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Abstract— In this paper we study the following problem for
a team of Dubins vehicles, i.e. nonholonomic vehicles moving at
constant longitudinal speed along planar paths with bounded
curvature. Given the initial configurations of the vehicles, find
the point in the plane that minimizes the time to be reached by
all vehicles. We call it minimum-time servicing problem. We show
that this problem can be approximated by an abstract linear
program, namely a generalized version of linear programming,
that can be solved in a distributed way over a network. We
provide a control and communication law for a wireless network
of Dubins vehicles to compute and reach the minimum-time
servicing point while maintaining the network connected.

I. INTRODUCTION

Motion coordination for mobile robots has received great
attention in the last years. In order to capture the high level
nature of the problem, simplified models for the vehicle
dynamics have been chosen. Widely used dynamics are
single and double integrators. Although very simple, such
models give rise to challenging problems while capturing
many interesting features of the real scenario. A necessary
feature for real vehicles to fit in single and double integrator
dynamic models is the capacity of hovering. An interesting
scenario of motion coordination is the team coordination of
Uninhabited Aerial Vehicles (UAVs) for diverse applications
as search and rescue operations in hostile environments or
monitoring and surveillance of protect areas. If we want
to deal with UAVs, we need a model that captures two
important features: i) vehicles cannot hover, ii) they have
a minimum turning radius. Dubins model takes into account
these two constraints. It is basically a nonholonomic vehicle
in the plane that moves at constant speed and with a lower
bound on the turning radius. In this paper we deal with
the following problem. We search for the point that can be
reached in minimum time by all the vehicles and study how
the agents may compute this point in a distributed way. We
call this problem “minimum-time servicing problem”. One
can imagine, in fact, a scenario in which a team of UAVs
is operating in a general configuration and needs to get a
service (e.g. fueling) from a “service vehicle”. We want the
UAVs to compute in a distributed way the position that the
station must occupy in order to minimize the time to be
reached by the all agents. The problem we want to deal with
is strongly related to the rendezvous problem for a network
of mobile agents that can hover. In fact, if vehicles can stop,
the minimum time servicing point is also the minimum time
rendezvous point, since we may imagine that each vehicle
simply stops once it has reached that position.

The rendezvous problem has been introduced in [1] for
a network of single integrators and extended to various
synchronous and asynchronous stop-and-go strategies in [2].
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After that, other control and communication strategies have
been proposed to achieve the desired task. Recently the
problem was studied in the case of measurement noise on
the position of the neighboring agents [3]. The problem of
minimum time rendezvous was studied in [4] where a control
and communication law was proposed. The law is based on a
distributed algorithm for the computation of the circumcenter
of a set of points in the plane.

Motion coordination problems for UAVs modeled as Du-
bins vehicles have received considerable attention recently.
In [5] authors study the so called Traveling Salesperson Prob-
lem (TSP) for Dubins vehicles. That is, design a closed tour
through a set of given points for a team of Dubins vehicles. In
[6] the same authors have studied a coverage problem, that is
to minimize the traveling time from any vehicle to any point
in the operating region. Variations of these problems may
be found in references therein. Another relevant problem for
teams of Dubins vehicles is decentralized collision avoidance
that has strong implications in air traffic management. A
decentralized strategy, based on a hybrid control formalism,
was proposed in [7]. In this paper we do not consider the
problem of avoiding collisions between agents.

The main contributions of the paper are as follows. We
introduce the minimum time servicing problem, that is, the
problem of finding the point in the plane that can be reached
in minimum time by a team of Dubins vehicles from given
configurations. We characterize the solution in terms of the
reachable sets of the Dubins vehicles. We show that the
solution can be found by solving the following problem.
Find the smallest intersection of the family of reachable sets
parametrized by the time to reach the points in the plane.
Then, we show that an approximated version of this problem
is an abstract linear program, namely a generalized version of
linear programming, that can be solved in a distributed way
by using an algorithm introduced in [8]. Finally, we design
a control and communication law for a wireless network of
Dubins vehicles in order to compute and reach the minimum-
time servicing point. We develop a strategy to maintain
connectivity of a subgraph of the communication graph. This
strategy is necessary for the control and communication law
to work correctly.

The paper is organized as follows. In Section II we
describe the connection between abstract linear programming
and Helly-type theorems. In Section III we introduce the
Dubins model and the network of Dubins vehicles. Then, we
set up the minimum-time servicing problem. In Section IV
we show that the minimum time servicing problem may be
approximated by a suitable abstract linear program (through
a parametrized Helly system) and provide a distributed
algorithm to solve it. Finally, in Section V we design a
control and communication law to compute and reach the
minimum-time servicing point while maintaining the net-
work connected. Due to the lack of space we postpone the
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proofs to a forthcoming technical report.

II. PRELIMINARIES

In this section we discuss a class of optimization problems
and a class of properties that will play an important role in
the distributed computation of the minimum time servicing
point.

A. Abstract linear programming
We consider optimization problems specified by a pair

(H, ω), where H is a finite set with cardinality card H , and
ω : 2H → Ω is a function with values in a linearly ordered
set (Ω,≤); we assume that Ω has a minimum value −∞.
The elements of H are called constraints, and for G ⊂ H ,
ω(G) is called the value of G. Intuitively, ω(G) is the
smallest value attainable by a certain objective function while
satisfying the constraints of G. An optimization problem
of this sort is called abstract linear program (ALP) (or
generalized linear program (GLP)) if the following two
axioms are satisfied:

(i) Monotonicity: if F ⊂ G ⊂ H , then ω(F ) ≤ ω(G);
(ii) Locality: if F ⊂ G ⊂ H with −∞ < ω(F ) = ω(G),

then, for all h ∈ H ,

ω(G) < ω(G ∪ {h}) =⇒ w(F ) < w(F ∪ {h}).
A set B ⊂ H is minimal if ω(B) > ω(B′) for all proper
subsets B′ of B. A minimal set B with −∞ < ω(B) is
a basis. Given G ⊂ H , a basis of G is a minimal subset
B ⊂ G, such that −∞ < ω(B) = ω(G). A constraint h is
said to be violated by G, if ω(G) < ω(G ∪ {h}).

The solution of an abstract linear program (H,ω) is a
minimal set BH ⊂ H with the property that ω(BH) =
ω(H). The combinatorial dimension δ of (H, ω) is the
maximum cardinality of any basis.

An ALP algorithm takes an ALP problem (H, ω) and
returns a basis B for H . In [9], Matousĕk, Sharir and
Welzl provided a randomized ALP algorithm which uses
two primitive operations. A basis computation takes a family
G of at most δ + 1 constraints and finds a basis for G. A
violation test takes a basis B and a constraint h, and returns
true if B is a basis of B ∪ {h}. Assuming that the time
required for a violation test and for a basis computation are
polynomial in δ, their algorithm runs in expected time linear
in the number of constraints n and subexponential in d.

In the scenarios we are interested in, δ will always be
much smaller than n.

Remark 2.1: Beyond linear programming, numerous geo-
metric optimization problems can be cast as abstract linear
programs. Examples include computing the smallest enclos-
ing ball and annulus of a set of points, the largest ellipsoid
in a polytope, the smallest enclosing orthotope, the distance
between convex polytopes and others. More examples are
discussed in [9], [10] and references therein. ¤

B. Helly-type theorems and abstract linear programs
In this subsection we describe the class of Helly-type

theorems which play an important role in combinatorial
geometry. Then, we recall the important connection between
Helly-type theorems and abstract linear programs proved by
Amenta in [11].

We start stating Helly’s theorem.
Theorem(Helly’s Theorem) Let K be a family of at least

d+1 convex sets in Ed, and assume K is finite or that every
member of K is compact. If every d+1 members of K have
a point in common, then there is a point common to all the
members of K. ¤

Theorems with the same logical structure, for objects other
than convex sets, for properties other than intersection, or for
cases in which d+1 is replaced by some other constant k are
called Helly-type theorems. A version of Helly-type theorem
is the following.

Theorem(Helly-type Theorem) Let C be a family of
objects, and P a predicate on subsets of C. There is a
constant k ∈ N such that for all finite H ⊂ C, H has
property P if and only if every B ⊂ H with card B ≤ k
has property P . ¤

The constant k is called the Helly number of (H,P) and a
pair (C,P) satisfying a Helly-type theorem is called a Helly
system.

In [11] Amenta has established that a parametrized family
of Helly systems gives rise, under suitable assumptions, to
an ALP. From now on, we assume that the property P is the
intersection ∩ as in the original Helly theorem. Also, we let
X be a set and C be the family of subsets of X .

Let I ⊂ R be an interval. A nested family h̄ is defined as
{hλ | λ ∈ I}, where hλ ⊂ X for each λ, and hα ⊂ hβ for
α < β. Now, consider a collection H̄ of nested families h̄,
all indexed by the same parameter λ. If H̄ has the property
that (Hλ,P) is a Helly system of dimension k, for every
λ ∈ I, (H̄,P) is a parametrized Helly system with Helly
number k. Notice that if Hλ1 has an empty intersection (i.e.
does not satisfy property P), then the same holds for Hλ2 ,
for λ2 < λ1. Viceversa, if Hλ1 has a nonempty intersection,
then the same holds for Hλ2 , for λ2 > λ1.

A parameterized Helly system may be turned into a con-
strained optimization problem by considering the following
objective function. For Ḡ ⊂ H̄ , let ω(Ḡ) be the minimum
value λ∗ such that Gλ∗ intersects and +∞ if it does not
intersect at any λ. If furthermore for any Ḡ ⊂ H̄ the
intersection at λ∗ is a unique point, then the optimization
problem (H̄, ω) can be shown to be an abstract linear
program. The result is stated formally in the next theorem.

Theorem 2.2 (Helly type theorems and ALP [11]): Let
(H̄,P) be a parametrized Helly system with Helly number
k such that, for all Ḡ ⊂ H̄ , λ∗ = ω(Ḡ) exists and the
intersection ∩Gλ∗ (for λ∗ finite) is a unique point. Then
(H̄, ω) is an abstract linear program of combinatorial
dimension k. ¤

This theorem will pay a key role in the solution of the
minimum time servicing problem.

III. SCENARIO AND PROBLEM SET UP

In this section we first introduce the scenario of work.
That is, we describe the Dubins vehicle dynamics with its
reachability properties and the mathematical model for a
network of Dubins vehicles. Then we define the minimum
time servicing problem.

A. The Dubins vehicle and its reachable set
A Dubins vehicle is described by a configuration g ∈

SE(2), where SE(2) is the special Euclidean group of
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dimension 2, that may move with unit longitudinal speed
along C2 curves that are twice differentiable and whose
curvature is bounded above by 1

ρ , with ρ > 0 being the
minimum turning radius. Such curves are also known as
Dubins paths. Given a Dubins path t 7→ γ(t), t ∈ [0, T ],
with ‖γ′(t)‖ = 1, the evolution gγ(t) ∈ SE(2) is given by

gγ(t) = (γ(t), arctan(γ′(t)).

In this paper we will restrict to Dubins paths that minimize
the time (equivalently the length) to reach a final configura-
tion from an initial one. In [12] it was shown that optimal
paths are the combination of straight lines and/or arcs of
circle, so that the curvature assumes only the values ± 1

ρ or
zero. From now on we will assume that the vehicle evolves
only along optimal Dubins paths so that the control input to
decide is the path to follow in the given time interval. Here
we are tacitly assuming that there is a lower level control
feedback that is able to perfectly track such path. We use
the following notation. Given two instants t1 and t2, with
t1 ≤ t2, and two configurations g(t1) and g(t2), we have
the following update law, for t ∈ [t1, t2],

g(t) = φ(g(t1), u(g(t1), g(t2), t)), (1)

where g(t) is the configuration on the optimal Dubins path
that connects g(t1) to g(t2) reached at the instant t and
u(g(t1), g(t2), t) the control input needed to follow the
path. Consistently, g(t) = φ(g(t1), u(g(t1), g(t), t)) and
g(t)g(t1)−1 = φ(I, u(g(t1), g(t), t)), where I ∈ SE(2) is
the identity element in the group and g−1 is the inverse of g
according to the inverse operation defined in the group. Here
t1, t and t2 may be either continuous time instants (points of
the positive real line) or discrete time ones (natural numbers).

Next, we describe the (planar) reachable set of Dubins
vehicles, that is, the set of points in the plane that can be
reached, starting from an initial configuration, in time t ≥ 0
(or, equivalently, by paths of length less than or equal to
l ≥ 0). The problem was originally solved in [13]. The paper
provides a detailed analysis of the all possible shapes of the
reachable set wavefronts depending on the length of the path.
In [6] the reachable set of Dubins vehicles was studied to
solve a coverage problem for teams of UAVs.

Given a configuration g ∈ SE(2) and a point q ∈ R2, we
let Lρ(g, q) be the length of the shortest Dubins path (with
minimum turning radius ρ) from the initial configuration g
to the point q. Given t ≥ 0 and a configuration g ∈ SE(2),
let Rg(t) denote the reachable set of the Dubins vehicle in
time t starting from state g, i.e.

Rg(t) = {q ∈ R2 | Lρ(g, q) ≤ t}.
Reachable sets for Dubins vehicles are shown in Figure 1.

The following important properties may be proven for the
reachable sets.
P1 Rg(t) is a monotonic function in t, i.e., Rg(t1) ⊆ Rg(t2)
for t1 ≤ t2.
P2 there exists a constant k0 > 0 such that Rg(t) is a simply
connected set for all t ≥ k0ρ.

B. Network of Dubins vehicles
We consider a synchronous network of mobile robots

(robotic network) adopting a specific version of the formal

Fig. 1. Reachable sets for the Dubins vehicle for increasing values of t

model introduced in [14]. We have a network of Dubins
vehicles (physical agents) labeled by a set of identifiers
I = {1, . . . , n}, n ∈ N. The agents live in the state
space SE(2), move according to the Dubins model intro-
duced above and communicate according to a communication
edge map Ecmm : SE(2)n → 2I×I with the following
property: an edge (i, j) belongs to Ecmm((g[1], . . . , g[n])),
(g[1], . . . , g[n]) ∈ SE(2)n, if and only if agents i and j (with
configuration respectively g[i] and g[j]) can communicate. We
denote G = (I, Ecmm) the associated undirected communi-
cation graph. In this paper we use the disk-graph as commu-
nication graph. For (g1, . . . , gn) = ((p1, θ1), . . . , (pn, θn)) ∈
SE(2)n, with pi ∈ R2 and θi ∈ SO(2), i ∈ {1, . . . , n}, the
pair (i, j) (associated to the configurations gi and gj) is an
edge in Gdisk(g1, . . . , gn) if and only if ‖pi − pj‖ ≤ rcmm,
where rcmm > 0 is the communication radius. The robotic
network evolves according to a discrete-time communication
and motion model. For all i ∈ I , to the ith physical agent cor-
responds a processor, labeled i, that performs the following
actions. First, at each communication round the ith processor
sends to each of its outgoing neighbors in the communication
graph a message (possibly the null message) computed by
applying a message-generation function (msg) to the current
values of g[i] and w[i], where w[i] is its logical state (namely
a set of variables stored in its memory). After a negligible
period of time, the ith processor updates the value of its
logical state w[i] by applying a state-transition function (stf)
to the current value of w[i], and to the messages received at
time t. Between communication instants, the motion of the
ith agent is determined by applying a control function (ctl)
to the current value of g[i], and the current value of w[i].
The three functions (message-generation, state-transition and
control) equipped with the sets of messages and logical
variables define a control and communication law CC . This
idea is formalized as follows.

Definition 3.1 (Evolution of a robotic network): Let S be
a robotic network and CC be a control and communication
law for S. Let also W be the set of logical states, W0 ⊂ W
the subset allowable initial values and M the set of messages.
The evolution of (S, CC) from initial conditions g

[i]
0 ∈ SE(2)

and w
[i]
0 ∈ W0, i ∈ I , is the set of curves g[i] : N→ SE(2)

and w[i] : N→ W , i ∈ I , satisfying

g[i](t + 1) = φ
(
g[i](t), ctl(g[i](t), w[i](t), y[i](t))

)
,

where, for i ∈ I ,

w[i](t) = stf(w[i](t− 1), y[i](t)) ,
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with the conventions that g[i](0) = g
[i]
0 and w[i](−1) =

w
[i]
0 . Here, the function y[i] : N → Mn (describing the

messages received by agent i) has components y
[i]
j (t) =

msg(g[j](t), w[j](t), i), if (i, j) ∈ Ecmm and null otherwise.

C. Minimum-time servicing: problem set up and centralized
solution

Here we provide a formal definition for the minimum-time
servicing problem and describe the solution in the centralized
case.

Informally, the minimum-time servicing problem is the
following. Given an initial configuration for the Dubins
vehicles, find the point in the plane that minimizes the time
to be reached by all the agents starting from the given
configuration. We call such point minimum-time servicing
point. Equivalently, find the point in the plane that minimizes
the Dubins distance from each configuration to this point.

More formally we have the following definition.
Definition 3.2 (Minimum-time servicing problem): Let

(g[1]
0 , . . . , g

[n]
0 ) ∈ SE(2)n be a given initial configuration

for the network of Dubins vehicles. The minimum-time
servicing problem is given by

min
q∈R2

max
i∈{1,...,n}

Lρ(g
[i]
0 , q). (2)

The minimum-time servicing point is the point q∗ ∈ R2 that
solves the above minimization problem. ¤

The following lemma provides an equivalent formulation
of the problem, which highlights a way to solve the problem
in a distributed fashion, and proves existence of the solution.

Lemma 3.3: Let (g[1]
0 , . . . , g

[n]
0 ) ∈ SE(2)n be an arbitrary

initial configuration. The minimum-time servicing problem
is equivalent to

minimizet≥0 t

subj. to ∩n
i=1Rg

[i]
0

(t) 6= ∅. (3)

A solution of the problem exists. ¤

IV. DISTRIBUTED COMPUTATION OF THE MINIMUM-TIME
SERVICING POINT

In this section we describe how we may compute an
approximation of the minimum-time servicing point in a
distributed way.

A. Approximating the minimum-time servicing problem by
an abstract linear program

We construct an approximated version of the minimum-
time servicing problem. We show that it is in fact an abstract
linear program so that it can solved in a distributed way over
the network.

We start doing the following assumption.
Assumption A0.
Let (g[1]

0 , . . . , g
[n]
0 ) = ((p[1]

0 , θ
[1]
0 ), . . . , (p[n]

0 , θ
[n]
0 ) ∈ SE(2)n,

with p
[i]
0 ∈ R2 and θ

[i]
0 ∈ SO(2) for i ∈ {1, . . . , n}, be

given. Then
• p

[i]
0 6= p

[j]
0 for any i 6= j, {i, j} ⊂ {1, . . . , n};

• ∩n
i=1Rg

[i]
0

(k0ρ) = ∅, where k0 is the one defined in
Property P2 in Section III. ¤

The assumption basically requires that at the initial time
the vehicles are in different positions and that at least three
of them are sufficiently far from each other. This allows
us to deal with reachable sets that are disjoint and simply
connected.

In order to set up an approximated version of the
minimum-time servicing problem, we introduce an approx-
imation of the reachable set for a Dubins vehicle. Given a
configuration g ∈ SE(2), we define R̂g(t), for any t ≥ 0, a
set with the following properties:

(i) Rg(t) ⊂ R̂g(t);
(ii) R̂g(t) is a strictly convex set.
Remark 4.1: A possible way to construct the set R̂g(t) for

given g and t is, for example, to approximate the non-convex
portion of the set with an arc of circle.A detailed discussion
of the construction of an approximation R̂g(t) will be given
in a forthcoming document. ¤

The following important result may be proven.
Lemma 4.2: Given any (g1, g2, g3) ∈ SE(2)3 satisfying

Assumption A0 (for n = 3), let

λ∗ =min
λ≥0

λ

subj. to∩3
i=1 R̂gi

(λ) 6= ∅.
Then, the intersection ∩3

i=1 R̂gi(λ
∗) is a single point. ¤

We are ready to define the approximated minimum-
time servicing problem. Given the initial configurations
(g[1]

0 , . . . , g
[n]
0 ) ∈ SE(2)n, we consider the following mini-

mization problem.

minimizet≥0 t

subj. to ∩n
i=1 R̂g

[i]
0

(t) 6= ∅. (4)

The following proposition may be proven.
Proposition 4.3: Let (g[1]

0 , . . . , g
[n]
0 ) ∈ SE(2)n be a col-

lection of initial configurations satisfying Assumption A0.
The approximated minimum-time servicing problem stated
in (4) is an abstract linear program with combinatorial
dimension δ = 3. ¤

Remark 4.4: A question to investigate is how far the
approximated minimum-time servicing point can be from
the real one. Our conjecture is that the error depends on
ρ but not on the minimum time t∗, so that the relative error
goes to zero as t∗ grows. It is worth noticing that the non-
convex portion of the reachable set is a “small” portion of
the set. Therefore, in many cases the solutions of the real
and approximated problems will coincide. ¤

Having shown that the approximated minimum-time ser-
vicing problem is an abstract linear program, we may use the
FloodBasis algorithm introduced in [8] to solve the problem
over the network in a distributed way.

B. Distributed algorithm to solve a network abstract linear
programming

We start reviewing the definition of network abstract
linear program. Informally we can say that a network
abstract linear program consists of three main elements: a
network, an abstract linear program and a mapping that
associates to each constraint of the abstract linear program
a node of the network. Formally, a network abstract linear
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program (NALP) is a tuple (G, (H, ω),B) consisting of a
communication graph G = (I, Ecmm), an abstract linear
program (H, ω) and a bijective map B : H → I called
constraint distribution map that associates each constraint to
a node. The solution of the network abstract linear program
is attained when all processors in the network have computed
a solution to the abstract linear program.

In [8] a distributed algorithm, called FloodBasis algorithm,
was introduced to solve the network abstract linear program
in a finite number of rounds under suitable assumptions on
the communication graph. A sufficient condition is that the
graph is undirected and connected at any communication
round.

Here is an informal description of the FloodBasis algo-
rithm:

[Informal description] Each processor has a logical
state of δ + 1 variables taking values in H . The
first δ components represent the current value of
the basis to compute, while the last element is the
constraint assigned to that node. At the start round
the processor initializes every component of the
basis to its constraint, then, at each communication
round, performs the following tasks: (i) it acquires
from its neighbors (a message consisting of) their
current basis; (ii) it solves the abstract linear pro-
gram for the constraint set given by the collection
of its and its neighbors’ basis and its constraint
(that it maintains in memory), thus computing a
new basis; (iii) it updates its logical state and
message using the new basis obtained in (ii).

Remark 4.5: The time complexity of the FloodBasis algo-
rithm, that is the number of rounds to compute the solution,
is still under investigation. However, simulations and results
from ALP literature let us conjecture that, in the average, it
is of order O(n). ¤

Assuming the communication graph remains connected,
the Dubins vehicles can compute the minimum time servic-
ing point by using the FloodBasis algorithm.

V. A CONTROL AND COMMUNICATION LAW TO COMPUTE
AND REACH THE MINIMUM-TIME SERVICING POINT

A. Maintaining connectivity in a network of Dubins vehicles
In order to design a control and communication law for

a wireless robotic network of Dubins vehicles, we need to
solve a preliminary problem. That is, we have to ensure that
the network does not become disconnected into subgroups
that are not able to communicate among themselves. In this
subsection we want to characterize the set of control inputs
that ensure connectivity of the disk graph. We start with
a negative result that says the disk graph cannot be kept
connected.

Proposition 5.1 (Negative result for the disk graph): Let
S be a robotic network of Dubins vehicles communicating
according to the disk graph Gdisk = (I, Edisk). For
sufficiently small values of the communication interval,
there exist initial configurations {g[i]

0 }i∈{1,...,n} such that
the disk graph gets disconnected for any choice of the
control inputs. ¤

Before introducing a suitable subgraph of the disk graph
to maintain connected, we describe the strategy introduced

in [1] to maintain the disk graph connected for a network of
(discrete-time) single integrators. For r > 0 and p ∈ Rd, we
let B

(
p, r

)
denote the closed ball centered at p with radius r,

i.e., B
(
p, r

)
= {q ∈ Rd | ‖p−q‖2 ≤ r}. Network connectiv-

ity is maintained by restricting the allowable motion of each
agent as follows. If agents i and j at positions p[i](t) ∈ R2

and p[j](t) ∈ R2 are neighbors in the disk graph Gdisk at
time t, then their positions at time t + 1 are required to
belong to B

(p[i](t)+p[j](t)
2 , rcmm

2

)
. The constraint is illustrated

in Figure 2.

pj

pi

Fig. 2. Starting from pi and pj , the agents are restricted to move inside
the disk centered at pi+pj

2
with radius rcmm

2
.

The above strategy suggests a way to ensure connectivity
for Dubins vehicles. These vehicles cannot hover, however
they have the possibility of loitering about a fixed rotation
point. Therefore, instead of hovering, we let them loitering
about a closed path, a safety loitering path, starting and
ending at their current configuration. We assume that all the
agents agree on the direction the loitering path is traversed.
Without loss of generality we assume they agree on the
clockwise direction. Then we may define a subgraph of the
disk-graph as follows. There is an edge between two nodes
i and j if and only if the safety loitering paths of agents i
and j are contained in a circle of radius rcmm

2 centered at the
mean point of the (fixed) rotation points of the two loitering
paths.

Formally, let Cρ(g0) ⊂ R2, g0 ∈ SE(2), be the image
of the circular loitering path γC : [0, 2πρ] → R2 such that
gγC (0) = gγC (2πρ) = g0 (with ‖γ′C‖ = 1 and constant cur-
vature 1

ρ ) and such that it is traversed in clockwise direction.
We call such path safety loitering path. We denote cρ(g0) ∈
R2 the center of the circle Cρ(g0). The Dubins disk graph
is the graph GDdisk = (I, EDdisk) such that (i, j) ∈ EDdisk if
and only if ‖cρ(g[i])−cρ(g[j])‖ ≤ rcmm−2ρ or, equivalently,
if and only if Cρ(g[k]) ∈ B

( cρ(g[i])+cρ(g[j])
2 , rcmm

2

)
, k ∈

{i, j}. Here we are assuming that rcmm > 2ρ. Clearly, the
Dubins disk graph is a subgraph of the disk graph. Net-
work connectivity is maintained by restricting the allowable
motion of each agent as follows. If agents i and j are
neighbors in the Dubins disk graph GDdisk at time t, then their
safety loitering paths at time t + 1 are required to belong
to B

( cρ(g[i])+cρ(g[j])
2 , rcmm

2

)
. The constraint is illustrated in

Figure 3 for an agent with three neighbors.

B. The move-toward estimate control and communication
law

Next, we use the distributed algorithm that finds the
minimum-time servicing point combined with the strategy to
maintain connectivity to design a control and communication
law that let the agents compute and reach the minimum-time
servicing point.
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Fig. 3. The constraint set arising according to the Dubins disk graph for
an agent with three neighbors.

The move-toward-estimate control and communication law
may be summarized as follows. On the basis of their initial
configurations, the agents run the FloodBasis algorithm for
the problem of interest. A possibility could be to wait
for the algorithm to end, then move toward the optimal
servicing point. We propose a slightly different strategy.
While the algorithm is running, each agent starts moving
toward the point corresponding to its own current estimate of
the solution. Everyone does it while maintaining connectivity
with its current neighbors in the Dubins disk graph.

In Figure 4 and Figure 5 we illustrate two simulation runs
of the above control and communication law for a team of
6 Dubins vehicles with radius of curvature ρ = 1, starting
at randomly chosen initial configurations. In Figure 4 the
communication interval has been set to 0.5s, whereas in
Figure 5 it is 5s. In the first case the communication interval
is sufficiently small and therefore the agents follow almost
the centralized optimal paths to reach the minimum-time
servicing point. In the second one, since the communication
interval is larger, the agents tend to go towards the temporary
estimates of the optimal point for a longer time, thus devi-
ating consistently from the optimal path. Nevertheless they
compute and reach the optimal point. In both the figures the
path of the vehicles after they have reached the optimal point
is not shown.

Fig. 4. Simulation of the move toward estimate control and communication
law for a network of 6 Dubins vehicles with ρ = 1 and communication
interval 0.5s.

VI. CONCLUSIONS

We have studied the following problem for a network
of Dubins vehicles. Find the point in the plane that can
be reached in minimum time by the all team of vehicles.

Fig. 5. Simulation of the move toward estimate control and communication
law for a network of 6 Dubins vehicles with ρ = 1 and communication
interval 5s.

We have shown that an approximation of this problem is
equivalent to a class of optimization problems called abstract
linear programming. Using results in [8] we have shown
that the optimal point can be computed in a distributed way.
We have also designed a control and communication law to
compute and reach such point while maintaining the network
connected.
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