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Abstract— In this paper we show the possibility to merge
an MIMO LPV system identification with closed-loop output
error identification algorithm. The purposed method is tested
with an arm-driven inverted pendulum as an application. The
experimental results shown a significant improvement of the
LPV model over a linear time-invariant model with the same
structure.

I. INTRODUCTION

In many real applications involving nonlinear plants, Lin-

ear Time Invariant (LTI) models are not sufficient for high

performance controller designs. In order to achieve good

performance throughout a wide operating range, while still

using linear techniques, one can employ techniques based

on Linear Parameter Varying (LPV) systems, which have

received considerable attention [13]. There has been much

work reported in the literature that illustrates that LPV

control can outperform LTI control, see e.g. [13], [5], [4].

There are several methods to experimentally identify such

LPV models. Two main direction can be distinguished. The

first one is based state-space models, see [15], while the other

is based on input-output models, see [3]. In this paper we

consider the identification of LPV systems in input-output

form as discussed in [3]. In this approach the model is

parameterized such that the prediction error can be written

in linear regression form. By using a quadratic cost function,

the estimation problem becomes a least square problem. This

method has been used in several practical applications [16],

[4], [2]. On the other hand, most high performance controller

design techniques are based on state space models; this is

also true for LPV controller design. A transformation of

input-output LPV models into state-space LPV models is

therefore necessary, see [14].

In practice there are many situations in which identifi-

cation in open loop is difficult or impossible, for example

unstable plants and plants with integral behavior. Motivated

by these practical considerations, closed-loop system identifi-

cation methods have been used, developed and analyzed [11].

In recent years, many researchers recognize that identifica-

tion in closed-loop provides certain advantages over open-

loop identification [6].

In this work, we identify input-output LPV models in

closed-loop, in order to obtain suitable models of unstable

MIMO systems. For this purpose, we extend a closed-loop

identification algorithm introduced by I. D. Landau and A.

Karimi [7] to MIMO LPV systems. Moreover, a sufficient
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condition for stability and convergence of the algorithm is

given.

The method is applied to an Arm-Driven Inverted Pen-

dulum (ADIP) [12], [5], which is a single-input multiple-

output (SIMO) system. This system is difficult to stabilize

and control over a wide operating range. Since the system

is unstable, initially a linear controller is used to stabilize a

system in an initial range. A multi-sine signal [11] is then

used as an excitation signal to excite all possible input-output

levels of both outputs of the system.

This paper is organized as follows. In section II the

model class considered here is defined. The closed-loop

system identification approach used here is presented in

section III. Section IV provides details of the experimental

setup; experimental results are given in section V. Finally,

conclusions are presented.

II. INPUT-OUTPUT LPV MODEL

We consider the following discrete-time input-output LPV

model, as discussed in [16], [3].

A(q−1, p(k))y(k) = B(q−1, p(k))u(k − d) (1)

where q−1 is the backward shift operator, p(k) ∈ Rq repre-

sents the scheduling variables, y(k) ∈ Rny×1 is the system

output at time k, and u(k) ∈ R
nu×1 is the system input.

The polynomial matrices A(q−1, p(k)) and B(q−1, p(k)) are

defined by

A(q−1, p(k)) = Iny +A1(p(k))q
−1 + · · · +Ana(p(k))q−na

B(q−1, p(k)) = B1(p(k))q
−1 + · · · +Bnb(p(k))q

−nb

(2)

where Ai ∈ R
ny×ny, Bi ∈ R

ny×nu. The elements of the

coefficient matrices A and B are functions of p(k), which

can be expressed as weighted sums of functions fi of p(k)
in the following way

ρi(p(k)) = ρ0
i + f1(p(k))ρ

1
i + · · · + fN−1(p(k))ρ

N−1
i (3)

where ρi(p(k)) represents either Ai(p(k)) or Bi(p(k)),
{ρj

i , j = 1, 2, . . . , N−1} are constant values, and {fj(p(k)),
j = 1, 2, . . . , N − 1} are functions of the online measurable

variables p(k).

The above system representation can be rewritten in linear

regression form as

y(k) = Θφ(k), (4)
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where the regressor vector is given by

φ(k) = ϕ(k) ⊗ σ(p(k)) (5)

Here ⊗ is the Kronecker product and

ϕT (k) = [−yT (k − 1) − yT (k − 2) · · · − yT (k − na)

· · · uT (k − 1) uT (k − 2) · · · uT (k − nb)]

Θ = [Ai
1 A

i
2 · · · Ai

na B
i
1 B

i
2 · · · Bi

nb]

σ(p(k)) = [1 f1(p(k)) · · · fN−1(p(k))]

and i = 1, . . . , N − 1, σ(p(k)) ∈ R
1×N and ϕT (k) ∈

R
1×(na+nb).

A. Model Representation

The model of the system is written as

A(q−1, p(k))ŷ(k) = q−dB(q−1, p(k))u(k) (6)

which yields the predictor

ŷ(k + 1, p(k)) = Θ̂φ(k) (7)

and with the prediction error

ε(k + 1, p(k)) = y(k + 1) − ŷ(k + 1, p(k))

= y(k) − Θ̂φ(k). (8)

The advantage of rewriting the model in this linear form is

not only that an open-loop recursive identification method

can be used [3] but also that it enables closed-loop identifi-

cation.

III. IDENTIFICATION IN CLOSED-LOOP

The closed-loop identification scheme used in this paper

is based on closed-loop output error (CLOE) schemes [7].

The algorithm minimizes a quadratic criterion in terms of

the CLOE, or drives the closed-loop output error to zero. It

has been shown in [7], [8] that the method gives good results

for the linear SISO cases. For MIMO LPV systems, one can

substitute the LPV model in the algorithm by turning some

scalar variables into matrix form.

A. Problem Formulation

r
K

u
G

e

y

−

Fig. 1: Closed-loop system

Consider the MIMO system shown in Figure 1, where the

plant model is given in input-output LPV form as in 1 by

A(q−1, p(k))y(k) = B(q−1, p(k))u(k − d) + e(k) (9)

and

A(q−1, p(k)) = Iny +A1(p(k))q
−1 + · · · +Ana(p(k))q−na

= Iny + q−1A∗(q−1, p(k)) (10)

B(q−1, p(k)) = B(p(k))q−1 + · · · +Bnb(p(k))q
−nb

= q−1B∗(q−1, p(k)) (11)

In Figure 1, r(t) ∈ Rny×1 is the external excitation, e(t)
corresponds to output disturbance. The nominal controller

K(q−1) is a controller designed based on an available

nominal plant model. In the closed-loop system identifica-

tion framework, this nominal controller is just required to

stabilize the closed-loop in the required range of operation.

B. Closed-Loop Identification Schemes

In this paper, we consider the closed-loop output error

with external excitation added to the controller input shown

in Figure 2. This scheme is suitable for tracking and output

disturbance rejection as described in [8]. The identification

criterion in this case is

r
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e

εCL
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û

Ĝ
ŷ

PAA

−

−

−

Fig. 2: Closed-loop identification scheme

Θ̂∗ = arg min
θ

‖Syr(q
−1) − Ŝyr(q

−1)‖2 (12)

where Syr(q
−1) is the sensitivity function of the true system

from r(k) to y(k) and Ŝyr(q
−1) is the sensitivity of the

predictor from r(k) to ŷ(k).

C. A Closed-loop Output Error Algorithms (CLOE)

The CLOE identification algorithms [7] is extended to

MIMO LPV under the assumptions [6] that

A1 the controller is an LTI controller;

A2 the input-output part of the plant model belongs to the

model set;

A3 an external excitation is applied to the closed-loop

system to identify a plant model.

A4 the output disturbance is zero-mean white noise and

independent of the external excitation signals.

In the case where the external excitation is the reference r(k)
as shown in Figure 2, the signal u(k) is

u(k) = K(q−1)(r(k) − y(k)). (13)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB04.1

2607



The adjustable closed-loop predictor is described by

ŷo(k + 1) = Θ̂(k)φ̂(k) a priori (14)

ŷ(k + 1) = Θ̂(k + 1)φ̂(k) a posteriori (15)

Θ̂(k) =
[

Âi
1(k) . . . Âi

na(k) B̂i
1 . . . B̂i

nb

]

(16)

φ̂(k) = ψ(k) ⊗ σ(p(k)) (17)

ψT (k) = [−ŷT (k) · · · − ŷT (k − na+ 1)

ûT (k) · · · ûT (k − nb+ 1)] (18)

û(k) = K(q−1)(r(k) − ŷ(k)) (19)

where ŷo(k + 1) and ŷ(k + 1) represent the a priori and

the a posteriori outputs of the closed-loop predictor, û(k)
is the control signal delivered by the controller using the

a posteriori output of the predictor and not the measured

outputs.

For the case of a quasi-LPV model [1] σ(p(k)) is a vector

of functions of either ŷ(k) or û(k) while for the general LPV

model σ(p(k)) is a vector function of any measured data.

The closed-loop prediction error is given by

εo
CL(k + 1) = y(k + 1) − ŷo(k + 1) a priori (20)

εCL(k + 1) = y(k + 1) − ŷ(k + 1) a posteriori (21)

In order to estimate the parameters of the plant, the parameter

adaptation algorithm (PAA) for MIMO LPV is given by

Θ̂(k + 1) = Θ̂(k) + εCL(k + 1)φ̂T (k)F (k) (22)

F−1(k + 1) = λ1(k)F
−1(k) + λ2(k)φ̂(k)φ̂T (k), (23)

0 <λ1(k) ≤ 1, 0 ≤ λ2(k) < 2,

F (0) > 0, F−1(k) > αF−1(0), 0 < α <∞,

F (k + 1) =
1

λ1(k)









F (k) − F (k)φ̂(k)φ̂T (k)F (k)

λ1(k)

λ2(k)
+ φ̂T (k)F (k)φ̂(k)









(24)

εCL(k + 1) =
εo
CL(k + 1)

1 + φ̂T (k)F (k)φ̂(k)
(25)

Here λ1(k) and λ2(k) are weighting sequences for the gain

adaptation. A proof of (25) is given in appendix A. Equation

(25) can also be written as

εCL(k + 1) = P−1(q−1, p(k))(Θ − Θ̂(k + 1))φ̂(k) (26)

where P (q−1, p(k)) = A(q−1, p(k)) + q−dB(q−1, p(k)). A

proof of (26) is given in appendix B.

D. Stability Analysis for MIMO LPV Case

Given measurements of r(k), y(k) at time k, sequences

of the regression vector φ̂(k) and the estimate Θ̂(k) can be

easily constructed using the CLOE algorithm. Then we have

the following result.

Theorem 3.1: Consider the plant (9) satisfying assump-

tions A1-A4 and the parameter estimation algorithm (22)-

(25). If the transfer function

H(q−1, p(k)) = P−1(q−1, p(k)) − λ

2
I (27)

is strictly positive real for maxk λ2(k) ≤ λ < 2 and

P (q−1, p(k)) = A(q−1, p(k)) + q−dB(q−1, p(k)) then

(i) There exists a finite random matrix Θ̃ (not necessarily

equal to Θ) such that

lim
k→∞

Θ̂(k) = Θ̃ (28)

(ii) lim
N→∞

sup
1

N

N
∑

k=1

‖(Θ̃(k + 1) − Θ)θ̂(k)‖2 <∞,

Proof: The proof is similar to the LTI case see [17].

IV. APPLICATION TO THE ARM-DRIVEN INVERTED

PENDULUM (ADIP)

The arm-driven inverted pendulum (ADIP) has been used

to test the performance of LPV control by Kajiwara and

others in [5]. A laboratory version of this plant is produced

by Quanser Inc. [12]. The ADIP is shown in Figure 3. The

ϕ1

ϕ2

m1

m2

2l1

2l2

τ1

Pendulum

Arm

Fig. 3: Arm-Driven Inverted Pendulum (ADIP)

pendulum is the top link, it is hinging on the rotated arm -

the bottom link - which is driven by a DC motor. The plant

input is the voltage applied to the motor that drives the arm;

controlled outputs are the angular position ϕ1 of the arm, and

the position of the pendulum ϕ2 which is to be held at 0.

When a wide range of values of the angle ϕ1 is considered,

an LTI model is not sufficient for controller design.

In this section, the system will be identified in MIMO

LPV form by using the method described before. An LTI

controller will be designed first to stabilize the system in an

initial range, and input-output data will be collected.

A. Experiment Setup

r
K PI

u
ADIP

ϕ1

− ϕ2

FD
ϕ̇1

−

Identification Plant

Fig. 4: Overall ADIP system for closed-loop identification

The closed-loop configuration is shown in Figure 4, where

K is a stabilizing LTI H∞ controller based on a nominal
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model supported by Quanser [12], and an inner PI loop

is used to control the angular velocity of the arm. Since

the angular velocity ϕ̇1 cannot be directly measured, a

differentiator filter FD is used to determine the angular

velocity of the arm from its angular position ϕ1. The PI

controller and the filter FD are considered as part of the

plant – the system to be identified is shown in the dashed

box in Figure 4.

The first controller designed with 5 ms sampling time

stabilizes the system in a range of ϕ1 up to ±50◦. However,

this sampling time turned out to be too fast for system identi-

fication. A multi-level pseudo-random signal (MLPRBS) was

used as a reference signal and the shortest rise time of both

outputs ϕ1 and ϕ2 was measured. The fastest rise time is

about 0.5 second, and a sampling time of 10 ms was chosen

for identification. With this sampling time , the discrete-time

H∞ Controller is redesigned to stabilize the system in the

same range.

B. Excitation Signal Design

An important step in MIMO LPV system identification is

the excitation signal design. For the recursive system iden-

tification described in the previous section a persistency of

excitation condition has to be satisfied in order to guarantee

the convergence of the algorithm [3], [16].

In practice, the following multi-sine signal with sufficient

harmonics can be used to guarantee this condition [11]

u(k) = λ

Ns/2
∑

i=1

√
2αi cos(ωikT + φi) (29)

where ωi = 2πi/NsT . The power spectrum of this multi-

sine signal can be directly specified by the user through the

selection of the scaling factor λ, the Fourier coefficients αi,

the number of harmonics ns the signal length Ns, and the

sampling time T . More details can be found in [10].

The outputs ϕ1 and ϕ2 have different frequency bands and

amplitudes (not shown here). The excitation signal should

cover both bands but with different amplitudes in each

frequency band. In this case

u(k) = λ1

Ns/2
∑

i=1

√
2αi cos(ωikT + φi)+

λ2

Ns/2
∑

j=1

√

2αj cos(ωjkT + φi). (30)

Following the guidelines in [10], αg is chosen as

αg =

{

1, g = 1, . . . , ns

hf, g = ns + 1, . . . , Ns/2
(31)

where g = i and j, and hf is the high frequency coefficient

magnitude.

According to the power spectrum shown in Figure 5,

the multi-sine input is composed of u1(k) which has 20

harmonics between 0.063 rad/sec and 3.77 rad/sec, and u2(k)
which has 20 harmonics between 3.77 rad/sec and 37 rad/sec.
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Fig. 5: Spectrum of both normalized outputs of ADIP: upper

for ϕ1, lower for ϕ2.

The amplitude of u2(k) is half of u1(k) because this signal

is aimed to excite the angle ϕ2, which is more sensitive than

ϕ1, and this angle should not move far away from the 0◦

vertical position.

V. EXPERIMENTAL RESULTS

The ADIP is excited by the input signals explained above.

The signal is periodic with 2 periods and 20400 samples.

The identification method is applied to both linear and LPV

model. Both models have a lag space na = 4 for past outputs

and nb = 4 for past inputs. The delay time between input

and output is set to 1 sample. The scheduling function of the

LPV system is given by

σ(p(k)) =
[

1 sin(ϕ1(k)) sin2(ϕ1(k))
]

, (32)

where p(k) = ϕ1(k).

Since the ADIP is a single-input two-output system, for the

matrices we have Ai ∈ R2×6, Bi ∈ R2×3 and i = 1, . . . , 4.

The estimated matrices are given below where fi refers to

the ith entry of σ(p(k)).

A1 =
[

−1.5220 0.0547f1 0.7961f2 −0.0135 −0.5240f1 −0.2403f2

−0.1441 −1.3457f1 0.6388f2 0.2259 −0.5907f1 −0.1882f2

]

A2 =

[

0 0.0415f1 0 0.0508 0.0708f1 −0.2370f2

0 −0.0197f1 0 −0.6102 0.2006f1 −0.2829f2

]

A3 =

[

−0.1774 0.0367f1 −0.0048f2 0 0.0105f1 0

−0.9106 0.1842f1 −0.0898f2 0 0.0859f1 0

]

A4 =
[

0.4454 0.2677f1 −0.0435f2 −0.7321 −0.0764f1 −0.0190f2

0.2922 −2.0274f1 −1.1781f2 0.6004 0.4825f1 0.0473f2

]
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B1 =

[

0.2511 0.1885f1 −0.0507f2

0.0915 0.3491f1 0.0243f2

]

B2 =

[

−0.0897 0.3668f1 −0.0130f2

−0.2039 1.2420f1 −0.1622f2

]

B3 =

[

0.2832 −0.3236f1 0.1809f2

−1.7177 0.4875f1 3.2041f2

]

B4 =

[

0 −0.0293f1 0

0 0.0868f1 0

]

.

The convergence of the algorithm can be seen from the plot

of parameter estimates shown in Figure 6. To validate the

0 0.5 1 1.5 2

x 10
4

−5

0

5

Time [sample]

ϕ
2

0 0.5 1 1.5 2

x 10
4

−2

−1

0

1

2

ϕ
1

Fig. 6: Estimated parameters for ϕ1 and ϕ2.

resulting model, the measured response of the true closed-

loop system is compared with the model simulation. In

Figures 7 and 8 the comparison between the measured

validation data and the simulation results of the LPV model

is shown (the data have been scaled by the maximum value

of each data set). It is easily seen from the figures that the

LPV model gives better results than the linear model.

VI. CONCLUSIONS

In this paper the experimental identification of input-

output LPV MIMO models in closed-loop has been con-

sidered. The proposed method has been experimentally vali-

dated on the ADIP system and provided satisfactory results.
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Fig. 7: Comparison between simulation result of linear model

and measured data

APPENDIX

A. Proof of (25)

This proof is the MIMO extension version of the SISO

case in [9].

εCL(k + 1) = y(k + 1) − Θ̂(k + 1)φ̂(k)

= y(k + 1) − Θ̂(k)φ̂(k) − [Θ̂(k + 1)

− Θ̂(k)]φ̂(k)

From (22), we get

εCL(k + 1) = εo
CL(k + 1)

− εCL(k + 1)φ̂T (k)F (k)φ̂(k)

=
εo

CL(k + 1)

1 + φ̂T (k)F (k)φ̂(k)

B. Proof of (26)

From the system (9), for simplicity q−1 and p(k) are

omitted,

y(k + 1) = −A∗y(k) +B∗u(k − d) + e(k + 1)

= −A∗y(k) + q−dB∗(−Ky(k) +Kr(k))

+ e(k + 1)

= −(A∗ + q−dB ∗K)εCL(k) −A∗ŷ(k)

+ q−dB∗û+ e(k + 1)

= Θ ˆφ(k) − (A∗ + q−dB∗K)εCL(k) + e(k + 1).
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Fig. 8: Comparison between simulation result of LPV model

and measured data

Then,

εCL(k) = (Θ − Θ̂)φ(k) − (A∗ + q−dB∗K)εCL(k)

= P−1(Θ − Θ̂)φ̂(k) + P−1e(k + 1).

where P = I + q−1(A∗ + q−dB∗K) = A+ q−dBK.
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