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Abstract— This paper presents necessary and sufficient con-
ditions for null controllability of discrete-time linear systems
subject to both input and state constraints. The classical results
for linear systems without constraints by Kalman and Hautus
and for linear systems with only input constraints by Evans,
Nguyen and Sontag can be obtained from our main result as
particular cases.

Index Terms— Linear systems, state constraints, controllabil-
ity.

I. INTRODUCTION

The notion of controllability has played a central role

throughout the history of modern control theory. For linear

systems Kalman [8] and Hautus [5] studied this property in

the sixties and early seventies and came up with complete

characterizations in the well-known algebraic conditions.

Also in the case that input constraints are present for the

linear system, with a constraint set being a closed convex

cone, the controllability property has been characterized by

Brammer [2] for continuous-time systems and by Evans and

Murthy for the discrete-time single input case in [4], while

Nguyen [9] and Evans [3] provided necessary and sufficient

conditions in the general case. In case the input constraint

set is a bounded set that contains the origin in its interior,

the problem of null controllability of input constrained

(continuous-time and discrete-time) linear systems is solved

by Sontag in [10].

So, although the unconstrained and input-constrained null

controllability problems are solved completely (provided

certain conditions are imposed on the constraint sets), the

case where state constraints are active on the linear system

is largely overlooked in the literature. Only the continuous-

time case was recently considered by the authors in [7],

where a full algebraic characterization was given for outputs

(combined states and inputs) taking values in a convex cone

under a right-invertibility condition. These conditions include

the original results by Kalman, Hautus and Brammer as

special cases.

In this paper we will study the problem of null con-

trollability for discrete-time linear systems with constraints
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on input and state variables, even allowing more general

constraint sets as in the continuous-time case. These con-

straints will be formulated as constraints on a suitably defined

output variable of the system that can take values in either

a convex cone or a bounded set. We will present necessary

and sufficient conditions for the null controllability using

that the underlying linear system satisfies a right-invertibility

condition on its transfer matrix. In other words, for the class

of “right-invertible” linear systems we fully characterize

null controllability of linear systems involving both state

and input constraints or combinations of them. The original

results of Kalman, Hautus, Nguyen, Evans, Murthy and

Sontag (for the constraint sets considered here) are recovered

as particular cases of these conditions, as in their cases the

right-invertible condition is trivially satisfied.

II. NOTATION

The spaces R, C and N denote the set of real numbers,

complex numbers and nonnegative integers, respectively. For

a complex number λ ∈ C, |λ| denotes its modulus. For a

matrix A ∈ C
n×m, we write AT for its transpose and A∗ for

its complex conjugate transpose. Moreover, for a matrix A ∈
R

n×m, its kernel ker A is defined as {x ∈ R
m | Ax = 0}

and its image im A by {Ax | x ∈ R
m}. For two subspaces

X1 and X2 of R
n, we write X1 ⊕ X2 = R

n, when their

intersection X1∩X2 is equal to {0} and the sum X1 +X2 :=
{x1+x2 | x1 ∈ X1, x2 ∈ X2} is equal to R

n. For a subspace

X in R
n, we denote its orthogonal complement X⊥ by {z ∈

R
n | zT x = 0 for all x ∈ X}. For a set Y ⊆ R

n, we define

its dual cone Y∗ as {w ∈ R
p | wT y > 0 for all y ∈ Y}. For

two subsets X1 and X2 of R
n, we denote their set difference

{x ∈ X1 | x 6∈ X2} by X1 \ X2. For two vectors x1 ∈ R
n1

and x2 ∈ R
n2 , col(x1, x2) will denote the vector in R

n1+n2

obtained by stacking x1 over x2. The space of all sequences

{uk}k∈N with uk ∈ R
m is denoted by Sm.

III. PROBLEM DEFINITION

Consider the linear system

x[k + 1] = Ax[k] + Bu[k] (1a)

y[k] = Cx[k] + Du[k], (1b)

where x[k] ∈ R
n is the state at time k ∈ N, u[k] ∈ R

m

is the input, y[k] ∈ R
p is the output, and all matrices are

of appropriate sizes. For a given initial state x0 and input

sequence u ∈ Sm, there exists a unique solution to (1) with

x[0] = x0, which is denoted by xx0,u. The corresponding
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output will be denoted by yx0,u. Sometimes we will write

Σ(A,B,C,D) to refer to the linear system (1).

Together with (1), we consider the output constraints

y[k] ∈ Y, (2)

where Y is a subset of R
p. The inclusion (2) can express

input constraints, state constraints or their combinations.

We say that a state x0 ∈ R
n is feasible as initial state for

(1)-(2) if there exists an input u ∈ Sm such that yx0,u[k] ∈ Y
for all k ∈ N. The set of all such initial states is denoted by

X0. To indicate the need to restrict the set of feasible initial

states we study the following example.

Example III.1 The “discrete-time double integrator”

x1[k + 1] = x1[k] + x2[k] (3a)

x2[k + 1] = x2[k] + u[k] (3b)

y[k] = x1[k], (3c)

is given with the “position” constraint y[k] > 0. Hence, Y =
[0,∞). Clearly, one has

X0 = {x̄ ∈ R
2 | x̄1 > 0 and x̄1 + x̄2 > 0}. (4)

Indeed, observe that y[0] = x1[0] and y[1] = x1[0] + x2[0]
cannot be influenced by the control input u. Hence, for a

state x̄ to be feasible as an initial state, one needs at least that

y[0] ∈ Y and y[1] ∈ Y . This is also sufficient as y[k + 2] =
x1[k] + 2x2[k] + u[k] can be given any desirable value by

proper selection of u[k] for all k > 0 .

In case we would use the “velocity” constraint y[k] =
x2[k] > 0 instead, we obtain that

X0 = {x̄ ∈ R
2 | x̄2 > 0}, (5)

which only requires one inequality constraint as y[0] = x2[0]
and y[k + 1] = x2[k] + u[k].

We say that a linear system of the form (1) is null

controllable under the constraints (2) if for each feasible

initial state x0 ∈ X0 there exist an input u ∈ Sm and

a positive number T ∈ N such that xx0,u[T ] = 0 and

yx0,u[k] ∈ Y for all k = 0, 1, . . . , T .

IV. CLASSICAL CONTROLLABILITY RESULTS

Two particular cases of our framework are among the

classical results of systems theory.

A. Linear systems.

First we consider the unconstrained case, i.e. Y = R
p.

Clearly, one gets X0 = R
n. In this case, the solution

to the null controllability problem is an easy consequence

of the classical controllability conditions of Kalman and

Hautus [5], [6]. Indeed, in the continuous-time case without

constraints (Y = R
p) it is well known that the concepts of

reachability (steering the origin to any state), controllability

(steering any state to any other state) and null controllability

(steering any state to the origin) are equivalent concepts

(see e.g. [11]). However, in the discrete-time unconstrained

case, controllability and reachability are equivalent, but null

controllability is a weaker concept (e.g. the system x[k+1] =
0 is null controllable, but not controllable/reachable), which

is characterized as follows.

Theorem IV.1 Consider the linear system (1) and the con-

straints (2) with Y = R
p. Then, it is null controllable if, and

only if,

λ ∈ C \ {0}, z ∈ C
n,

z∗A = λz∗, z∗B = 0,

}

⇒ z = 0. (6)

B. Linear systems with input constraints.

Let C = 0 and D = I . Note that the problem reduces

now to establishing null controllability for the system

x[k + 1] = Ax[k] + Bu[k]

with input constraints u[k] = y[k] ∈ Y for all k ∈ N. Clearly,

one gets X0 = R
n. We consider two situations for the set Y:

Assumption IV.2 The set Y is a solid closed polyhedral

cone, i.e. there exists a matrix Y ∈ R
q×p such that Y =

{y ∈ R
p | Y y > 0} and Y has a non-empty interior.

Assumption IV.3 The set Y is a bounded set (i.e. there

exists an M ∈ R such that ‖y‖ 6 M for all y ∈ Y) that

contains zero in its interior.

Under Assumption IV.2, the answer to the null controlla-

bility question can be based upon the controllability result by

Evans [3] or by Nguyen [9], as formulated in the following

theorem.

Theorem IV.4 Consider the linear system (1) and the con-

straints (2) with C = 0 and D = I and Y a solid closed

polyhedral cone as in Assumption IV.2. Then, it is null

controllable if, and only if, the following implications hold:

λ ∈ C \ {0}, z ∈ C
n,

z∗A = λz∗, z∗B = 0,

}

⇒ z = 0 (7a)

λ ∈ (0,∞), z ∈ R
n

zT A = λzT , BT z ∈ Y∗

}

⇒ z = 0. (7b)

In case the input constraint set Y is a bounded set, Sontag

[10] provides the solution to the null controllability problem.

Theorem IV.5 Consider the linear system (1) and the con-

straints (2) with C = 0 and D = I and Y a bounded set that

contains zero in its interior as in Assumption IV.3. Then, it

is null controllable if, and only if, the following implications

hold:

λ ∈ C \ {0}, z ∈ C
n

z∗A = λz∗, z∗B = 0

}

⇒ z = 0. (8a)

λ ∈ C, |λ| > 1,

z ∈ C
n, z∗A = λz∗,

}

⇒ z = 0. (8b)

Note that conditions (7a) and (8a) are equivalent to

null controllability without constraints as provided in Theo-

rem IV.1.

The main contribution of the paper is to give necessary

and sufficient conditions for controllability in the presence

of both input and state constraints.
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V. LINEAR SYSTEMS WITH INPUT/STATE CONSTRAINTS

We will use the following assumption in the paper.

Assumption V.1 The transfer matrix D+C(zI −A)−1B is

right invertible as a rational matrix.

To make it easier to deal with the constraints (2), we will

transform (1) into a canonical form that is based on [1]. We

will briefly recall some of the notions from [1] and [11] and

we refer to the Section VIII for some more particular facts.

A. Preliminaries in geometric control theory

Consider the linear system (1). We define the controllable

subspace and unobservable subspace as 〈A | im B〉 :=
im B + A im B + · · · + An−1 im B and 〈ker C | A〉 :=
ker C ∩ A−1 ker C ∩ · · · ∩ A1−n ker C, respectively.

We say that a subspace V is output-nulling controlled

invariant if for some matrix K the inclusions

(A − BK)V ⊆ V and V ⊆ ker(C − DK) (9)

hold. As the set of such subspaces is non-empty and closed

under subspace addition, it has a maximal element V∗. The

notation K(V) stands for the set {K | (A − BK)V ⊆
V and V ⊆ ker(C − DK)}.

Dually, we say that a subspace T is input-containing

conditioned invariant if for some matrix L the inclusions

(A − LC)T ⊆ T and im(B − LD) ⊆ T (10)

hold. As the set of such subspaces is non-empty and closed

under subspace intersection, it has a minimal element T ∗.

Whenever the system Σ is clear from the context, we simply

write T ∗. The notation L(T ) stands for the set {L | (A −
LC)T ⊆ T and im(B − LD) ⊆ T }.

A subspace R is called an output-nulling controllability

subspace if for all x0, x1 ∈ R there exist T > 0 and an input

sequence u ∈ Sm such that xx0,u[0] = x0, xx0,u[T ] = x1,

and yx0,u[k] = 0 for all k = 0, 1, . . . , T . The set of all such

subspaces admits a maximal element. This maximal element

is denoted by R∗. It is known, see e.g. [1], that

R∗ = V∗ ∩ T ∗. (11)

The maximal number of steps needed to steer x0 ∈ R∗ to

x1 ∈ R∗ is equal to n (being equal to the state dimension

of (1)).

We sometimes write V∗(A,B,C,D), T ∗(A,B,C,D) and

R∗(A,B,C,D) to make the dependence on (A,B,C,D)
explicit.

B. Canonical form

Next, we will transform the system (1) in a canonical form

that makes it easier to deal with the constraints (2). Let

V∗ and T ∗, respectively, denote the largest output-nulling

controlled invariant and the smallest input-containing con-

ditioned invariant subspaces of the system Σ(A,B,C,D).
Also let K ∈ K(V∗). Apply the pre-compensating feedback

u[k] = −Kx[k] + v[k], where v[k] is the new input. Then,

(1) becomes

x[k + 1] = (A − BK)x[k] + Bv[k] (12a)

y[k] = (C − DK)x[k] + Dv[k]. (12b)

Obviously, null controllability is invariant under this feed-

back. Moreover, the systems Σ(A,B,C,D) and Σ(A −
BK,B,C − DK,D) share the same V∗ and T ∗ due to

Proposition VIII.1 (see Section VIII). Suppose that the trans-

fer matrix D+C(zI−A)−1B is right invertible as a rational

matrix (as in Assumption V.1). Proposition VIII.2 implies

that the state space R
n admits the following decomposition

R
n = X1 ⊕X2 ⊕X3, (13)

where X2 = R∗ = V∗∩T ∗, V∗ = X1⊕X2, and T ∗ = X2⊕
X3. Let the dimensions of the subspaces Xi be ni. Also let

the vectors {w1, w2, . . . , wn} be a basis for R
n such that the

first n1 vectors form a basis for X1 and the second n2 for X2,

and the last n3 for X3. Also let L ∈ L(T ∗). One immediately

gets from V∗ ⊆ ker(C −DK) and im(B − LD) ⊆ T ∗ that

B − LD ≃





0
B′

2

B′
3



 (14)

C − DK ≃
[

0 0 C3

]

, (15)

where ≃ indicates that B − LD is transformed in the

coordinates that are adapted to the above basis. Here B′
2,

B′
3, and C3 are n2 × m, n3 × m and p × n3 matrices,

respectively. Note that (A − BK − LC + LDK)V∗ ⊆ V∗

and (A−BK−LC+LDK)T ∗ ⊆ T ∗ according to Proposi-

tion VIII.1. Therefore, the matrix (A−BK −LC + LDK)

is of the form
[

∗ 0 0
∗ ∗ ∗
0 0 ∗

]

in the new coordinates, where the

row (column) blocks have n1, n2, and n3 rows (columns),

respectively. Let the matrices K and L be partitioned as

K =
[

K1 K2 K3

]

and L =





L1

L2

L3



 ,

where Kk and Lk are m × nk and nk × m matrices,

respectively. With these partitions, one gets

A − BK ≃





A11 0 L1C3

A21 A22 A23

0 0 A33



 (16a)

B ≃





L1D

B2

B3



 , (16b)

where Aℓk and Bℓ are matrices of the sizes nℓ × nk and

nℓ × m. Now, one can write (12) in the new coordinates as
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x1[k + 1] = A11x1[k] + L1y[k]

(17a)

x2[k + 1] = A21x1[k] + A22x2[k] +A23x3[k] + B2v[k]
(17b)

x3[k + 1] = A33x3[k] + B3v[k]
(17c)

y[k] = C3x3[k] + Dv[k].
(17d)

Hence, after the pre-compensating feedback u[k] =
−Kx[k] + v[k] and the similarity transformation x̄ = Sx,

corresponding to the decomposition X1⊕X2⊕X3 = R
n (note

that we dropped the symbol ‘¯’ in x̄ in (17) for shortness) we

obtained the system description as in (17), which corresponds

to the system matrices





Ā B̄

C̄ D̄



 =





S(A − BK)S−1 SB

CS−1 D̄



 =

=









A11 0 L1C3 L1D

A21 A22 A23 B2

0 0 A33 B3

0 0 C3 D









(18)

Some interesting observations can be made for this model,

based upon Assumption V.1. First of all, Assumption V.1

implies that [C D] in (1) must have full row rank (see

Proposition VIII.2), which in turn implies that [C3 D] must

have full row rank. Moreover, it holds that

T ∗(A33, B3, C3,D) = R
n3 (19a)

V∗(A33, B3, C3,D) = {0} (19b)

by construction. According to Proposition VIII.2 this implies

that C3(zI − A33)
−1B3 + D is right-invertible and allows

actually a polynomial inverse H0 + H1z + . . . + Hhzh for

suitable matrices Hi, i = 0, . . . , h.

Interestingly, the above transformation to (17) reveals

already directly some necessary conditions for null control-

lability. Indeed, (17a) indicates that the null controllability

of the x1-dynamics can only take place via the “control

variable” y, which is constrained to be in Y . Hence, this indi-

cates that at least some input-constrained null controllability

conditions should hold for the x1-dynamics as formulated in

Theorem IV.4 or Theorem IV.5 (depending on properties of

Y) to guarantee controllability for (1) under the constraints

(2).

C. Characterization of the set X0

The applied transformation enables the characterizations

of the set X0.

Theorem V.2 Consider the system (1) with the constraint

(2). Suppose that Assumption V.1 holds. Then, the set of

initially feasible states can be given by

X0 = {x0 ∈ R
n | there exists (u0, u1, . . . , un3−1) such

that (Cx0 + Du0, CAx0 + CBu0 + Du1,

CA2x0 + CABu0 + CBu1 + Du2, . . . ,

CAn3−1x0 + CAn3−2Bu0 + CAn3−3Bu1 + · · ·+

+ CBun3−2 + Dun3−1) ∈ Yn3}, (20)

where n3 denotes the dimension of X3 (i.e. n3 = dim T ∗ −
dimR∗). In case Y satisfies Assumption IV.2 or IV.3, then

the set X0 has a non-empty interior.

Due to space restrictions the proof is omitted.

Interestingly, we only have to check the output condi-

tions on the (discrete) time interval {0, 1, . . . , n3 − 1} to

determine if x0 lies in X0 or not. Example III.1 already

illustrated this, as n3 = 2 in the first case (dim T ∗ = 2,

dimV∗ = dimR∗ = 0), while n3 is 1 for the second case

(dim T ∗ = dimV∗ = 1 and dimR∗ = 0). Note also that

in general the maximal output-nulling controlled invariant

subspace V∗(A,B,C,D) (X1⊕X2) lies in X0 and that X0 is

a non-trivial set in the sense that it has a non-empty interior.

D. Main results

The following theorem is the main result of the paper.

Theorem V.3 Consider the linear system (1). Suppose that

Assumption V.1 holds. Then, the system is null controllable

under the constraints (2) with a conic constraint set as in

Assumption IV.2 if, and only if, the following implications

hold

λ ∈ C \ {0}, z ∈ C
n,

z∗A = λz∗, z∗B = 0

}

⇒ z = 0

(21a)

λ ∈ (0,∞), z ∈ R
n,

w ∈ Y∗,
[

zT wT
]

[

A − λI B

C D

]

= 0







⇒ z = 0.

(21b)

The system is null controllable under the constraints (2) with

a bounded constraint set as in Assumption IV.3 if, and only

if, the following implications hold

λ ∈ C \ {0}, z ∈ C
n,

z∗A = λz∗, z∗B = 0

}

⇒ z = 0

(22a)

|λ| > 1, z ∈ C
n,

w ∈ C
n,

[

z∗ w∗
]

[

A − λI B

C D

]

= 0







⇒ z = 0

(22b)

Interestingly, Kalman’s, Hautus’, Evans’, Nguyen’s and

Sontag’s results are recovered as particular cases of Theo-

rem V.3, as the right-invertibility Assumption V.1 is trivially

satisfied in their cases (C = I and D = 0).
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VI. EXAMPLES

Reconsider Example III.1 with Y = [0,∞), i.e.

A =

(

1 1
0 1

)

; B =

(

0
1

)

; C =
(

1 0
)

; D = 0.

Note that the transfer function 1

z2−2z+1
for this system is

invertible as a rational function. As this system is obviously

(null) controllable without any constraints, (21a) is satisfied.

To consider (21b) we compute the system matrix

(

A − λI B

C D

)

=





1 − λ 1 0
0 1 − λ 1
1 0 0



 ,

which is invertible for any λ and thus (21b) is satisfied, which

implies that the system is null controllable under the position

constraint y[k] = x1[k] > 0, k ∈ N.

Consider the velocity constrained system, i.e. y = x2 > 0,

C becomes (0 1) and Y = [0,∞). The transfer function,

being 1

z−1
, is also invertible and the unconstrained system

remains, of course, null controllable. However, null control-

lability under the output/state constraint y = x2 > 0 is lost.

Indeed,

(

A − λI B

C D

)

=





1 − λ 1 0
0 1 − λ 1
0 1 0



 ,

and λ = 1 (an invariant zero of the plant, see e.g. [1]),

zT = (−1 0) and w = 1 ∈ Y∗ = [0,∞) violate condition

(21b). This is also intuitively clear as nonnegative values

of x2 prevent the position x1 from going to zero, when

x1[0] > 0 and thus the system is not null controllable under

the constraint y[k] = x2[k] > 0, k ∈ N.

VII. CONCLUSIONS

This paper characterized the null controllability of

discrete-time linear systems subject to input and/or state con-

straints under the condition of right-invertibility of the trans-

fer matrix. The characterizations are in terms of algebraic

conditions that are of a similar nature as the classical results

for unconstrained and input-constrained linear systems [3],

[5], [8–10], which are recovered as special cases of the main

result of this paper. Investigating the possibility of removing

of the right-invertibility condition is future work.

VIII. APPENDIX: SOME FACTS FROM GEOMETRIC

CONTROL THEORY

We quote some standard facts from geometric control

theory (see [1] and [11] for the proofs). The first one presents

certain invariants under state feedbacks and output injections.

Besides the system (1), which we denote by Σ for shortness,

consider the linear system ΣK,L given by

x[k + 1] = (A − BK − LC + LDK)x[k] + (B − LD)v[k]
(23a)

y[k] = (C − DK)x[k] + Dv[k]. (23b)

This system can be obtained from (1) by applying both a

pre-compensating state feedback u[k] = −Kx[k] + v[k] and

output injection −Ly[k].

Proposition VIII.1 Let K ∈ R
m×n and L ∈ R

n×p be

given. The following statements hold.

1) 〈A | im B〉 = 〈A − BK | im B〉.
2) 〈ker C | A〉 = 〈ker C | A − LC〉.
3) V∗(ΣK,L) = V∗(Σ).
4) T ∗(ΣK,L) = T ∗(Σ).

The right invertibility of the transfer matrix is related to

the controlled and conditioned invariant subspaces:

Proposition VIII.2 The transfer matrix D+C(zI−A)−1B

is right invertible if, and only if, V∗+T ∗ = R
n and

[

C D
]

is of full row rank. Futhermore, this right inverse can be

chosen polynomial if, and only if, additionally the condition

〈A | im B〉 ⊆ T ∗ + 〈ker C | A〉 is satisfied.

Systems that have transfer functions with a polynomial

inverse are of particular interest for our treatment. The proof

is omitted for brevity.

Proposition VIII.3 Consider the linear system (1). Suppose

that the transfer matrix G(z) := D + C(zI −A)−1B has a

polynomial right inverse. Let H(z) = H0+zH1+· · ·+zhHh

be such a right inverse. For any given sequence ȳ ∈ Sp, there

exist an initial state x0 and an input u ∈ Sm such that the

output yx0,u, corresponding to the initial state x[0] = x0

and the input u, of system (1) is identical to ȳ.

The proposition below shows what information about the

state at a certain time instant can be obtained from the values

of the output at the present and future time instants. To prove

this result, we will use the fact that one can compute V∗ for

a linear system (1) as the limit of the subspaces

Vi = {x | Ax+Bu ∈ Vi−1 and Cx+Du = 0 for some u}
(24)

with V0 = R
n. In fact, there exists an index i 6 n such that

Vj = V∗ for all j > i (see [11] for details).

Proposition VIII.4 Consider the linear system (1). Let the

triple (u, x, y) ∈ Sm ×Sn ×Sp satisfy the equations (1). If

for some x̄ ∈ R
n, and ū0, ū1, . . . , ūn−1 ∈ R

m

y[k] = CAkx̄ + CAk−1Bū0+

+ CAk−2Bū1 + · · · + CBūk−1 + Dūk

for k = 0, 1, . . . , n − 1, then x[0] − x̄ ∈ V∗(A,B,C,D).

The proof can be obtained by using Algorithm (24) and

showing that x[0] − x̄ ∈ Vj for all j = 0, . . . , n and noting

that Vn = V∗(A,B,C,D).
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IX. APPENDIX: PROOF OF THE MAIN RESULT

This appendix contains the proof of Theorem V.3. How-

ever, due to space limitations we will only be able to provide

a sketch of the proof.

Proof: Without loss of generality, we can assume that

the system is in the form (17) as the null controllability

problem is not changed by similarity transformations and

pre-compensating feedbacks of the form u[k] = −Kx[k] +
v[k]. To show the ‘if’ part, let an initial state x0 =
col(x01, x02, x03) ∈ X0 be given in the coordinates related

to X1 ⊕X2 ⊕X3 as introduced in Section V-B. The proof is

based on the following steps in constructing an input u that

steers the state from x0 to xf :

Step 1: One can show that the conditions (21a)-(21b) (in

case of conic constraint sets) and (22a)-(22b) (in

case of bounded constraint sets) imply that the

system

x1[k + 1] = A11x1[k] + L1y[k], (25)

being (17a), is null controllable, where y is treated

as input satisfying the constraint (2).

Step 2: Next, we select the output (y[0], . . . , y[n3 − 1]) ∈
Yn3 that corresponds to x0 as in the characteriza-

tion of X0 in Theorem V.2. This finite sequence is

applied as the “input” to system (25), which steers

x01 at time 0 to an intermediate state, say, xi1 at

time n3.

Step 3: Then, we exploit the null controllability of (25)

under the constraints (2) to provide a time T ∈ N,

T > n3 (for later purposes we also take T > n2)

and an “input sequence” (y[n3], . . . , y[T −1]) such

that it steers the state of system (25) from x1[n3] =
xi1 to x1[T ] = 0 and y[k] ∈ Y , k = n3, . . . , T −1.

By selecting y[k] = 0 for k ∈ N, k > T , we have

constructed, together with step 2 an output y ∈ Sp

with y[k] ∈ Y for all k ∈ N and x1[k] = 0 for all

k > T .

Step 4: Given this output y ∈ Sp, we construct an

input v ∈ Sm and a corresponding state trajectory

x ∈ Sn starting at x0 such that yx0,v = y. This

construction uses the right-invertibility assumption

(Ass. V.1), which implies also the right-invertibility

of C3(zI −A33)
−1B3 + D (see discussion around

(19a)-(19b)). Moreover, (19a)-(19b) and the right-

invertibility imply via Proposition VIII.2 and VIII.3

that indeed the output y can be generated by (17c)-

(17d) for some x′
03. As y was selected in accor-

dance with x03 for system (17c)-(17d) (note that

this part of the system in (17) generates the output

y) it can be shown by using Proposition VIII.4 and

V∗(A33, B3, C3,D) = {0} that x03 = x′
03.

Step 5: From the above steps we obtain an input v ∈ Sm

that starts in x0 at time 0, produces the output y ∈
Sp with y[k] ∈ Y for all k ∈ N and y[k] = 0 for

k ∈ N, k > T . Moreover, x1[T ] = 0. Since y[k] =
0 for k > T , x3[T ] must, by definition, be an

element of V∗(A33, B3, C3,D) = {0}. Hence, only

x2[T ] = 0 remains to be realized. To do so, observe

that x̂ := col(0,−x2[T ], 0) ∈ R∗(A,B,C,D).
Hence, by definition of R∗(A,B,C,D) and since

T > n2, there exists an input v′ ∈ Sm such that

y0,v′

= 0 and x0,v′

[T ] = x̂. By using linear-

ity of the system, we obtain that xx0,v+v′

[T ] =
xx0,v[T ] + x0,v′

[T ] = 0 and yx0,v+v′

[k] =
yx0,v[k] + y0,v′

[k] = yx0,v[k] = y[k] ∈ Y for all

k ∈ N, which concludes the ‘if’ part of the proof.

The ‘only if’ part is based on the observation that (17a)

must be null controllable under the “input constraints” y[k] ∈
Y , k ∈ N (as already pointed out in Section V-B). Roughly

speaking, ‘only if’ part follows now by translating the cor-

responding input-constrained null controllability conditions

to the original system (1)-(2) before the transformation into

the canonical form was applied (although several technical

issues have still to be overcome).
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