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Abstract— In this paper we propose a subgradient method
for solving coupled optimization problems in a distributed way
given restrictions on the communication topology. The iterative
procedure maintains local variables at each node and relies
on local subgradient updates in combination with a consensus
process. The local subgradient steps are applied simultaneously
as opposed to the standard sequential or cyclic procedure. We
study convergence properties of the proposed scheme using
results from consensus theory and approximate subgradient
methods. The framework is illustrated on an optimal distributed
finite-time rendezvous problem.

I. INTRODUCTION

Large-scale networked systems are becoming ubiquitous

and increasingly complex to manage. If the desired behavior

of the networked system can be formulated as an optimiza-

tion problem, then complexity issues can be mitigated by

solving the resulting optimization problem with distributed

algorithms. We will develop such a distributed algorithm.

Several important problems in applications such as re-

source allocation in computer networks [1], [2], estimation

in sensor networks [3], and the rendezvous problem in multi-

agent systems [4], can be posed as coupled optimization

problems. In these problems, each node or agent in the

network is associated with a component of the objective func-

tion, which depends on a network-wide decision variable.

Coupled optimization problems can be solved using a

variety of distributed algorithms. A classical way is to

use dual relaxation, i.e., the constraints are enforced using

a pricing scheme. Another method is to iteratively refine

an estimate of the optimizer using incremental subgradient

methods, where the estimate typically is passed around in

the network following a logical ring. In this paper, we

combine consensus negotiations with a subgradient method,

which is similar in flavor to the approach proposed in [5],

but with different properties and analysis. In our approach,

the communication topology is explicitly respected, and the

algorithm only requires communication between neighboring

nodes.

In Section II, we present our problem formulation as well

as notation and connections with the existing literature. Then,

in Section III, we introduce the algorithm and supporting

lemmas. We then continue with a convergence analysis of
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the algorithm in Section IV. Furthermore, the properties

of the algorithm is explored using a numerical example in

Section V. Finally, we conclude the paper with a discussion

in Section VI.

II. PROBLEM FORMULATION

In this paper we consider the following optimization

problem

minimize
x

f(x) =

N
∑

i=1

f i(x)

subject to x ∈ X ,
(1)

where f i : R
M → R are convex functions and X is a

nonempty, closed, and convex subset of R
M . Let f⋆ denote

the optimal value of (1) and let x⋆ denote an optimizer of

(1). We will assume that in general f is nondifferentiable.

Our interest in studying this class of optimization problems

is motivated by optimal control problems for finite-time

rendezvous of multiple dynamical agents [4], [6], resource

allocation in computer networks [1], [2], and estimation in

sensor networks [3].

A. Preliminaries

We will make use of the following definitions and assump-

tions in the paper.

Definition 1: A vector g ∈ R
M is a subgradient of a

convex function f : R
M → R at a point x ∈ R

M if

f(y) ≥ f(x) + g⊺(y − x), ∀y ∈ R
M . (2)

Definition 2: The set of all subgradients of a convex

function f at x ∈ R
M is called the subdifferential of f at x,

and is denoted by ∂f(x):

∂f(x)=
{

g∈ R
M |f(y)≥ f(x) + g⊺(y − x), ∀y ∈ R

M
}

. (3)

Definition 3: The ǫ-subdifferential set of a convex func-

tion f at x is the collection of ǫ-subgradients:

∂ǫf(x) =
{

g∈ R
M |f(y) ≥ f(x) + g⊺(y − x) − ǫ, ∀y ∈ R

M
}

, (4)

with ǫ ≥ 0.

We will use ‖·‖ to denote the 2-norm of a vector x, i.e.,

‖x‖ =
√
x⊺x, and the induced 2-norm of a matrix W , i.e.,

‖W‖ = supx 6=0
‖Wx‖
‖x‖ .

Assumption 1 (Subgradient Boundedness): There exists a

scalar C for all i = 1, . . . , N such that
∥

∥gi(x)
∥

∥ ≤ C, ∀gi(x) ∈ ∂f i(x), ∀x ∈ X . (5)
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B. Subgradient Methods

A popular method for solving problems of the type (1)

is the subgradient method, which consists of the following

iterative procedure

xk+1 = PX

[

xk + αk

N
∑

i=1

gi(xk)

]

, (6)

where gi(xk) is a subgradient of f i at xk, αk is a positive

stepsize, and PX denotes projection on the set X ⊂ R
M .

References [7] and [8] contain excellent introductions and

overviews of the theory and use of subgradient methods, as

well as their convergence rate properties.

The subgradient method can be implemented in an incre-

mental fashion as proposed in [8]. This entails changing the

variable xk incrementally through N steps, in each iteration

using only the subgradient corresponding to a single compo-

nent function f i. The advantage of this method from a com-

putational aspect is that it can be performed in a distributed

way by assigning each component function to a processing

unit or “agent”, which performs the local incremental update

on the variable x. This means that xk needs to be “passed

around” between the agents, which perform a subgradient

update using only a single subgradient corresponding to the

agent’s component function. This incremental subgradient

scheme has advantages over the standard one in terms of

convergence rate and distribution of computations. However,

in its usual form the incremental updates are performed in

a sequential manner, which assumes that the variable xk

passes through all agents either in a cyclic or randomized

sequence. Implementation of such a communication scheme

can sometimes be problematic in practice.

A more realistic distribution of the computations would al-

low a much wider class of information exchange topologies,

which might even be time-varying or suffer from delays.

Notice that we can think of the computing agents men-

tioned above as each having a copy of the decision variable

x, which they maintain locally and update based on the value

obtained from the previous subiteration (the preceding agent

in the update sequence) and the local subgradient of the

component function evaluated at this value. Under appro-

priate assumptions and using a properly chosen diminishing

stepsize, the subgradient iterations converge asymptotically

to an optimizer x⋆ of the problem. This means that eventually

all “local” versions of the decision variable converge to the

same value. This resembles to some extent agreement or

consensus problems in multi-agent systems, which has a

long history and has received renewed interest in the recent

literature [9].

C. Consensus algorithms

The consensus problem considers conditions under which

using a certain message-passing protocol, the local variables

of each agent will converge to the same value. However, this

value does not generally represent an optimizer of a problem

of interest, and is typically a function of the initial values

held by the agents and the information exchange policy.

A wide variety of results exist related to the convergence of

local variables to a common value using various information

exchange procedures among multiple agents [9]–[11]. It is

thus interesting to investigate whether the convergence prop-

erties of certain consensus algorithms can be combined with

subgradient iterations in order to optimize problems of type

(1) using a wider variety of communication topologies than

what the standard incremental subgradient method allows.

For our investigations we will consider the following

consensus algorithm in discrete-time:

yk+1 = Wyk, (7)

where the i-th element of vector yk, denoted by [yk]i, corre-

sponds to agent i. Furthermore, we associate an undirected

graph G = (V , E) with the optimization problem (1), where

V = {1, ..., N} and E ⊆ V ×V . The interpretation is that if

(i, j) ∈ E , then agent i can communicate with agent j. The

information exchange among agents is represented by the

matrix W , for which we make the following assumptions.

Assumption 2 (Consensus Matrix Properties): The

weight matrix W ∈ R
N×N fulfills

[W ]ij = 0, if (i, j) /∈ E and i 6= j,

W = W ⊺, W1N = 1N , ρ

(

W − 1N1
⊺

N

N

)

≤ γ < 1,

where ρ(·) is the spectral radius and 1N ∈ R
N is the column

vector with all elements equal to one.

The matrix W can for example be chosen as the so-

called Perron matrix of the communication graph G with

parameter ε. It is defined as W = I − εL(G), where L(G)
represents the Laplacian matrix of the communication graph.

If G with maximum degree ∆ is strongly connected with

0 < ε < 1/∆, then the limit limk→∞W k exists and a

consensus is asymptotically reached for all initial states.

Furthermore, the consensus value will be the average of the

initial states: [y∞]j = 1
N

∑N

i=1[y0]i, for all j = 1, ..., N . For

more details, see, e.g, [9]; for other ways of choosing W
that fulfills Assumption 2, see, e.g, [11].

III. SUBGRADIENT ALGORITHM WITH

CONSENSUS ITERATIONS

We propose to combine the subgradient iterations of (6)

with a number of consensus iterations (7) in the following

way:

xi
k+1 = PX

[

N
∑

j=1

[Wϕ]ij

(

xj
k − αkg

j(xj
k)
)

]

, (8)

where gj(xj
k) ∈ ∂f j(xj

k) and [Wϕ]ij denotes the element

of Wϕ in the i-th row and j-th column. Agents maintain

their local variable xi
k and perform the update procedure

of (8) in parallel. First, they exchange information with

neighboring agents for ϕ number of consensus iterations.

More specifically, (8) implies that each agent i runs ϕ
number of consensus iterations with its neighbors, defined

by (7), for each row in the local vector xi
k. Then, all agents

implement the component subgradient update locally. The
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total number of iterations in the algorithm up to step k is

therefore kϕ. For a more compact notation we define

ui
k = xi

k − αkg
i(xi

k) (9)

and

vi
k =

N
∑

j=1

[Wϕ]iju
j
k, i = 1, ..., N. (10)

Let us assume for the moment that in each subgradient

iteration ϕ → ∞, and the consensus updates converge to

the average of the initial values (this holds if W fufills

Assumption 2). Then, for all i = 1, . . . , N and xi
0 ∈ R

M ,

lim
ϕ→∞

N
∑

j=1

(

[Wϕ]iju
j
0

)

=
1

N

N
∑

j=1

(

xj
0 − α0g

j(xj
0)
)

.

Let us denote the initial state of the projected consensus

variable with

x̆1 = PX

[

1

N

N
∑

j=1

(

xj
0 − α0g

j(xj
0)
)

]

.

In the next iteration, each agent will possess the same value

x̆1, thus the local subgradients gj will be evaluated at the

same point. The update procedure in (8) for k ≥ 1 will thus

be equivalent to

x̆k+1 = PX

[

1

N

N
∑

j=1

(

x̆k − αkg
j(x̆k)

)

]

= PX

[

x̆k − αk

1

N

N
∑

j=1

(gj(x̆k))

]

.

(11)

This is the same process as the standard subgradient method

of (6) performed on the consensus variable x̆k with a stepsize

of αk/N . Convergence analysis of this scheme can be done

following the procedure in for example [7] or [8].

We are interested however in a more realistic scenario,

where the consensus iterations are performed only for a finite

number of ϕ steps. We intend to analyze such a scheme

with the use of properly chosen approximate subgradients

and the approximation error of the average consensus process

achieved in a finite number of steps. Finally, we assume that

the stepsize in (8) is constant, αk = α, which makes the

algorithm easily implementable.

The following three lemmas will be instrumental in the

convergence analysis of the proposed scheme in Section IV.

We will denote the average value of the local variables at

time k with x̄k = 1
N

∑N
i=1 x

i
k and v̄k = 1

N

∑N
i=1 v

i
k.

The following inequalities serve to characterize the Eu-

clidean distance of agent variables from each other and from

their average.

Lemma 1: 1) If
∥

∥xi
k − xj

k

∥

∥ ≤ β for all i, j = 1, ..., N ,

then
∥

∥xj
k − x̄k

∥

∥ =
∥

∥xj
k − 1

N

∑N

i=1 x
i
k

∥

∥ ≤ N−1
N

β.

2) If
∥

∥xi
k−x̄k

∥

∥ ≤ β for all i = 1, ..., N , then
∥

∥xi
k−x

j
k

∥

∥ ≤
2β.

Proof: 1)

∥

∥

∥
xj

k − x̄k

∥

∥

∥
= 1

N

∥

∥

∥
Nxj

k −
∑N

i=1 x
i
k

∥

∥

∥
≤

1
N

(

∑N

i=1,i6=j

∥

∥

∥
xi

k − xj
k

∥

∥

∥

)

≤ N−1
N

β.

2)

∥

∥

∥
xi

k − xj
k

∥

∥

∥
≤
∥

∥xi
k − x̄

∥

∥+
∥

∥

∥
xj

k − x̄
∥

∥

∥
≤ 2β.

Lemma 2: If yk+1 = Wϕyk, with W fulfilling Assump-

tion 2, and ‖[yk]i − [yk]j‖ ≤ σ for all i, j = 1, ..., N , then

‖[yk+1]i − [yk+1]j‖ ≤ 2γϕNσ for all i, j = 1, ..., N .

Proof: Let us write yk as yk = ȳk + ak with ȳk =
1N1

⊺

Nyk/N and
∑N

i=1[ak]i = 0. The results of Lemma 1

show that ‖[ak]i‖ ≤ σ for all i. Furthermore, yk+1 =
Wϕ(ȳk + ak) = ȳk +Wϕ(ak − 0N ). Now we have,

‖[yk+1 − ȳk]i‖ ≤ ‖yk+1 − ȳk‖ = ‖Wϕ(ak − 0N )‖

=

∥

∥

∥

∥

(

Wϕ − 1N1
⊺

N

N

)

ak

∥

∥

∥

∥

≤
∥

∥

∥

∥

Wϕ −
(

1N1
⊺

N

N

)ϕ∥
∥

∥

∥

‖ak‖

≤
∥

∥

∥

∥

W − 1N1
⊺

N

N

∥

∥

∥

∥

ϕ

‖ak‖ ≤ γϕ ‖ak‖ ≤ γϕNσ,

where we used that
∥

∥W − 1N1
⊺

N

N

∥

∥ = ρ
(

W − 1N1
⊺

N

N

)

,

which holds for symmetric matrices. Finally, from the above

discussion and Lemma 1, we have ‖[yk+1]i − [yk+1]j‖ ≤
2γϕNσ for all i, j = 1, ..., N .

The following lemma establishes a lower bound on the

number of consensus steps that will ensure that the local

variables will remain in a ball of radius β of their average,

from one iteration to the next.

Lemma 3: Let {x1
k, ..., x

N
k }∞k=0 be generated by (8) un-

der Assumptions 1 and 2. If
∥

∥vi
k − v̄k

∥

∥ ≤ β for all i
and ϕ ≥

(

log(β) − log(4MN(β + αC))
)

/ log(γ), then
∥

∥vi
k+1 − v̄k+1

∥

∥ ≤ β for all i.

Proof: Using Lemma 1, the closeness condition means

that
∥

∥vi
k−v

j
k

∥

∥ ≤ 2β for all i, j = 1, ..., N , which implies that
∥

∥

[

vi
k − vj

k

]

l

∥

∥ ≤ 2β for all i, j = 1, ..., N and l = 1, ...,M .

We can now decide the distance between the iterates before

the consensus step.

∥

∥

∥

[

ui
k+1

]

l
−
[

uj
k+1

]

l

∥

∥

∥
(12a)

=
∥

∥

∥

[

PX [vi
k] − αgi(PX [vi

k]) − PX [vj
k] + αgj(PX [vj

k])
]

l

∥

∥

∥

≤
∥

∥

∥

[

vi
k − vj

k

]

l

∥

∥

∥
+ 2αC ≤ 2(β + αC), (12b)

where we used the non-expansive property of the projection

on a convex set. Furthermore, we have

∥

∥

∥
vi

k+1 − vj
k+1

∥

∥

∥

=

∥

∥

∥

∥

∥

N
∑

n=1

[Wϕ]inu
n
k+1 −

N
∑

n=1

[Wϕ]jnu
n
k+1

∥

∥

∥

∥

∥

≤
M
∑

l=1

∥

∥

∥

∥

∥

[

N
∑

n=1

[Wϕ]inu
n
k+1 −

N
∑

n=1

[Wϕ]jnu
n
k+1

]

l

∥

∥

∥

∥

∥

.

Consider now one of the terms in the sum above and notice
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that
∥

∥

∥

∥

∥

[

N
∑

n=1

[Wϕ]inu
n
k+1 −

N
∑

n=1

[Wϕ]jnu
n
k+1

]

l

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

N
∑

n=1

[Wϕ]in
[

un
k+1

]

l
−

N
∑

n=1

[Wϕ]jn

[

un
k+1

]

l

∥

∥

∥

∥

∥

=
∥

∥

∥
[Wϕyk]i − [Wϕyk]j

∥

∥

∥
,

with yk =
([

u1
k+1

]

l
...

[

uN
k+1

]

l

)⊺

. Using Lemma 2 and

(12), which states that
∥

∥[yk]i − [yk]j
∥

∥ ≤ 2(β + αC), we

obtain
∥

∥[Wϕyk]i − [Wϕyk]j
∥

∥ ≤ 4γϕN(β + αC).

Combining the above results yields
∥

∥vi
k+1 − vj

k+1

∥

∥ ≤
4γϕMN(β+αC), and

∥

∥vi
k+1 − vj

k+1

∥

∥ ≤ β is fulfilled if ϕ
is set to

ϕ ≥ log(β) − log(4MN(β + αC))

log(γ)
.

IV. CONVERGENCE ANALYSIS

We will prove convergence of the algorithm in two cases:

Firstly, convergence is proved when the feasible set is the

space R
M , i.e., the unconstrained optimization problem.

Secondly, with an additional assumption on the objective

functions, convergence is proved for a general convex feasi-

ble set.

A. Unconstrained Case

In the following, we will analyze the unconstrained case

and we make the following assumption.

Assumption 3: The feasible set of (1) is X = R
M .

We need the following Lemma which allows us to interpret

the algorithm as an ǫ-subgradient algorithm.

Lemma 4: Under Assumptions 1 and 2 and if
∥

∥xi
k − x̄k

∥

∥ ≤ β for all i = 1, ..., N , then gi(xi
k) ∈ ∂ǫf

i(x̄k)

and
∑N

i=1 g
i(xi

k) ∈ ∂Nǫf(x̄k), with ǫ = 2βC.

Proof: Using the definition (2) and the bound (5) on

the subgradient leads to

f i(xi
k) ≥ f i(x̄k) + gi(x̄k)⊺(xi

k − x̄k)

≥ f i(x̄k) −
∥

∥gi(x̄k)
∥

∥

∥

∥xi
k − x̄k

∥

∥

≥ f i(x̄k) − Cβ.

For any y ∈ X , using the subgradient inequality leads to

f i(y) ≥ f i(xi
k) + gi(xi

k)⊺(y − xi
k)

≥ f i(x̄k) + gi(xi
k)⊺(y − xi

k) − Cβ

≥ f i(x̄k) + gi(xi
k)⊺(y − x̄k + x̄k − xi

k) − Cβ

≥ f i(x̄k) + gi(xi
k)⊺(y − x̄k) − 2Cβ.

Using the definition of an ǫ-subdifferential (4), this implies

gi(xi
k) ∈ ∂2βCf

i(x̄k). Summation of terms yields

f(y) ≥ f(x̄k) +

( N
∑

i=1

gi(xi
k)

)⊺

(y − x̄k) −N2βC.

Based on Definition 3, this implies
∑N

i=1 g
i(xi

k) ∈
∂N2βCf(x̄k).

Now we are ready for the convergence theorem for the

unconstrained case.

Theorem 1: Under Assumptions 1, 2, and 3, with the

sequence {x1
k, ..., x

N
k }∞k=0 generated by (8) with ϕ ≥

(

log(β)−log(4NM(β+αC))
)

/ log(γ) and
∥

∥xi
0 − x̄0

∥

∥ ≤ β,

we have:

If f⋆ = −∞, then

lim inf
k→∞

f(xi
k) = −∞, ∀i = 1, ..., N.

If f⋆ > −∞, then

lim inf
k→∞

f(xi
k) ≤ f⋆ + αNC2/2 + 3NCβ, ∀i = 1, ..., N.

Proof: From Lemma 3, we know that
∥

∥xi
k − x̄k

∥

∥ ≤ β
for all i = 1, .., N and all k ≥ 0, since xi

k = vi
k. Furthermore,

from Lemma 4, we know that
∑N

i=1 g
i(xi

k) ∈ ∂2NβCf(x̄k)
for all k ≥ 0. Hence, from the definitions of x̄k and xi

k in

combination with the results above, we have

x̄k+1 =
1

N

N
∑

i=1

( N
∑

j=1

[Wϕ]ij

(

xj
k − αgj(xj

k)
)

)

=

=
1

N

N
∑

j=1

(

xj
k − αgj(xj

k)
)

= x̄k +
α

N
h(x̄k),

with h(x̄k) ∈ ∂2NβCf(x̄k) and ‖h(x̄k)‖ ≤ NC. This is

precisely the approximate subgradient iteration and from [12,

Proposition 4.1] we have

lim inf
k→∞

f(x̄k) = −∞, if f⋆ = −∞

and

lim inf
k→∞

f(x̄k)≤f⋆+α(NC)2/(2N)+2NCβ, if f⋆ > −∞.

By noting that

f(xi
k) ≤ f(x̄k) +NCβ, ∀i = 1, ..., N, k ≥ 0,

we have the desired result.

Remark 1: We can get lim infk→∞ f(xi
k) to be arbitrarily

close to f⋆, by choosing the constants α and β arbitrarily

small. Note that the number of required consensus negotia-

tions (ϕ) to reach a fixed β does not depend on k.

B. Constrained Case

To show convergence in the constrained case, we need the

following additional assumption on the functions f i.

Assumption 4: There exist ζ > 0 and τ > 0 such that for

all x ∈ X , gi(x) ∈ ∂f i(x), and ν ∈ R
M with ‖ν‖ ≤ τ , the

following holds:

gi(x) + ν ∈ ∂ζf
i(x).

As mentioned before, this is an additional assumption com-

pared to what is needed for the unconstrained case. However,

if X is a compact set, e.g., x ∈ X ⇒ ‖x‖ ≤ η, then

Assumption 4 is fulfilled for convex functions and arbitrarily
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small (but fixed) ζ as long as τ is sufficiently small. To see

this, consider x,w ∈ X , then

f i(w) ≥ f i(x) + gi(x)⊺(w − x)

= f i(x) + (gi(x) + ν − ν)⊺(w − x)

≥ f i(x) + (gi(x) + ν)⊺(w − x) − ‖ν‖ (‖x‖ + ‖w‖)
≥ f i(x) + (gi(x) + ν)⊺(w − x) − 2τη,

which fulfills Assumption 4 if τ ≤ ζ/(2η). Another example

is when f(x) = ψx⊺x, then Assumption 4 is fulfilled if

τ ≤ 2
√
ζψ (without X necessarily being a compact set).

In our further developments we need to keep track of the

difference x̄k+1−PX [v̄k], and to this end, we define yk and

zk as

yk = PX [v̄k−1] and zk = x̄k − yk. (17)

Furthermore, we need the following Lemma, which is similar

to Lemma 4.

Lemma 5: Under Assumptions 1, 2, and 4 and if
∥

∥vi
k−1 − v̄k−1

∥

∥ ≤ β for all i and ν ∈ R
M with ‖ν‖ ≤ τ ,

then (gi(xi
k) + ν) ∈ ∂ǫf

i(yk) and
∑N

i=1(g
i(xi

k) + ν) ∈
∂Nǫf

i(yk) with ǫ = β(6C + 3τ) + ζ.

Proof: The proof idea relies on the iterates being close

to each other. Using the assumptions and the non-expansive

property of projection on a convex set we can bound the

distance ‖zk‖ as follows

‖zk‖ =
1

N

∥

∥

∥

∥

∥

N
∑

i=1

(

PX

[

vi
k−1

]

− PX [v̄k−1]
)

∥

∥

∥

∥

∥

≤ 1

N

N
∑

i=1

∥

∥vi
k−1 − v̄k−1

∥

∥ ≤ β.

Using the definition (2), the bound on the subgradient (5),

the bound above, and Lemma 1 we obtain

f i(xi
k) ≥ f i(yk) + gi(yk)⊺(xi

k − yk)

≥ f i(yk) −
∥

∥gi(yk)
∥

∥

∥

∥xi
k − yk

∥

∥

≥ f i(yk) − C(
∥

∥xi
k − x̄k

∥

∥+ ‖zk‖)
≥ f i(yk) − C3β,

where we used xi
k−yk = xi

k−x̄k+zk and
∥

∥vi
k − v̄k

∥

∥ ≤ β ⇒
∥

∥vi
k − vj

k

∥

∥ ≤ 2β ⇒
∥

∥xi
k − xj

k

∥

∥ ≤ 2β ⇒
∥

∥xi
k − x̄k

∥

∥ ≤ 2β.

For any y ∈ X , using Assumption 4 and the previous

arguments, we get

f i(y) ≥ f i(xi
k) + (gi(xi

k) + ν)⊺(y − xi
k) − ζ

≥ f i(yk) + (gi(xi
k) + ν)⊺(y − xi) − (3Cβ + ζ)

= f i(yk) + (gi(xi
k) + ν)⊺(y − yk + yk − xi

k) − (3Cβ + ζ)

≥ f i(yk) + (gi(xi
k) + ν)⊺(y − yk) − (β(6C + 3τ) + ζ).

Using the definition of an ǫ-subdifferential (4), this implies

(gi(xi
k) + ν) ∈ ∂(β(6C+3τ)+ζ)f

i(yk). Summation of terms

yields

f(y) ≥ f(yk)+
( N
∑

i=1

(gi(xi
k) + ν)

)⊺

(y − yk) −N(β(6C + τ) + ζ).

Based on Definition 3, this implies
∑N

i=1(g
i(xi

k) + ν) ∈
∂N(β(6C+3τ)+ζ)f(yk).

We are now ready for the convergence theorem, which

is based on the idea of interpreting (8) as an approximate

subgradient algorithm.

Theorem 2: Under Assumptions 1; 2; and 4, with the

sequence {x1
k, ..., x

N
k }∞k=0 generated by (8) with ϕ ≥

(

log(β) − log(4NM(β + αC))
)

/ log(γ) ;
∥

∥vi
0 − v̄0

∥

∥ ≤ β;

and β/α ≤ τ , we have:

If f⋆ = −∞, then

lim inf
k→∞

f(xi
k) = −∞, ∀i = 1, ..., N.

If f⋆ > −∞, then

lim inf
k→∞

f(xi
k) ≤ f⋆ + αN(C + τ)2/2+

N(β(9C + 3τ) + ζ), ∀i = 1, ..., N.

Proof: From the definition of yk we have,

yk+1 = PX

[

1
N

∑N

i=1 v
i
k

]

= PX

[

1
N

∑N

i=1

(

xi
k − αgi(xi

k)
)

]

= PX

[

yk + zk − α
N

∑N
i=1 g

i(xi
k)
]

= PX

[

yk − α
N

∑N

i=1

(

gi(xi
k) − zk

α

)

]

.

From Lemma 3, we know that
∥

∥vi
k − v̄k

∥

∥ ≤ β for all

i = 1, .., N and all k ≥ 0. Furthermore, from Lemma 5, we

know that
∑N

i=1(g
i(xi

k) − zk/α) ∈ ∂N(β(6C+3τ)+ζ)f(yk)
for all k ≥ 1, since ‖zk/α‖ ≤ β/α ≤ τ by assumption. In

addition, we know that
∥

∥

∑N

i=1(g
i(xi

k)−zk/α)
∥

∥ ≤ N(C+τ).
Hence, yk is updated according to an approximate subgradi-

ent method and from [12, Proposition 4.1] we have

lim inf
k→∞

f(yk) = −∞, if f⋆ = −∞

and

lim inf
k→∞

f(yk) ≤ f⋆ +
(

α(N(C + τ))2
)

/(2N)+

N(β(6C + 3τ) + ζ), if f⋆ > −∞.

Finally, we have

f(xi
k) ≤ f(yk) +Nβ3C

≤ f⋆ + αN(C + τ)2/2+

N(β(9C + 3τ) + ζ), ∀i = 1, ..., N, k ≥ 0.

Remark 2: The assumption β ≤ ατ in Theorem 2 may

seem restrictive, but it can be fulfilled with a fixed number

of consensus negotiations according to Lemma 3.

Remark 3: The initial conditions in Theorem 1 and The-

orem 2,
∥

∥xi
0 − x̄0

∥

∥ ≤ β and
∥

∥vi
0 − v̄0

∥

∥ ≤ β, respectively,

can be fulfilled with sufficiently many consensus negotiations

before starting the algorithm. Another simple alternative is

to set xi
0 = xj

0, ∀i, j and vi
0 = vj

0, ∀i, j, respectively.
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V. NUMERICAL EXAMPLE

The proposed subgradient algorithm in combination with

consensus iterates as shown in (8) has been implemented to

solve a distributed finite-time optimal rendezvous problem

involving three agents moving in a plane with double inte-

grator dynamics. A more detailed problem description can

be found in [4]. Each agent maintains a local version of

the optimization variable xi
k (the rendezvous position) and

performs the local subgradient update with a diminishing

stepsize according to (8). The consensus updates are per-

formed with the following matrix W :

W =





0.75 0.25 0
0.25 0.5 0.25
0 0.25 0.75



 . (20)

Figure 1 illustrates the convergence of the local optimization

variable for one of the agents to the globally optimal ren-

dezvous location. The evolution of the local variable for the

other agents is very similar. The different curves overlaid in

the graph correspond to different choices of the consensus it-

eration limit (i.e., the maximum number ϕ of consensus steps

performed). This illustrates how increased communication in

terms of the number of consensus iterations with neighboring

agents leads to better convergence rate. As we increase ϕ
we expect to approach the convergence rate of the standard

subgradient method given in (6). The main advantage of

our proposed scheme is that the subgradient updates are

performed in parallel using information from neighboring

agents and there is no need for a central processing unit to

whom each agent should communicate its local subgradient.
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Fig. 1. Convergence plots for increasing number of consensus itera-
tions (ϕ).

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have described an iterative subgradient-

based method for solving coupled optimization problems in

a distributed way given restrictions on the communication

topology. In order to allow great flexibility in the information

exchange architecture and distribute calculations, we com-

bined the local subgradient updates with a consensus process.

This means that computing agents can work in parallel with

each other and use localized information exchange. The gen-

erality of results in consensus theory promises relatively easy

extensions of the presented method to situations where the

interconnection topology might be time-varying, delayed and

the local updates are performed asynchronously. Research

on the speed of convergence in consensus protocols has an

immediate and clear use in our framework.

For analysis purposes, we used results from consensus

theory and employed approximate subgradient methods to

study convergence properties of the proposed scheme. A

connection is established between the number of consensus

steps and the resulting level of optimality obtained by

the subgradient updates. We have illustrated the effect of

choosing different consensus iteration limits in an optimal

distributed finite-time rendezvous problem.

A different version of (8) is also conceivable as

xi
k+1=PX

[(

N
∑

j=1

[Wϕ]ijx
j
k

)

−αkg
i

(

N
∑

j=1

[Wϕ]ijx
j
k

)]

,

where in each update first a consensus is reached on the local

variables (at least approximately), and then the corresponding

local subgradient updates are calculated and applied. We

expect that a similar line of analysis shown in this paper can

be performed for such a variation of the original scenario.

We are currently exploring different choices of the step-

size, e.g., diminishing stepsizes, and we believe that other

results from approximate subgradient methods can be used.

Finally, we are also looking into how the different parameters

should be tuned, i.e., should we decrease the stepsize or in-

crease the number of negotiations to get closer to optimality?
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