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Abstract— State-periodic disturbances are frequently found in mo-
tion control systems. Examples include cogging in permanent magnetic
linear motor, eccentricity in rotary machines and etc. This paper
considers general form of state-dependent periodic disturbance and
proposes a new high-order periodic adaptive learning compensation
(HO-PALC) method for state-dependent periodic disturbance where
the stored information of more than one previous periods is used. The
information includes composite tracking error as well as the estimate
of the periodic disturbance. This dual HO-PALC (DHO-PALC) scheme
offers potential to achieve faster learning convergence. In particular,
when the reference signal is also periodically changing, the proposed
DHO can achieve much better convergence performance in terms
of both convergence speed and final error bound. Asymptotical
stability proof of the proposed DHO-PALC is presented. Extensive
lab experimental results are presented to illustrate the effectiveness
of the proposed DHO-PALC scheme over the first order periodic
adaptive learning compensation (FO-PALC).

Index Terms— State-dependent periodic disturbance, adaptive con-
trol, dual-high-order periodic adaptive learning control, dynamometer.

I. INTRODUCTION

In practice, the state-dependent periodic disturbances exist in
many electromechanical systems. For example, it has been shown
that the external disturbance is a state-dependent periodic distur-
bance for rotary systems [1], [2], [3]; in [4], the friction force
is shown to be a state-dependent periodic parasitic effect; in [5],
the engine crankshaft speed pulsation was expressed as Fourier
series expansion as a periodic function of position; in [6], the
tire/road contact friction was represented as a function of the
system state variable; in [7], the friction and the eccentricity
in the low-cost wheeled mobile robots is treated as the state-
dependent periodic disturbance; in [8], [9] and [10], the cogging
force in a permanent magnetic motor was defined as a position-
dependent disturbance. Since the state-dependent periodic distur-
bance is almost everywhere in practice, the suppression of this
type of disturbance has been paid much attention to in control
community. To take advantage of the state-dependent periodicity,
adaptive learning control idea has been attempted. For example, an
adaptive learning compensator for cogging and coulomb friction
in permanent-magnet linear motors was proposed in [8] and [11];
the authors of [12] and [13] proposed an iterative learning
control (ILC) algorithm and a variable step-size normalized ILC
scheme to reduce periodic torque ripples from cogging and other
effects of PMSM, respectively; in [9], a periodic adaptive learning
compensation method for cogging was performed on the PMSM
servo system. However, all these efforts did not utilize the stored
information of more than one previous periods, that is, they
are not high-order periodic adaptive learning control scheme for
state-dependent periodic disturbance compensation. In view of
this, in our previous work [10], a simple high order periodic
adaptive learning compensator was proposed for cogging effect
in PMSM position servo system, where only the stored tracking
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errors of more than one previous periods are utilized in the
adaptive updating/learning law. Experimental results reported in
[10] confirm that HO-PALC does achieve better compensation
performance than the first-order PALC scheme.

In the present work, we propose a new high-order periodic
adaptive learning compensation (HO-PALC) method for state-
dependent periodic disturbance where the stored information of
more than one previous periods is used and, the information
includes composite tracking error as well as the estimate of the
periodic disturbance. This is called dual HO-PALC (DHO-PALC)
scheme which we show offers potential to achieve faster learning
convergence. In particular, when the reference signal is also
periodically changing, the proposed DHO-PALC can achieve much
better convergence performance in terms of both convergence
speed and final error bound. Asymptotical stability proof of the
proposed DHO-PALC is presented. Extensive lab experimental
results are presented to illustrate the effectiveness of the proposed
DHO-PALC scheme over the first-order periodic adaptive learning
compensation (FO-PALC).

The major contributions of this paper include 1) A new dual-
high-order periodic adaptive learning compensation method for
state-dependent periodic disturbance and the proof of the asymp-
totical stability of the system with the DHO-PALC; 2) Experimen-
tal study of the DHO-PALC for state-dependent periodic distur-
bance on a dynamometer position control system; 3) Experimental
demonstration of the advantages of the DHO-PALC over the FO-
PALC scheme.

II. THE GENERAL FORM OF STATE-DEPENDENT PERIODIC

DISTURBANCE

This paper is mainly concerned with the general state-dependent
periodic disturbance similar to [1], [2], [3], [8], [9], [10], [14].
The disturbance could be any type of nonlinear periodic function
depending on a state variable x which usually represents the linear
displacement or rotational angle. In Fourier series, the general
state-dependent periodic disturbance can be expressed by

Fdisturbance =

∞
∑

i=1

Ai sin(ωix + ϕi), (1)

where Ai is the amplitude, ωi is the state-dependent periodic
disturbance frequency, and ϕi is the phase angle. Note that,
this general form can well represent state-dependent periodic
disturbance in real world, for example, the state-dependent fric-
tion in [2], the position-dependent cogging force in permanent
magnetic linear motor [8] or permanent magnetic synchronous
motor [9] [10], the eccentricity in the wheeled mobile robots [7]
and the experiment apparatus [1], and so on.

For simplicity, in the sequel, we denote the above state-
dependent periodic disturbance as a(x). From physical limit
consideration, it is reasonable to believe that a(x) is bounded,
that is,

|a(x)| ≤ b0. (2)

Moreover, based on the same physical reason, the profile shape
change in a(x) can also be regarded as bounded, that is,

|∂a(x)/∂x| ≤ ba < ∞

where ba is an unknown positive real number. Note that, however,
it is not correct to assume that |ȧ(x)| is bounded since this amounts
to assuming that |ẋ| is bounded, which is yet to be proved.
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III. DUAL-HIGH-ORDER PERIODIC ADAPTIVE LEARNING

COMPENSATION OF STATE-PERIODIC DISTURBANCE

A. Problem Formulation

In this paper, to present our ideas clearly, without loss of
generality, we consider the following canonical motion control
system

ẋ(t) = v(t), (3)

v̇(t) = u(t) − a(x)/J, (4)

where x(t) is the state (displacement); v(t) is the velocity; u(t) is
the control input signal; J is a constant which can be the moment
of inertia of the motor when rotary motion system is considered;
and a(x) is the unknown state-dependent periodic disturbance with
known state periodicity.

First, before proceeding our main results, the following defini-
tions and assumptions are necessary which are adapted from [8]
for self-containing purpose.

Definition 3.1: The total passed trajectory is given as:

s(t) =

∫ t

0

|
dx

dτ
|dτ =

∫ t

0

|v(τ )|dτ,

where x is the position, and v is the velocity. Physically, s(t) is the
total passed trajectory length, hence it has the following property:

s(t1) ≥ s(t2), if t1 ≥ t2.

With notation s(t), the position corresponding to s(t) is denoted
as x(s(t)) and the disturbance corresponding to s(t) is denoted
as a(s(t)). In our definition, since s(t) is the summation of the
absolute position increasing along the time axis, just like t, s(t)
is a also monotonous growing signal, so we have

a(x(t)) = a(x(s)) = a(s(t)) = a(t). (5)
Definition 3.2: Since the disturbance is periodic with respect to

position, based on Definition 3.1, the following relationship can
be derived:

x(s(t)) = x(s(t)− sp), a(s(t)) = a(s(t) − sp). (6)

where sp is the known periodicity of the trajectory. Note that, in
the rotary machine case, sp is simply 2π while in the permanent
magnetic linear motor case, sp is the pitch distance [8].

Definition 3.3: In Definition 3.2, sp was defined as the period
of the periodic trajectory. So, s(t)−sp is one past trajectory point
from s(t) on the s-axis. Let us denote the time corresponding
to s(t)−sp as τk−1. Then, t−τk−1 := Pk is the time-elapse to
complete one periodic trajectory from the time τk−1 to time t.
This time-elapse is called “cycle”. k is the integer part of the

quotient s/sp, and we denote P0=t−
∑k

j=1
Pj . When considering

n passed cycles from the current time t, let us denote the
time at the “(k−n+1)-th past trajectory cycle” as τk−n and
denote Pk the time-elapse to complete the first past cycle. So,

τk−n=t−
∑n−1

j=0
Pk−j . We can use the so-called “search process”

to find Pk at time instant t by interpolating the stored data array
in the memory as in [8]. Note Pk is depended on t, so in fact it
should be Pk(t).

Definition 3.4: The first trajectory cycle Pp is the elapsed time
to complete the first repetitive trajectory from the initial starting
time t0. In other words, Pp is the time corresponding to the total
passed trajectory when s(t) = sp.

From now on, for accurate notation, the state (position) corre-
sponding to time t is denoted as x(t) and its total passed trajectory
by the time t is denoted as s(t). Henceforward, the time instant
for one past trajectory from the time instant t is denoted as τk−1,
and its corresponding cycle is completed in Pk(t) amount of time.

Assumption 3.1: Throughout the paper, it is assumed that the
current position and current time of the motion system are mea-
sured. Let us denote the current position as x(t) at time t. Then,

τk−1 is always calculated, hence Pk is calculated at time instant
t.

With the above definitions and assumption, the following prop-
erty is observed.

Remark 3.1: As will be shown in the following theorem, the
actual state-dependent disturbance a is not estimated on the state-
axis. In our adaptation law, a is estimated on the time-axis. So, to
find a(s(t) − sp), the following formula is used:

a(s(t) − sp) = a(τk−1) = a(t − Pk). (7)

Here, Pk is calculated in Assumption 3.1 (recall that Pk can be
used to indicate exactly one past trajectory position).

From Definition 3.2, Remark 3.1 and (5), we also have the
following property:

Property 3.1: The current state periodic disturbance is equal to
the disturbance of one past trajectory. From the relationship:

a(t) = a(s(t)) = a(s(t) − sp) = a(τk−1), (8)

from (7), the following equality is derived: a(t) = a(t − Pk).
Then we define

ea(s(t)) = a(s(t)) − â(s(t)),

where â(s(t)) = â(t) (note: t is the current time corresponding
to the current total passed trajectory s(t)). Here, let us change
ea(s(t)) = a(s(t)) − â(s(t)) into time-domain such as:

ea(s(t)) = a(s(t)) − â(s(t)) = a(t) − â(t) = ea(t). (9)

In the same way, the following relationships are true:

vd(s(t)) = vd(t), v(s(t)) = v(t),

and the following notations are also defined

ex(t) = xd(t) − x(t), ev(t) = vd(t) − v(t).

The control objective is to track or servo the given desired
position xd(t) and the corresponding desired velocity vd(t) with
tracking errors as small as possible. In practice, it is reasonable to
assume that xd(t), vd(t) and v̇d(t) are all bounded signals.

From now on, based on relationship: a(x(t)) = a(t − Pk) =
a(t), a(x(t)) is equal to a(t) as in (5); So, a(x) is replaced by
a(t) in the following theorems.

The feedback controller is designed as:

u(t) = v̇d(t) + â(t)/J + αm(t) + γev(t), (10)

with
m(t) := γex(t) + ev(t), (11)

where α and γ are positive gains; â(t) is an estimated state-
dependent periodic disturbance from an adaptation mechanism to
be specified later; v̇d(t) is the desired acceleration; and ex(s(t)) =
ex(t); and m(s(t)) = m(t).

Our adaptation law is designed as follows:

â(t) =

{

δA(t) + K
J

S(t) if s ≥ sp

z − µv if s < sp
(12)

with

A(t) :=

N
∑

i=1

hiâi(t), S(t) :=

N
∑

i=1

βimi(t), (13)

where

âi(t) = â(t −

i
∑

j=1

Pk+1−j),

N
∑

i=1

hi = 1, 0 ≤ |hi| ≤ 1,

mi(t) = m(t −

i
∑

j=1

Pk+1−j), (i = 1, 2, ..., N)
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Pk is the trajectory cycle defined in Definition 3.2; δ is a weighting
coefficient and 0<δ<1, K is a positive design parameter called the
periodic adaptation gain; µ is also a positive design parameter; hi

are the weight coefficients of the high-order disturbance estimates;
βi are the weight coefficients of the high-order composite feedback
errors, βi are chosen to be the bounded with upper bound denoted
by bβ , that is

bβ = max
1≤i≤N

|βi|; (14)

in our analysis part, the following tuning mechanism is proposed
for z:

ż = µ[v̇d(t) + αm(t) + γev(t)] +
ev(t)

J
. (15)

B. Stability Analysis

Now, based on the above discussions, the following stability
analysis of the proposed DHO-PALC scheme is performed. Our
N -th order periodic adaptive learning compensation approach is
summarized as follows:

• When s(t)<sp, the system is controlled to be bounded input
bounded output.

• When s(t)≥sp, the system is stabilized to follow the desired
speed at the desired position. By trajectory periodic adapta-
tion, the unknown disturbance is estimated.

Consider two cases: 1) when 0 ≤ t < Pp (0 ≤ s < sp) and
2) when t ≥ Pp (s ≥ sp). The key idea is that, for case 1),
it is required to show the finite time boundedness of equilibrium
points; for case 2), it is necessary to show the asymptotic stability
of equilibrium points.

First, let us consider the case 1) when t < Pp (s < sp).
Our major results are summarized in the following theorems

with Remark 3.2.
Remark 3.2: From the relationship (9), it can be said that

if ea(t)→0 as t→∞, then ea(s)→0 as s→∞. Thus, in what
follows, the stability analysis of â(x) is performed on the time-
axis.

Theorem 3.1: If µ > 1
4
J(1 + b2

a) and (α + γ) > 1, the
equilibrium points of ex, ev , and ea are bounded, when t <
Pp (s < sp).

Proof: The proof of this theorem can be completed by base
on the proof of Theorem 3.1 of [10]. Due to a page limitation we
omit the proof.

Now, let us investigate the case 2) when t ≥ Pp (s ≥ sp).
First of all, the following lemma is needed for the proof of

Theorem 3.2.
Lemma 3.1: Suppose a real position series [an]∞1 satisfies an ≤

ρ1an−1 +ρ2an−2 + · · ·+ρNan−N + ǫ, (n = N +1, N +2, · · ·),
where ρi ≥ 0, (i = 1, 2, · · · , N), ǫ ≥ 0 and

ρ =

N
∑

i=1

ρi < 1, (16)

then the following holds:

lim
n→∞

an ≤ ǫ/(1 − ρ). (17)

For a proof of Lemma 3.1, see Chapter 2 in [15].

Theorem 3.2: When t ≥ Pp (s ≥ sp), the control law (10)
and the periodic adaptation law (12) guarantee the asymptotically
stability of the equilibrium points ex(t), ev(t) and ea(t), as
t → ∞ (s → ∞), with the initial condition, exi(t) = evi(t) =
eai(t) = 0, as (t −

∑i

j=1
Pk+1−j) ≤ 0, where

ηi(t) = η(t −

i
∑

j=1

Pk+1−j), i = 1, 2, ..., N,

η ∈ {xd, x, vd, v, a, â, ex, ev, ea, m, S}.

(This is a very important notation in this paper).

Proof: From (4) and (10), using

ėxi(t) = ẋdi(t) − ẋi(t) = evi(t), (18)

ėvi(t) = v̇di(t) − v̇i(t)

= v̇di(t) − [ui(t) −
ai(t)

J
]

= v̇di(t) − [v̇di(t) +
âi(t)

J
+ αmi(t)

+γevi(t)] +
ai(t)

J

= −αmi(t) − γevi(t) +
ai(t)

J
−

âi(t)

J

= −αγexi(t) − (α + γ)evi(t) +
eai(t)

J
, (19)

and exi(t) = ex(t −
∑i

j=1
Pk+1−j).

Let us denote

Psi =

i
∑

j=1

Pk+1−j , Psk =

k
∑

j=1

Pk+1−j ,

As P0=t −
∑k

j=1
Pk, where k is the integer part of the quotient

s/sp, and from Definition 3.4, so we can get

0 ≤ P0 < Pp. (20)

Taking norms yields

||exi(t)|| = ||exi(P0 + Psi) +

∫ t

P0+Psi

ėxi(τ )dτ ||

= ||exi(P0 + Psi) +

∫ t

P0+Psi

evi(τ )dτ ||

≤ ||ex(P0)|| +

∫ t

P0+Psi

||evi(τ )||dτ, (21)

||evi(t)|| = ||evi(P0 + Psi) +

∫ t

P0+Psi

ėvi(τ )dτ ||

= ||evi(P0 + Psi) +

∫ t

P0+Psi

[−αγexi(τ )

−(α + γ)evi(τ ) +
eai(τ )

J
]dτ ||

≤ ||ev(P0)|| +

∫ t

P0+Psi

[αγ||exi(τ )||

+(α + γ)||evi(τ )|| +
||eai(τ )||

J
]dτ. (22)

For any function x(t) ∈ Rn, t ∈ [P0 + Psi, Psk + Psi], The

λ-norm for
∫ t−Psi

P0

||x(τ )||dτ is

sup
t∈[P0+Psi,Psk+Psi]

e−λt

∫ t−Psi

P0

||x(τ )||dτ

= sup
t∈[P0+Psi,Psk+Psi]

e−λt

∫ t−Psi

P0

||x(τ )||e−λτeλτdτ

≤ ||x(t)||λ sup
t∈[P0+Psi,Psk+Psi]

e−λt

∫ t−Psi

P0

eλτdτ

= ||x(t)||λφ, (23)

where

φ =
e−λPsi − e−λ(Psi+Psk−P0)

λ
. (24)
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Thus, from (21), (22) and (23), we get

||exi(t)||λ ≤ ||ex(P0)||λ + ||evi(t)||λφ, (25)

||evi(t)||λ ≤ ||ev(P0)||λ + [αγ||exi(t)||λ

+(α + γ)||evi(t)||λ +
||eai(t)||λ

J
]φ, (26)

solving the above inequalities (25) and (26), we have

[1 − αγφ2 − (α + γ)φ]||evi(t)||λ

≤ αγφ||ex(P0)||λ + ||ev(P0)||λ +
φ

J
||eai(t)||λ. (27)

Clearly, ∃λ, such that

αγφ2 +(α+ γ)φ < 1, namely,1−αγφ2 − (α+ γ)φ > 0, (28)

from (25) and (27), we can get

[1 − αγφ2 − (α + γ)φ]||exi(t)||λ

≤ [1 − (α + γ)φ]||ex(P0)||λ + φ||ev(P0)||λ

+
φ2

J
||eai(t)||λ, (29)

thus, (29) and (27) can be changed as

||exi(t)||λ

≤
[1 − (α + γ)φ]||ex(P0)||λ + φ||ev(P0)||λ

1 − αγφ2 − (α + γ)φ

+
φ2

J
||eai(t)||λ

1 − αγφ2 − (α + γ)φ
, (30)

||evi(t)||λ

≤
αγφ||ex(P0)||λ + ||ev(P0)||λ

1 − αγφ2 − (α + γ)φ

+
φ

J
||eai(t)||λ

1 − αγφ2 − (α + γ)φ
. (31)

Remark 3.3: In (28), even if γ = 0 or α = 0, the inequality is
still satisfied. Thus, we always have the inequalities (30) and (31).

From (9), the adaption law (12) and the relationship a(t) =
a(t − Pk), we can get

a(t) = ai(t), (32)

ea(t) = a(t) − â(t)

= a(t) − [δ

N
∑

i=0

hiâi(t) +
K

J
S(t)]

=

N
∑

i=1

hiai(t) − δ

N
∑

i=0

hiâi(t) −
K

J
S(t)

= δ

N
∑

i=1

hieai(t) −
K

J

N
∑

i=1

βimi(t) + (1 − δ)a(t)

= δ

N
∑

i=1

hieai(t) −
K

J

N
∑

i=1

βi[γexi(t) + evi(t)]

+(1 − δ)a(t), (33)

thus

||ea(t)||λ

≤ δ

N
∑

i=1

|hi|||eai(t)||λ +
K

J

N
∑

i=1

|βi|[γ||exi(t)||λ

+||evi(t)||λ] + (1 − δ)||a(t)||λ, (34)

Substituting (30) and (31) into (34) and from (2) yield

||ea(t)||λ ≤

N
∑

i=1

(δ|hi| +
K

J2
ξi)||eai(t)||λ + ε, (35)

where

ξi = bβ

γφ2 + φ

1 − αγφ2 − (α + γ)φ
, (36)

ε =
K

J

N
∑

i=1

bβ[
[γ − γ(α + γ)φ + αγφ]||ex(P0)||λ

1 − αγφ2 − (α + γ)φ

+
[1 + γφ]||ev(P0)||λ

1 − αγφ2 − (α + γ)φ
] + (1 − δ)||b0||λ. (37)

As t =
∑k

j=1
Pk+1−j + P0, where P0 ∈ [0, Pp) then (35) can

be changed as

||ea(

k
∑

j=1

Pk+1−j + P0)||λ

≤

N
∑

i=1

(δ +
K

J2
ξi)||ea(

k
∑

j=i+1

Pk+1−j + P0)||λ + ε, (38)

In (36), as 0 < δ < 1 and 0 ≤ |hi| ≤ 1, so we can find
a sufficiently large λ such that (δ|hi| + K

J2 ξi) < 1, and ξ =

ΣN
i=1(δ|hi| + K

J2 ξi) < 1. Then, according to Lemma 3.1 and
(38), we can obtain that

lim
k→∞

||ea(

k
∑

j=1

Pk+1−j + P0)||λ ≤
ε

1 − ξ
, (39)

Thus, we can get the result

lim
t→∞

||ea(t)||λ ≤
ε

1 − ξ
. (40)

From Theorem 3.1 and (20), ||ex(P0)|| and ||ev(P0)|| should
be bounded, so from (37) and (40), ε and ea(t) are bounded, if
(1−δ) tend to zero and λ tend to infinite, ε and ea(t) bound tend
to be zero asymptotically as t → ∞. Then, from (30) and (31),
we can conclude that the estimated disturbance error ea(t) and the
tracking errors ex(t), ev(t) bound tend to be zero asymptotically
as t → ∞.

So the system (3)-(4) can be asymptotically stabilized by the
control law (10) and the adaptation law (12) as t → ∞. This
completes the proof.

IV. EXPERIMENTS

A. Introduction to the Experiment Platform

A fractional horsepower dynamometer was developed as a
general purpose experiment platform to emulate mechanical non-
linearities such as time-dependent disturbances, state-dependent
disturbances, etc. This lab system can be used as a research
platform to test various nonlinear control schemes [16].

1) Architecture of the Dynamometer: The architecture of the
dynamometer control system is shown in Fig. 1. The Dynamome-
ter includes the DC motor to be tested, a hysteresis brake for
applying load to the motor, a load cell to provide force feedback,
an optical encoder for position feedback and a tachometer for
velocity feedback. The dynamometer was modified to connect
to a Quanser MultiQ4 terminal board in order to control the
system through Matlab/Simulink Real-Time Workshop (RTW)
based software. This terminal board connects with the Quanser
MultiQ4 data acquisition card. Then, using the Matlab/Simulink
environment, which uses the WinCon application, from Quanser,
to communicate with the data acquisition card, thus the complex
nonlinear control schemes were tested. This brings rapid prototyp-
ing and experiment capabilities to many nonlinear models.
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Fig. 1. The dynamometer setup used in PALC experiments
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Fig. 2. Block diagram of the cogging-liked disturbance PALC in the
Dynamometer position control system

2) Proposed Application: Without loss of generality, consider
the servo control system modeled by:

ẋ(t) = v(t), (41)

v̇(t) = f(t, x) + u(t). (42)

where x is the position state, f(t, x) is the unknown disturbance,
which may be state-dependent or time-dependent, v is the velocity,
and u is the control input. The system under consideration,
i.e. the DC motor in the dynamometer, has a transfer function
1.52/(1.01s + 1). Moreover, the presence of the hysteresis brake
allows us to add a time-dependent or state-dependent disturbance
(load) to the motor. These factors combined can emulate a system
similar to the one given by (41) and (42). A nonlinear controller
can be designed for such a problem and can be tested in the
presence of the real disturbance as introduced through the dy-
namometer.

B. Experiments on the Dynamometer

The proposed method is verified on the real-time dynamometer
position control system. The hysteresis brake force is designed as
multi-harmonics state-dependent disturbance

f(t, x) = a(x)/J = Fdisturbance, (43)

where

Fdisturbance = 10 cos(x) + 5 cos(2x) + 2.5 cos(3x).

when we substitute (43) into (42), then the system (41) and (42)
is the same format with (3) and (4). So we can validate the
DHO-PALC for state-dependent disturbance on the dynamometer
platform, Fig. 2 shows the block diagram. The control gains in
(10) were selected as: α = 5, γ = 10 and µ = 0.05. The periodic
adaptation gain K was selected as 0.015.

Two experimental cases are performed.

(a) Position (b) Velocity

(c) Position (d) Velocity

(e) Position (f) Velocity

Fig. 3. Experiment tracking errors without compensation, with compen-
sation using FO-PALC and using S-SO-PALC.

1) Case-1: Convergence speed comparison: For this case ex-
periment test, the following reference trajectory and velocity
signals are used:

sd(t) = 5t (rad),

vd(t) = 5 (rad/s).

First, we use the first order (FO) PALC, the adaptation law (12)
is presented as:

â(t) =

{

â1(t) + K
J

m1(t) if s ≥ sp

z − µv if s < sp.
(44)

Figures 3(c) and 3(d) show the position/speed tracking errors
with compensation of using the FO-PALC. We can observe that, as
time increases, the positive/speed tracking errors become smaller
and smaller. The FO-PALC works efficiently comparing with the
tracking errors without compensation in Figures 3(a) and 3(b).

Second, we use the second order (SO) of the composite feed-
back errors S (S-SO-PALC) to test the HO-PALC . At the same
time, in order to compare with the FO-PALC fairly, we design
β1=β2=0.5, so the adaptation law (12) is presented as:

â(t) =

{

A(t) + K
J

S(t) if s ≥ sp

z − µv if s < sp
(45)

with A(t) = â1(t), S(t) = 0.5m0(t) + 0.5m1(t).
Figures 3(e) and 3(f) show the positive/speed tracking errors

when using the S-SO-PALC method. Comparing with Fig. 3(c)
and Fig. 3(d), the convergence speed of the position/speed tracking
errors using the S-SO-PALC is obviously faster than that using the
FO-PALC.
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(a) Position (b) Velocity

(c) Position (d) Velocity

(e) Position (f) Velocity

Fig. 4. Varying reference tracking errors without compensation, with
compensation using FO-PALC and using A-SO-PALC.

2) Case-2: Performance comparison with varying reference: In
this case, the following varying reference trajectory and velocity
signals are used:

sd(t) =

∫ t

0

vd(τ )dτ,

vd(t) =
{

2 (rad/s) if jsp ≤ s < (j + 1)sp

4 (rad/s) if (j + 1)sp ≤ s < (j + 2)sp

where j = 0, 2, 4, · · · .
First, we apply the first order PALC, the adaptation law (12) is

presented as:

â(t) =

{

â1(t) + K
J

m1(t) if s ≥ sp

z − µv if s < sp.
(46)

Figures 4(c) and 4(d) show the position/speed tracking er-
rors with FO-PALC, where we can observe that, the FO-PALC
works comparing with the tracking errors without compensation
in Figures 4(a) and 4(b), but the compensation residual is not
satisfactory.

Now, we use the second order information of the estimate of
A for state-dependent disturbance (A-HO-PALC) to test the HO-
PALC. We choose h1=0 and h2=1, so the adaptation law (12) is
presented as:

â(t) =

{

â2(t) + K
J

m1(t) if s ≥ sp

z − µv if s < sp.
(47)

Figure 4 shows the positive/speed tracking errors using the
above A-SO-PALC. Comparing with Fig. 4(c) and Fig. 4(d), we
can clearly observe that the performance of using the A-SO-PALC
is much better than that using the FO-PALC with alternatively
varying reference.

V. CONCLUDING REMARKS

In this paper, a new high-order state-dependent periodic dis-
turbance compensation method is proposed. The key idea of this
method is to use two types of past information of more than one
period along the state-axis in the current adaptation learning law.
From the experimental results, we can conclude that, the proposed
DHO-PALC method for state-dependent disturbance works effec-
tively, and performs much better than the FO-PALC scheme. The
convergence speed of the position/speed tracking errors with the S-
HO-PALC is faster than that with the FO-PALC. In particular, the
compensation performance using A-HO-PALC is much better than
that using the FO-PALC when a varying reference is considered.
Furthermore, our suggested DHO-PALC method has been tested
for the general form of the state-dependent disturbances, which
include, state-dependent friction, cogging effect, eccentricity and
so on.
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