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Abstract—This paper presents a data-driven controller-
tuning algorithm that includes a sufficient condition for closed-
loop stability. This stability condition is defined by a set of
convex constraints on the Fourier transform of specific auto-
and cross-correlation functions. The constraints are included
in a correlation-based controller-tuning method that solves
a model-reference problem. This entirely data-driven method
requires a single experiment and can also be applied to
nonminimum-phase and unstable systems. The resulting con-
troller is guaranteed to stabilize the plant as the data length
tends to infinity. The performance with finite data length is
illustrated through a simulation example.

I. INTRODUCTION
In many control problems, the closed-loop specifications

are given as a reference model. A model-based solution
to these problems requires data from the plant to identify
and validate a plant model. The controller is then computed
via minimization of the model-reference control criterion,
possibly followed by controller-order reduction. In recent
years, several data-driven approaches have been proposed as
an alternative to the model-based approach. In data-driven
approaches, the input-output data from the plant are used
directly for the minimization of a control criterion [1], [2],
[3], [4].
The data-driven approaches can be classified as iterative

and non-iterative techniques. In iterative feedback tuning
(IFT) [1] and iterative correlation-based tuning (ICbT) [2],
a gradient approach is used to iteratively minimize a control
criterion. At each iteration, experiments are needed for
criterion evaluation or gradient estimation. Since the control
criterion is non-convex, the algorithm converges to a local
minimum. In non-iterative approaches, classical parameter
estimation algorithms are used to compute a controller that
minimizes an approximate control criterion [3], [5]. Using a
linearly parameterized controller, the optimization problem
becomes convex.
The main difficulty with both the iterative and non-

iterative algorithms is that, once a controller is designed,
there is no guarantee that this controller actually stabilizes
the system. Closed-loop stability for data-driven controller
tuning remains a problem that is usually addressed a pos-
teriori. This means that stability is verified after controller
computation and before actual implementation on the plant.
Several such a posteriori tests have been proposed in the
literature. Identification of the resulting closed-loop system
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is proposed in [6]. The test proposed in [7] is based on the
estimation of the infinity norm of a transfer function. In [8],
the controller validation test is based on the estimation of
the phase of the current closed-loop transfer function.
This paper proposes the first known attempt to integrate a

stability constraint in data-driven controller design. Under
mild conditions, the resulting controller is guaranteed to
stabilize the plant as the data length tends to infinity. The
stability constraint is defined as an upper bound on the infin-
ity norm of a certain transfer function. This constraint is then
approximated by a set of constraints on the spectral estimate
of this transfer function, implemented as the discrete Fourier
transform of the corresponding auto- and crosscorrelations.
The resulting set of constraints is shown to be convex with
respect to the controller parameters.
In Section II the data-driven model-reference problem is

defined for stable systems and a non-iterative tuning algo-
rithm using the correlation approach is reviewed. A sufficient
condition for closed-loop stability and its implementation in
controller design using a spectral estimate is discussed in
Section III. In Section IV, this method is adapted to handle
unstable and/or nonminimum-phase systems. A simulation
example illustrates the approach in Section V. The paper
ends with some concluding remarks.

II. DATA-DRIVEN MODEL-REFERENCE CONTROL

Consider the unknown plant G(q−1), where q−1 denotes
the backward shift operator. The objective is to design a lin-
ear fixed-order controllerK(ρ, q−1) for which the controlled
plant resembles the stable reference modelM(q−1). This can
be achieved by minimizing the two-norm of the difference
between the reference model and the achieved closed-loop
system:

Jmr(ρ) =

∥

∥

∥

∥

M −
K(ρ)G

1 + K(ρ)G

∥

∥

∥

∥

2

2

(1)

Minimizing this model-reference criterion is a standard
control problem when the plant model G is known. Us-
ing Parseval’s theorem, a time-domain equivalent of this
frequency-domain criterion can be formulated. The time-
domain criterion ‖εcl(t)‖2 can be minimized for a given ref-
erence signal r(t) using a data-driven approach as illustrated
in Fig. 1.
Since the criterion (1) is non-convex with respect to the

controller parameters ρ, only a local minimum can be guar-
anteed upon convergence. This problem can be circumvented
by minimizing a convex approximation of criterion (1).
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Fig. 1. Model-reference control problem

A. Convex Approximation

The reference model M(q−1) can be expressed as

M(q−1) =
K∗(q−1)G(q−1)

1 + K∗(q−1)G(q−1)
(2)

where K∗(q−1) is the ideal controller. Note that neither the
order nor the structure of this ideal controller are specified
explicitly; they are given implicitly through the specification
of M . Furthermore, if the reference model is inappropriate,
the ideal controller K∗ might not ensure internal stability.
The model-reference criterion can be approximated as

Japp(ρ) =

∥

∥

∥

∥

K∗G − K(ρ)G

(1 + K∗G)2

∥

∥

∥

∥

2

2

. (3)

This approximation is good if the difference between K(ρ)
and the ideal controller K∗ can be made small. If the
controllerK(ρ) is linear in the parameters ρ, the approximate
criterion in (3) is convex with respect to ρ. This approx-
imation has been used in model reduction and controller
reduction (see [9] for an overview) as well as in data-driven
controller tuning [3], [5].
A controller-tuning scheme that uses only one experiment

was proposed in [5] for linear SISO systems. The time-
domain equivalent of criterion (3) is illustrated in Fig. 2. It
results in an identification problem that has a noisy input in
contrast to classical identification problems where the output
is affected by noise. In order to find an unbiased controller,
the correlation approach is used in which the correlation
between the error ε(t) and the reference r(t) is minimized.
In the following, the implementation of this scheme for

stable systems using a periodic input is discussed. Although
the asymptotic results presented in this paper are also valid
for non-periodic signals, the use of periodic signals is
advantageous for finite data length. This can be explained
as follows. The estimation of the correlation functions and
Fourier transform of signals used in the proposed approach
contains two major sources of errors: the truncation error
and the noise term. For non-periodic signals, both errors
reduce when the number of data goes to infinity, but they can
be important for finite data length. When using a periodic
input, the truncation error can be removed completely for
the (periodic) deterministic part of the signals. Hence, only
the noise term will affect the estimates. This remaining error
can be reduced by averaging over a number of periods.
The power spectrum of the periodic signal r(t) is defined

as

Φr(ωk) =
1

T

T−1
∑

τ=0

Rr(τ)e
−iτωk ,

where ωk = 2πk/T, k = 0, . . . , #(T −1)/2$ and #·$ denotes
the closest integer below. Rr(τ) is the autocorrelation of
r(t):

Rr(τ) =
1

T

T
∑

t=1

r(t − τ)r(t) for τ = 0, . . . , T − 1

If the input signal is a Pseudo-Random Binary Signal
(PRBS) with period T and total length N = pT , i.e. for
p periods, the spectrum Φr(ω) is nonzero for ωk and as
T → ∞, Φr(ω) '= 0, ∀ω ∈ [0, 2π). This characteristic makes
PRBS very attractive for the proposed approach.
Let the stable linear SISO system G be excited in open

loop with a PRBS (see Fig. 2). The noisy output y(t)
is measured. The noise is assumed to be zero mean and
uncorrelated with the input signal, i.e. the cross-correlation
vanishes, Rrv(τ) = 0, ∀τ . The error signal ε(t, ρ) in Fig. 2
can be expressed in terms of the signals r(t) and y(t):

ε(t, ρ) = Mr(t) − K(ρ)(1 − M)y(t) (4)

Let the controller be linearly parameterized in ρ:

K(ρ) = βT (q−1)ρ (5)

where β(q−1) is a vector of linear stable discrete-time
transfer operators:

β(q−1) = [β1(q
−1),β2(q

−1), . . . ,βnρ(q
−1)]T (6)

with nρ the number of controller parameters. Then, the error
signal ε(t, ρ) can be obtained by linear regression:

ε(t, ρ) = rM (t) − φT (t)ρ (7)

where rM (t) = Mr(t) and φ(t) = β(1 − M)y(t).
The correlation function fT (ρ) for periodic signals is also

periodic with the same period:

fT (ρ) =
1

T

T
∑

t=1

E{ζw(t)ε(t, ρ)}

=
1

T

T
∑

t=1

ζw(t)
[

rM (t) − E{φT (t)}ρ
]

(8)

where E{·} is the mathematical expectation and

ζw(t) = [rw(t), rw(t − 1), . . . , rw(t − T + 1)]T (9)

with rw(t) = W (q−1)r(t). The choice of W (q−1) will be
discussed later.
An unbiased estimate of the cross-correlation function

between rW (t) and ε(t, ρ) can be obtained if E{φT (t)}
is replaced by φT (t). The variance of the estimate can be
reduced if the cross-correlation function is computed over
all periods:

f̂N(ρ) =
1

N

N
∑

t=1

ζw(t)
[

rM (t) − φT (t)ρ
]

(10)
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Fig. 2. Approximation of the model-reference control problem for stable
systems. This set-up allows the non-iterative computation of the controller
parameters ρ
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Fig. 3. Closed-loop system using explicit representation of the controller
error K(ρ) − K∗

The controllerK(ρ) that minimizes the approximate model-
reference criterion (3) is then given by

ρ̂ = min
ρ

f̂T
N(ρ)f̂N (ρ).

This criterion is convex in ρ and its minimizer is the least-
squares solution.
It can be shown that with the weighting filter

W (e−jωk) =
1 − M(e−jωk)

Φr(ωk)
, (11)

the time-domain f̂T
N(ρ)f̂N (ρ) criterion and Japp are asymp-

totically equivalent, i.e. :

lim
T,N→∞,T/N→0

f̂T
N (ρ)f̂N (ρ) = Japp(ρ)

The proof is similar to that given in [5] for non-periodic
signals and is omitted here. Note that the filter is defined for
the frequencies where the input spectrum Φr(ωk) '= 0.

B. Stability Issues

There is no guarantee that the controller designed using
the approach described above – or any other data-driven
approach – stabilizes the system. Instability can occur if the
reference model M is chosen inappropriately or if the mea-
surements are corrupted by noise. Even the ideal controller
may destabilize the closed-loop system. Stability can only
be guaranteed if G is minimum phase or M contained the
unstable zeros of G. Clearly, this last condition makes an
appropriate choice of M difficult.
An example of an inappropriately chosen reference model

is shown in [10], where the stabilizing ideal controller K∗

does not belong to the set of possible controllersK(ρ). As a
consequence, the optimal controller K(ρopt) minimizing (3)
destabilizes the system.

III. CONVEX CONSTRAINT FOR STABILITY USING
SPECTRAL ESTIMATION

A way of integrating stability constraints in data-driven
controller-design methods is proposed next. The set of
constraints represents a sufficient condition for closed-loop
stability, defined as the H∞-norm of a certain transfer
function. This norm is estimated using power spectral density
functions. The constraints are implemented using the discrete
Fourier transform (DFT) of the corresponding auto- and
crosscorrelation functions and are convex with respect to the
controller parameters. It should be noted that this estimate
for noise-free periodic signals is exact for a finite number of
frequencies. In the presence of noise the estimate is unbiased
and its variance decreases as the number of data increases.
Minimization of the H∞-norm of a transfer function has

already been considered in some data-driven approaches
using Toeplitz matrices [4], [11], but it has never been used
to define a convex set of stabilizing controllers.

A. Sufficient Condition for Closed-Loop Stability
A sufficient condition for closed-loop stability with the

controller K(ρ) has been proposed in [7]. The closed-loop
system K(ρ)G

1+K(ρ)G can be represented as the interconnection
of a reference model M and the difference between K(ρ)
and K∗ as illustrated in Fig. 3.
If the loop is opened at q, a plant is obtained that is stable

if the optimal controller K∗ internally stabilizes the system
and K(ρ) is stable. If this is the case, the small-gain theorem
can be used to define a sufficient condition for closed-loop
stability. The stable controllerK(ρ) is guaranteed to stabilize
G if K∗ internally stabilizes G and

δ0 =
∥

∥

∥

−(K(ρ) − K∗)G

1 + K∗G

∥

∥

∥

∞
< 1. (12)

δ0 is the H∞-norm of the loop transfer function from q back
to q. Replacing K∗G

1+K∗G by M and 1
1+K∗G by (1−M) gives:

δ0 = ‖M − K(ρ)(1 − M)G‖∞ < 1 (13)

This H∞-norm can be estimated if a set of data consisting
of the corresponding input and output signals is available or
can be constructed.
It turns out that r(t) and ε(t, ρ) used in the control

criterion give exactly the input and output signals needed
to estimate δ0. Hence, the same set of data can be used to
define both a convex control objective and a set of convex
constraints on K(ρ) such that δ̂ < 1, where δ̂ is an estimate
of δ0 based on spectral analysis.

B. Convex Constraint for Stability using DFT
Let the stable minimum-phase system G be excited in

open-loop mode by a PRBS as illustrated in Fig. 2. The
resulting error ε(t, ρ) is corrupted by noise. δ0 can be esti-
mated using the power spectral density function Φr(ωk) of
r(t) and the power cross-spectral density functionΦrε(ωk, ρ)
between r(t) and ε(r, ρ), defined as

Φrε(ωk, ρ) =
1

T

T−1
∑

τ=0

Rrε(τ, ρ)e
−iτωk ,
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using the cross-correlation between r(t) and ε(t, ρ):

Rrε(τ, ρ) =
1

T

T
∑

t=1

E{r(t − τ)ε(t, ρ)}.

For periodic signals Rr(τ) can be calculated but Rrε(τ, ρ)
needs to be estimated when only a finite number of noise
corrupted data is available. The effect of noise can be reduced
by the use of several periods in the calculation of this cross-
correlation function. An unbiased estimate R̂rε(τ, ρ) can be
found using:

R̂rε(τ, ρ) =
1

N

N
∑

t=1

r(t − τ)ε(t, ρ), τ = 0, 1, . . . , T − 1

An estimate of δ0 can then be bounded using

δ̂(ρ) = max
{ωk|Φr(ωk) %=0}

∣

∣

∣

∣

∣

Φ̂rε(ωk, ρ)

Φr(ωk)

∣

∣

∣

∣

∣

< 1 (14)

Since the controller K(ρ) is linearly parametrized, ε(t, ρ)
and Φ̂rε(ωk, ρ) are linear in the controller parameters ρ.
Consequently,

∣

∣

∣

Φ̂rε(ωk,ρ)
Φr(ωk)

∣

∣

∣
is convex in ρ for each frequency

ωk. The sufficient condition (13) can thus be approximated
as a set of convex constraints on the controller parameters
ρ, by imposing δ̂ < 1. This allows the stability condition
to be integrated in the controller design. Note that δ̂ < 1
does not necessarily imply that δ0 < 1. However, since both
the input signal r(t) and the deterministic part of ε(t, ρ) are
periodic, well-known results on power spectra of periodic
signals are applicable to this estimate δ̂ [12]. Φr(ωk) is
non-zero at the specific T frequencies. Due to symmetry
only #(T − 1)/2$ frequencies need to be considered. The
variance of Φ̂rε(ωk, ρ) decreases as the number of periods p
increases and tends to zero as p → ∞. Asymptotically the
estimate using (14) is therefore unbiased. If the length of
the period T → ∞, the frequency grid becomes continuous.
Since the input r(t) is a PRBS its spectrum Φr(ωk) '= 0, ∀ω
as T → ∞.
The solution of the following convex optimization problem

provides asymptotically a stabilizing controller for the stable
minimum-phase plant G:

ρ̂ = min
ρ

f̂T
N (ρ)f̂N (ρ)

subject to
∣

∣

∣

∣

∣

1

T

T−1
∑

τ=0

R̂rε(τ, ρ)e
−iτωk

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

∣

1

T

T−1
∑

τ=0

Rr(τ)e
−iτωk

∣

∣

∣

∣

∣

ωk = 2πk/T, k = 0, . . . , #(T − 1)/2$

(15)

In this controller-tuning algorithm, the approximate model-
reference criterion (3) is minimized over a subset of the set
of stabilizing controllers for which (13) is satisfied.

C. Convex Constraint for stability using LMI

H∞ specifications have been used in system identification
[13] and data-driven controller tuning [4] as well as in the

stability test as introduced in [7]. In these methods, non-
periodic signals are considered and the constraint on theH∞-
norm is defined using Toeplitz matrices, which leads to a
Linear Matrix Inequality (LMI). The constraints proposed in
this paper can also be implemented using an LMI.
Consider a circulant matrix defined for x(t) as

C(x) =















x(1) x(2) . . . x(N − 1) x(N)
x(N) x(1) . . . x(N − 2) x(N − 1)
...

...
. . .

...
...

x(3) x(4) . . . x(1) x(2)
x(2) x(3) . . . x(N) x(1)















where each row is a cyclic shift of the row above it. Some
characteristics of circulant matrices are as follows [14]:
1) The eigenvalues of a circulant matrix are given by :

λk(C(x)) =
N

∑

t=1

x(t)e−itωk ,

ωk = 2πk/N, k = 0, . . . , N − 1 (16)

2) The eigenvectors of each circulant matrix of size N
are given by:

Uk =
1√
N

(

1, e−iωk , e−i2ωk , . . . , e−i(N−1)ωk

)

(17)

The eigenvectors are independent of the elements of
the matrix.

3) Define the matrix U , which has the eigenvectors Uk,
k = 0, . . . , N − 1, as columns, and define Λ(·) =
diag(λk(C(·)). U is full rank and unitary, i.e. UU∗ = I
and U∗U = I . For each circulant matrix C(·):

Λ(·) = U∗C(·)U (18)

To proceed, we need the following lemma:
Lemma 1: Consider C(x) and C(z) two N ×N circulant

matrices. One has:

CT (x)C(x) − CT (z)C(z) < 0 ⇐⇒
|λk(C(x))| − |λk(C(z))| < 0, k = 0, . . . , N − 1 (19)
Proof: Since U is full rank:

CT (x)C(x) − CT (z)C(z) < 0 ⇐⇒
U∗

(

CT (x)C(x) − CT (z)C(z)
)

U < 0 ⇐⇒
Λ(x)∗Λ(x) − Λ(z)∗Λ(z) < 0 ⇐⇒
|λk(C(x))| − |λk(C(z))| < 0, k = 0, . . . , N − 1

The third expression follows from (18) and the last one from
the definition of Λ(·).
The main result of this subsection is presented in the

following theorem:
Theorem 1: The convex constraints given in (14) are

equivalent to the following LMI:
[

−CT
t (r)Ct(r)CT

t (r)Ct(r) CT
t (r)Ct(ε(ρ))

CT
t (ε(ρ))Ct(r) −I

]

< 0

(20)
where Ct(·) is a truncated circulant matrix of size (N ×T ).
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Proof: The DFT of the periodic input signal has only T
non-zero values. In order to avoid problems with eigenvalues
equal to zero, only one period will be used in the LMI.
For this reason truncated circulant matrices of size (N ×
T ) are used. The multiplication of two truncated matrices
CT

t (ε(ρ))Ct(r) is a circulant matrix of size (T × T ) of the
unbiased estimate R̂rε(τ, ρ) for τ = 0, . . . , T − 1 and its
eigenvalues are T Φ̂rε(ωk, ρ). In the same way, CT

t (r)Ct(r)
is a circulant matrix of size (T × T ) of Rr(τ) with positive
eigenvalues equal to TΦr(ωk). Then, using Lemma 1 we
have :

CT
t (ε(ρ))Ct(r)C

T
t (r)Ct(ε(ρ))

− CT
t (r)Ct(r)C

T
t (r)Ct(r) < 0

⇐⇒ |Φ̂rε(ωk, ρ)|− |Φr(ωk)| < 0

ωk = 2πk/T, k = 0, . . . , (T − 1) (21)

Using the Schur complement, the LMI in (20) is obtained.

Remark: Constraint (20) can be seen as a periodic version
of the norm proposed in [10]. The direct use of the DFT
instead of these circulant matrices has two advantages. First
of all the computational load is much smaller. Secondly the
frequencies considered can be chosen in a straightforward
manner. For example, only frequencies where the signal-to-
noise ratio is reasonable could be selected. A comparison is
given in the example of section V.

IV. APPROACH FOR NONMINIMUM-PHASE AND/OR
UNSTABLE SYSTEMS

For nonminimum-phase and for unstable systems, it is
difficult to specify an appropriate reference model. An M
that leads to a stabilizing optimal controller K∗ can in
general only be found if the unstable poles and zeros of
the plant are known. For this reason, the use of model-based
control design methods is often preferred over data-driven
model-reference approaches for such systems. However, with
the addition of a stability constraint in the controller design
step, this method becomes applicable to nonminimum-phase
and unstable systems as well. In the following, the approach
of Section III is extended to nonminimum-phase and unstable
systems.
Since the stability constraint (12) is based on the small-

gain theorem, it is applicable only ifK∗ stabilizes the system
internally. The stability condition is thus subject to the same
difficulties as the initial model-reference problem. However,
the reference model M used in the approximate model-
reference criterion (3) does not need to be the same as that
in the stability criterion (14). If a stabilizing controller Ks

is available and used to control the plant, it can be used to
specify the reference model

Ms =
KsG

1 + KsG

for the stability condition. It should be noted that, since
G is unknown, Ms will be unknown as well. However, in
order to estimate δ0 in (13) and define the constraints for

K(ρ)Ks G 1 − M

closed-loop experiment

!

!! !! ! ! !! ! "

M!

#

#
!

#

"-

ε(t, ρ)
r(t) v(t)

y(t)

u2u1

+

-
+

Fig. 4. Model-reference control problem using one closed-loop experiment

the optimization problem, a set of input/output data of the
transfer function

Ms − K(ρ)(1 − Ms)G (22)

is sufficient. These signals as well as the signals necessary
to minimize the model-reference criterion (3) are available
from the tuning scheme shown in Fig. 4.
The plant is controlled using Ks, the excitation signal is

applied directly to the input of the plant. The available data
include the exogeneous excitation signal r(t), the output of
the controller u1(t), the resulting input to the plant u2(t) =
u1(t) + r(t) and the output of the controlled plant y(t).
The stability constraints are defined using r(t) as input

to the transfer function in (22). The corresponding (noise-
corrupted) output εs(t, ρ) can be found as follows:

εs(t, ρ) = −u1(t)−K(ρ)y(t) =
(

Ms−K(ρ)(1−Ms)G
)

r(t)

+ (Ks − K(ρ))(1 − Ms)v(t) (23)

This output is no longer equal to the error signal ε(t, ρ)
needed for the model-reference criterion. ε(t, ρ) is shown in
Fig. 4 and can be expressed as a function of ρ:

ε(t, ρ) = Mu2(t) − K(ρ)(1 − M)y(t) (24)

The correlation function and the instrumental variables are
the same as those defined in (10) and in (9).
The filter W necessary for asymptotic equivalence of

f̂T
N (ρ)f̂N (ρ) and Japp now becomes:

W (e−jωk) =
1 − M(e−jωk)

Φu2r(ωk)
, (25)

where
Φu2r(ωk) =

1

1 + KsG
Φr(ωk)

is the cross-spectrum between u2(t) and r(t), [5].
The solution of the following convex optimization prob-

lem provides asymptotically a stabilizing controller for the
unstable and/or nonminimum-phase plant G:

ρ̂ = min
ρ

f̂T
N (ρ)f̂N (ρ)

subject to
∣

∣

∣

∣

∣

1

T

T−1
∑

τ=0

R̂rεs(τ, ρ)e
−iτωk

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

∣

1

T

T−1
∑

τ=0

Rr(τ)e
−iτωk

∣

∣

∣

∣

∣

ωk = 2πk/T, k = 0, . . . , #(T − 1)/2$

(26)
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In this controller tuning algorithm the approximate model-
reference criterion is minimized for M , while stability is
guaranteed using Ms.

V. SIMULATION EXAMPLE
A simple example was used in [10] to show that stability

problems occur “for the class of identification-for-control
methods that use arbitrary data in the identification”. The
same example will be used here to show that the method
proposed in this paper leads to stabilizing controllers.
The pure time-delay system G(q−1) = q−1 is considered.

The proportional controller K = ρ is used to control the
plant. The controlled system is unstable for |ρ| > 1. The
reference model is M = 1 − α + αq−1, where α is a
parameter controlling the bandwidth. The model-reference
control problem is minimized byKopt = 4α−1

6α . For 0 < α <
0.1, |Kopt| > 1 and the controlled system will be unstable.
The system is excited by a periodic PRBS with period

T = 63, p = 4 periods and β = 1. The reference model
is chosen as M = 0.95 + 0.05q−1, i.e. with α = 0.05
for which the optimal controller Kopt = −2.67 destabilizes
the plant. Two controllers are calculated using noise-free
simulation data. The first controller is calculated without
the constraints in (15) and thus minimizes f̂T

N f̂N . The
controller found is K(ρ1) = −2.67, which destabilizes the
system. The second controller is calculated using the stability
constraints in (15). In order to avoid numerical problems,
constraints (14) are bounded by 0.999. This optimization
is infeasible. A closer look at the bound (13) shows that
‖M −K(1−M)G‖∞ = 1 for all stabilizing controllers and
the problem is indeed infeasible. The controller design was
poorly formulated through an inappropriate choice of M .
In order to show the effectiveness of the method in the

presence of noise, the reference model used for the stability
constraints is slightly altered, Ms = 1 − α + 0.95αq−1.
The reference model used in the control objective remains
unchanged. For this problem ‖Ms−K(ρ)(1−Ms)G‖∞ < 1
for a subset of the stabilizing controllers and the problem
is feasible. The output of the system is perturbed by a
white noise such that the signal-to-noise ratio is about 10
in terms of variance. The controller obtained without using
the constraints in (15) is K(ρ1) = −2.34, which again
destabilizes the system. The second controller calculated
using (15) is K(ρ2) = −0.33. Clearly, |K(ρ2)| < 1 and
it stabilizes the system. The difference between K(ρ1) and
K(ρ2) indicates a poor problem formulation.
Constraints in (15) can also be implemented using cir-

culant matrices. However, this leads to a large LMI, which
becomes expensive to compute for large data length. The
following comparison is found using Matlab V 7.4 on a Mac
with a 3 GHz processor and 5 GB memory. The optimization
is implemented using Yalmip and Sedumi. The aforemen-
tioned problem for N = 252 leads to exactly the same
result using both implementations. The DFT approach is
more expensive to formulate but faster to run. The difference
is small for small data lengths, e.g. for T = 63, N = 252
the DFT approach takes 0.7s vs. 2s for the LMI. For T =

127, N = 1016, the DFT approach takes 2.2s vs. 13s for the
LMI. For T = 255, N = 2040, the LMI cannot be solved
(memory problems) whereas the DFT approach only takes
3s. When using the DFT approach the data length can be
increased to at least T = 1023, N = 8184, for which the
optimization is solved within 10s.

VI. CONCLUSIONS
A data-driven controller tuning approach that asymptoti-

cally guarantees closed-loop stability is presented. The ap-
proach combines minimization of an approximateH2 model-
reference problem with an H∞ constraint that represents
a sufficient condition for closed-loop stability. The H∞

constraint is implemented using the DFT of auto- and cross-
correlation functions. This corresponds to an estimate of the
H∞-norm using power spectral densities. A periodic input
signal is used to improve the quality of this estimate. The
approach leads to a set of convex constraints that can be
added to any data-driven controller tuning scheme with a
linearly parametrized controller. The stability of the closed-
loop is guaranteed if the data length tends to infinity.
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