 2 2

1†

11

1 †.

T T

T TT T

T T

−

− −−

−

=

=

= =

Q P Q Q P Q P Q P Q

P Q Q PP Q Q

P PP P

 ■ 

When P  is square, Corollary 1 further simplifies to 
1

inv
−=P P .  Therefore, we see that the Norm-Optimal 

algorithm is a general type of model-inversion algorithm [2].  
Many frequency domain designs can be interpreted as 
model-inversion approaches, albeit oftentimes with reduced 
or simplified models of the inverse. 

2) Η  and Learning Rate 
Η  has the following two properties similar to those we 

found for Q . 
PΗ 1) 2 1=Η Η Η , where 1 1 0T= >Η Η , 2 2 0T= >Η Η . 
PΗ 2) 0 1iσ≤ ≤ , 1, 2, , ei mN= … , where iσ  is the ith 

singular value of Η . 
As with Q , we can interpret Η  as being analogous to a 

frequency domain filter that has zero-phase and is 
attenuating.  Similar filters are used in frequency domain 
design to slow the rate of learning for robustness purposes 
and also to limit noise sensitivity.  Most commonly, 
frequency domain designs use a scalar to slow the learning 
rate, as in invη= PL , where 0 1η< ≤  and invP  is an 
approximation of the inverse system.  In some frequency 
domain designs, unit-bounded, zero-phase filters are used in 
the design of L  [4]. 

V. CONCLUSIONS 
In this work we showed that the Norm-Optimal ILC 

algorithm, which is naturally written in an { }e,uL L  form, 

can always be factored into the { },Q L  form popularized by 
frequency domain ILC designs.  Explicit formulas for the 
Norm-Optimal Q  and L  are given.  We find that several 
properties of the Q  and L  filters are analogous to 
properties of the Q  and L  obtained using frequency 
domain designs.  The discovered similarity in filters helps to 
bridge the oft dissociated Norm-Optimal and frequency 
domain ILC design approaches.  This may lead to new 
design insights and combined Norm-Optimal-plus-
frequency-domain design strategies. 
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