Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

ThA02.1

Approximate Dynamic Programming Using Support Vector Regression

Brett Bethke, Jonathan P. How, and Asuman Ozdaglar

Abstract— This paper presents a new approximate policy
iteration algorithm based on support vector regression (SVR).
It provides an overview of commonly used cost approximation
architectures in approximate dynamic programming problems,
explains some difficulties encountered by these architectures,
and argues that SVR-based architectures can avoid some of
these difficulties. A key contribution of this paper is to present
an extension of the SVR problem to carry out approximate
policy iteration by forcing the Bellman error to zero at selected
states. The algorithm does not require trajectory simulations to
be performed and is able to utilize a rich set of basis functions
in a computationally efficient way. Computational results for
an example problem are shown.

I. INTRODUCTION

Dynamic programming is a framework for addressing
problems involving sequential decision making under un-
certainty [1]. Such problems occur frequently in a number
of fields, including engineering, finance, and operations
research. This paper considers the general class of infinite
horizon, discounted, finite state Markov Decision Processes
(MDPs). The MDP is specified by (&, <, P,g), where .
is the state space, </ is the action space, P;j(u) gives the
transition probability from state i to state j under action
u, and g(i,u) gives the cost of taking action u in state
i. We assume that the MDP specification is fully known.
Future costs are discounted by a factor 0 < @ < 1. A policy
of the MDP is denoted by u : . — o/. Given the MDP
specification, the problem is to minimize the so-called cost-
to-go function J,; over the set of admissible policies II:

. N - k. .
min Ju (io) —gggﬂé)a 8k, 1 (i))]-

While MDPs are a powerful and general framework, they
suffer from the well-known “curse of dimensionality”, which
states that as the problem size increases, the amount of
computation necessary to find the solution increases expo-
nentially rapidly. Indeed, for most MDPs of interest in the
real world, this difficulty renders them impossible to solve
exactly. To overcome the curse of dimensionality, researchers
have investigated a number of methods for generating ap-
proximate solutions to large dynamic programs, giving rise
to fields such as approximate dynamic programming, rein-
forcement learning, and neuro-dynamic programming. An
important technique employed in many of these methods is

B. Bethke is a PhD Candidate, Dept. of Aeronautics and Astronautics,
MIT, Cambridge, MA 02139, USA, bbethkelmit.edu

J. How is a Professor in the Dept. of Aeronautics and Astronautics,
Massachusetts Institute of Technology, Jhow@mit .edu

A. Ozdaglar is an Associate Professor in the Dept. of Electrical En-
gineering and Computer Science, Massachusetts Institute of Technology,
asuman@mit.edu

978-1-4244-3124-3/08/$25.00 ©2008 IEEE

the use of a parametric function approximation architecture
to approximate the cost-to-go function Jy, of a given policy
1. Once the cost-to-go function (or a suitable approximation
thereof) is known, an improved policy can usually be com-
puted. This process of policy evaluation followed by policy
improvement is then repeated, yielding a method known as
approximate policy iteration which produces a sequence of
potentially improving policies [2].

A important problem in these approximate policy iteration
methods is the choice of the cost function approximation
architecture employed. The approximation is denoted by
Ju(i;8), where i € 7 is a chosen state and 0 is a vector of
tunable parameters. Numerous approximation architectures
have been investigated. Neural networks have received much
attention as a useful approximation architecture. For exam-
ple, Tesauro used a neural network approach in his famous
TD-Gammon computer backgammon player, which was able
to achieve world-class play [3]. The linear combination of
basis functions approach [1], [2], [4]-[7] has also been in-
vestigated extensively. In this approach, the designer picks a
set of r basis functions ¢ (i),k € {1...r}. The approximation
JIL(i; 0) is then given by a linear combination of the basis
functions,

7u(i:0) =kilek¢k<i> — 679(i). 0

Once an approximation architecture is selected, the values
of the tunable parameters 6 can be chosen in many ways
[1, Vol II, Chapter 6]. So-called direct or simulation-based
methods use simulation of state trajectories and the resulting
trajectory costs to update the parameters. Another approach,
known as Bellman error methods [2, Chapter 6, Section 10],
attempt to choose the parameters by minimizing the Bellman
error over a set of sample states .%;:

2
min) (@(i;e) - (g(zyu(i))w Y w(i))f,;(j;e))) :

= e jes
A. Motivation for Support Vector Techniques

Unfortunately, there are several difficulties associated with
both the choice of approximation architecture and the method
used to select the parameters. In both the neural network and
basis function approximation architectures, the designer must
trade off the expressiveness of the architecture (which may be
thought of as the set of functions it can reproduce perfectly)
with the need to maintain computational tractability. The
former consideration pushes the design toward architectures
with a large number of parameters. Indeed, a lookup table
approximation architecture with n = |.#’| parameters could

3811

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008

represent any arbitrary function J,(.) perfectly by simply
storing the value of the function at each of the n states. Com-
putational considerations require the use of fewer parameters,
since implementing any architecture with a large number
of parameters renders the resulting computations difficult to
perform.

In addition to the issue regarding the number of pa-
rameters, each of the approximation architectures discussed
so far presents its own unique difficulties. In the case of
neural networks, the optimization problem that must be
solved in the training process is nonconvex, which may
lead to implementation difficulties. In addition, there can be
ambiguity in the proper choice of the topology of the network
(e.g., how many hidden layers to choose, how many nodes).
Typically, experimentation is necessary to properly “tune” a
neural network to a particular problem [8], [9]. In a basis
function architecture, the set of basis functions themselves
must be chosen, which may be difficult to do unless the
designer has some prior knowledge about the structure of the
true cost-to-go Jy(.) [10]. If a poor set of basis functions is
chosen, the architecture may be unable to approximate J,;(.)
well even if the number of functions is large.

Furthermore, simulation-based methods for updating the
parameters of the chosen approximation architecture suffer
from the simulation noise problem [2, Chapter 6]. This
problem arises because of the need to sample state tra-
jectories from the Markov chain associated with a given
policy u. Simulation noise refers to the fact that there
is randomness in the states and associated costs that will
be observed in a given trajectory, which may ultimately
lead to inaccurate estimates of the cost-to-go function. In
practice, it may be necessary to simulate a very large number
of trajectories, leading to increased computation time, in
order to gain confidence that the resulting cost estimates
are accurate. In contrast, Bellman error methods avoid the
use of simulations by working directly with the Bellman
equation. However, like simulation-based methods, they still
suffer from the difficulties associated with the choice of
approximation architecture discussed above.

To address these issues, we propose a different approx-
imation architecture based on the idea of support vector
regression (SVR) [8], [11]. SVR is similar in form to the
basis function approach in that the approximation is given by
a linear combination of basis functions (also called features
in this context) as in Eq. (1). However, we will demonstrate
that SVR has a number of advantages over both neural
network and basis function architectures in the approximate
dynamic programming problem, including:

« Being a kernel-based method, SVR can handle very

large, possibly infinite, numbers of basis functions in
a computationally tractable way. This makes the SVR
architecture very expressive, yet practical to apply from
a computational standpoint.

o The SVR solution is calculated via a convex quadratic
program which has a unique optimal solution (contrast
this with the nonconvex problem that arises in training
a neural network).

ThA02.1

o The difficulties of choosing network topologies, activa-
tion functions, and basis function sets are eliminated.
Instead, the designer needs to select an appropriately
powerful kernel (which implicitly specifies the basic
function set). Many powerful yet easily computable
kernels are known [12, Chapter 4].

The simplest use of the SVR architecture employs a
simulation-based method to choose the parameters of the
architecture. In this paper, we show that it is also possible
to develop an SVR-based method that is similar in spirit to
traditional Bellman error methods. This SVR-based method
retains the advantage possessed by traditional Bellman er-
ror methods of not requiring trajectory simulations, while
eliminating the difficulties associated with the choice of
approximation architecture.

This paper presents this SVR-based method for approxi-
mate policy evaluation and proves its correctness in the limit
of sampling the entire state space. The method is shown to be
computationally efficient, and a full approximate policy iter-
ation algorithm based on it is given. Finally, computational
results are provided that show that the algorithm converges
quickly to a near-optimal policy in two test problems.

II. SUPPORT VECTOR REGRESSION BASICS

This section provides a basic overview of support vector
regression; for more details, see [8]. The objective of the
SVR problem is to learn a function

£ = Y 8ede(x) = 079 ()
k=1

that gives a good approximation of a given set of training data
{(x1,%1)5- -, (Xn,yn)} where x; € R™ is the input data and
vi € R is the observed output. Note that the functional form
assumed for f(x) is identical to Eq. (1). The training problem
is posed as the following quadratic optimization problem:

mn gloI° ¢ X (E+E) @

st. yi—0T9(n) < e+ (3)

—yi+8"9(x) < e+&)
&,& > 0 Vie{l,...,n}.

Here, the regularization term %|[0|*> penalizes model com-
plexity, and the &;, &7 are slack variables which are active
whenever a training point y; lies farther than a distance
€ from the approximating function f(x;). The parameter ¢
trades off model complexity with accuracy of fitting the
observed training data. As c increases, any data points for
which the slack variables are active incur higher cost, so the
optimization problem tends to fit the data more closely (note
that fitting too closely may not be desired if the training data
is noisy).

The minimization problem [Eq. (2)] is difficult to solve
when the number of basis functions r is large, for two
reasons. First, it is computationally demanding to compute
the values of all r basis functions for each of the data points.
Second, the number of decision variables in the problem is

3812

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008

r (since there is one 6; for each basis function ¢;(.)), so the
minimization must be carried out in an r-dimensional space.
To address these issues, one can solve the primal problem
through its dual, which can be formulated by computing
the Lagrangian and minimizing with respect to the primal
variables 0 and &;, & (again, for more details, see [8]). The
dual problem is

1 & * e \T ‘
o *giﬂzz,l(li =) (AF =) () ¢ (xi)

—&Y (A" +)+ Y yi(AF —) (&)
=1 =1

st 0<AA <c Vie{l,...,n}.

Note that the basis function vectors ¢(x;) now appear only
as inner products. This is important, because in many cases
a kernel function K(x;,xy) = ¢(x;))T¢(xs) can be defined
whose evaluation avoids the need to explicitly calculate the
vectors @ (x;), resulting in significant computational savings.
Also, the dimensionality of the dual problem is reduced to
only 2n decision variables, since there is one A; and one A
for each of the data points. Again, when the number of basis
functions is large, this results in significant computational
savings. Furthermore, it is well known that the dual problem
can be solved efficiently using techniques such as Sequential
Minimal Optimization (SMO) [13], [14]. Many libraries such
as 1ibSVM [15] implement SMO to solve the SVR problem
(i.e. find the values of the dual variables A,A*). Once the
dual variables are known, the function f(x) can be computed
using the so-called support vector expansion:

=

n

(A = A7)0 () 0(x) = Y (A = 2K (xi,).

1 i=1

fx) =

1

III. SVR-BASED PoLICY EVALUATION

Given the advantages outlined above of an SVR-based
cost approximation architecture, this section now presents
a progression of ideas on how to incorporate SVR into the
approximate policy evaluation problem.

A. Formulation 1: Simulation-based Approach

The first formulation is similar in spirit to simulation-based
methods such as TD(A) [16] and LSPE(A) [6]. In particular, a
number of sample states .%; are chosen, and many trajectories
are simulated starting at these states. The costs for each state i
are averaged over the trajectories to give an approximation J;
to the cost-to-go, the training data {(i,J;)|i € .#;} are taken as
the input to the SVR training problem, and an approximating
function j; (i;0) is calculated by solving the basic SVR
problem.

B. Formulation 2: Simulation-Free Approach Using Bellman
Error

The approach of Formulation 1 leverages the power of the
SVR architecture and allows the use of high-dimensional fea-
ture vectors in a computationally efficient way, which is an
attractive advantage. However, it still requires simulation of
multiple trajectories per state, which may be time-consuming

ThA02.1

and also introduces undesirable simulation noise into the
problem.

Fortunately, the SVR-based approach can be reformulated
to eliminate the need for trajectory simulation. To do this,
first recall the standard Bellman equation for evaluating a
given policy u exactly. Writing the exact solution for the
cost-to-go as a vector J,, € R", where n=[.| is the size of
the state space, the Bellman equation is

l/*‘ = T[Jlﬂ = §+ (XP‘ulIJ, (6)

where T}, is the fixed-policy dynamic programming operator

(11,
P = Pj(u(i)

is the probability transition matrix associated with u, and

gi= Y. Pligliu(i),)) (7)

jes

is the expected single stage cost of the policy u starting
from state i. The Bellman equation given by Eq. (6) is a
linear system in J,;, and can be solved exactly:

J,=(I—aP")g. ()

In practice, of course, the size of the state space is much too
large to admit solving the Bellman equation exactly, which
is why approximation methods must be used. Note, however,
that the Bellman equation still provides useful information
even in the approximate setting. In particular, a candidate
approximation function j;() should be “close” to satisfying
the Bellman equation if it is truly a good approximation. To
quantify this notion, define the Bellman error BE (i) as

BE(i) =Ju(i)— (gi+a Y PEIL())), ©)
jes

which is a measure of how well the approximation function
j;l(l) solves Eq. (6), and therefore, how well the approxima-
tion reflects the true cost. Note that BE(i) is a function of
the state i, and ideally, |BE(i)| should be as small as possible
for as many states as possible. In particular, note that if
BE(i) = 0 for every state, then by definition .};L(l) = Ju(i)
at every state; that is, j;(z) is exact.

Recall that the SVR problem seeks to minimize the
absolute value of some error function (mathematically, this is
stated as the constraints Eqgs. (3) and (4) in the optimization
problem). In Formulation 1, the error function is (f, —
JIL(i; 0)); that is, the difference between the simulated cost
values and the approximation. Note that this formulation is an
indirect approach which generates an approximation function
Ju(.), which in turn hopefully keeps the Bellman error small
at many states. The key idea behind Formulation 2 is that
the SVR optimization problem can be modified to minimize
the Bellman error directly, without the need to simulate
trajectories. The change to the optimization problem is
simple: the Bellman error is substituted [Eq. (9)] as the error

3813

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008

function in the normal SVR problem:

gin Sl + e X648
st. BE(i) < e+§&
—BE(i) < e+&F
&,.& > 0 Vie .

This optimization problem is referred to as the Bellman error
optimization problem. Note that by substituting the functional
form of j;i [Eg. (1)] into Eq. (9), the Bellman error can be
written

BE(i) = —(gi+a ') Pie"e

jes
= —8&i +QTE(1)5

a) P (10)

jes

where

Therefore, the Bellman error optimization problem can be
rewritten as

1 .
min S[lO]* + ¢} (&+&) an
=3 i€

st. —g+0Ty() < e+§ (12)
gi—0Ty(i) < e+& (13)

EEF > 0 Vie s,

This problem is identical in form to the basic support vector
regression problem [Eq. (2)]. The only difference is that the
feature vector @ (i) has been replaced by a new feature vector
w(i); this amounts to simply using a different set of basis
functions and does not alter the structure of the basic problem
in any way. Therefore, the dual problem is given by Eq. (5)
with the substitution ¢ (i) — w(i):

max —% i (lf—li)(l;f—Ai’)ﬂ(i)T‘l/(i/)

M=

(AF +4) +th ey

i=1 =

st 0< A Af <c Vie .

In order to solve the dual problem, the g; values and the
kernel values .7 (i,i') = y(i)T y(i') must be computed. The
g: values are given by Eq. (7), and a simple calculation using
Eq. (10) yields a formula for J¢ (i,i'):

H (i) = ;(+PAK (7,))
je
+a?) Pf,‘ﬁf‘/ A as
€S

Here, K(i,i') = ¢ (i)T ¢ (/') is the kernel function correspond-
ing to the feature vectors ¢(i). Note that, similar to the
basic SVR problem, significant computational savings can
be achieved by using a closed-form kernel function which
avoids the need to explicitly evaluate the feature vectors ¢ (7).

ThA02.1

Once the kernel values ¢ (i,i’) and the cost values g;
are computed, the dual problem is completely specified and
can be solved (e.g., using a standard SVM solving package
such as 1ibSVM [15]), yielding the dual solution variables
A. Again, in direct analogy with the normal SV regression
problem, the primal variables 6 are given by the relation

0="13 (-2
ievfr
Substituting this expression for 0 into Eq. (1) yields

Juk) = 6"9(k)
= Y (L-a") < o) PLK(j,)(15)
i€ jes

Thus, once the dugl variables A are known, Eq. (15) can be
used to calculate Jy (k).

C. Formulation 3: Forcing the Bellman Error to Zero

Formulation 2 performs approximate policy evaluation
without having to resort to trajectory simulation, thereby
eliminating simulation noise. A final reformulation is pos-
sible by considering the settings of the SVR parameters ¢
and €. Recall that, in the standard SVR problem, the choice
of ¢ and ¢ are related to how noisy the input data is. In a
simulation-based method, simulation noise introduced into
the problem must be considered. The situation in Formula-
tion 2, however, is fundamentally different: there is no noise
in the problem. That is, instead of observing noisy simulation
data generated by sampling the underlying random Markov
chain associated with the policy u, we are working directly
with the Bellman equation, which is an exact description of
a mathematical relation between the cost-to-go values J,, (i)
for all states i € .. Therefore, it is reasonable to explicitly
require that the Bellman error be exactly zero at the sampled
states, which can be accomplished by setting € = 0 and
Cc =00,

Having fixed ¢ and &, the optimization problem of For-
mulation 2 [Eq. (11)] can be recast in a simpler form. With
¢ = oo, the optimal solution must have &, &* =0 for all i, since
otherwise the objective function will be unbounded. There-
fore, any feasible solution must have &,£* = 0. Furthermore,
if € is also zero, then the constraints [Eqs. (12) and (13)]
become equalities. With these modifications, the primal
problem reduces to

1
Z11e1?
Sl

st g—0"y(i)=0 Vies,

where (i) is given by Eq. (10). The Lagrange dual of this
optimization problem is easily calculated. The Lagrangian is

i@&)fWW+§l@—WWD-

i 1
ngn (16)

a7

Maximizing £ (6,A) with respect to 8 can be accomplished
by setting the corresponding partial derivative to zero:

0¥ N
@ ZQ—;&'E(’) =

3814

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008

and therefore

0=3 Ay (). (18)
Thus, the approximation .7;1(1) is given by
Juk) = 0879(k)
- Zx,(o) PiK(j k).(19)
S jes

Finally, substituting Eq. (18) into Eq. (17) and maximizing
with respect to all A; variables gives the dual problem:

Z A’)’ ‘V) ""‘thgz

llE/Y

max —
AER”

This can also be written in vector form as

max —flTKl +ATg,
A€Rn 2= g

(20)

where Ky = w(i)Ty(i') = 2 (i,i") is the Gram matrix of
the kernel .#(.,.) (which is calculated using Eq. (14)). Note
that the problem is a simple, unconstrained maximization of
a quadratic form which has a unique maximum since K is
positive definite. The solution is found analytically by setting
the derivative of the objective with respect to A to zero,
which yields

KA =g.

2L

Note the important fact that the dimension of this linear
system is ng; = |-%], the number of sampled states. Recall
that the original problem of calculating the exact solution
J M [Eqg. (8)] involved solving a linear system in n variables,
where n is the size of the entire state space (which, by
assumption, is very large and makes the solution of the
original system difficult to find). After developing a support
vector regression-based method for approximating the true
cost-to-go and reformulating it based on parameter selection
observations, the approximation problem has been reduced
to a problem of solving another linear system [Eq. (21)].
However, this time the system is in n; = || variables, where
ng < n. Furthermore, since the designer is in control of .¥,
they can select the number of sample states based on the
computational resources available.

IV. SUPPORT VECTOR POLICY ITERATION ALGORITHM

The preceding section showed how to construct a cost-to-
go approximation J, (.) of a fixed policy p. This section now
presents a full support vector policy iteration algorithm.

Step 1 (Preliminary) Choose a kernel function K(i,i') de-
fined on .7 x ..

Step 2 (Preliminary) Select a subset of states . C . to
sample. The cardinality of .#; should be based on the
computational resources available but will certainly
be much smaller than |.#| for a large problem.

Step 3 (Preliminary) Select an initial policy L.

Step 4 (Policy evaluation) Given the current policy iy,
calculate the kernel Gram matrix K for all i,i’ € .%,

ThA02.1

using Eq. (14). Also calculate the cost values g; using
Eq. (7).

Step 5 (Policy evaluation) Using the values calculated in
Step 4, solve the linear system [Eq. (21)] for A.

Step 6 (Policy evaluation) Using the dual solution variables
A, construct the cost-to-go approximation j;lk(i) us-
ing Eq. (19). _

Step 7 (Policy improvement) Using the cost-to-go Jy, (i)
found in Step 6, calculate the one-step policy im-
provement Ty, Jy, =TJy,:

e (1) = argmin Y () (8(iu) + @l (1))
jes

Step 8 Set the current policy t = 1 and go back to

Step 4.
The computational complexity of the algorithm is dominated
by Step 5 (solving the linear system), which takes @'(|.%;]3)
operations. In comparison, finding the exact cost-to-go us-
ing Eq. (8) takes O(|.#|) operations. Since
the algorithm can dramatically reduce the time required to
compute a solution to the MDP.

V. COMPUTATIONAL RESULTS

The support vector policy iteration algorithm was imple-
mented on the well-known “mountain car problem” [17], [18]
to evaluate its performance. In this problem, a unit mass,
frictionless car moves along a hilly landscape whose height
H(x) is described by

- {x2+x ifx<0
H(x) = x .

>

Vige 1x20

The system state is given by (x,x) (the position and speed
of the car). A horizontal control force —4 < u <4 can be
applied to the car, and the goal is to drive the car from its
starting location x = —0.5 to the “parking area” 0.5 <x <0.7
as quickly as possible. The problem is challenging because
the car is underpowered: it cannot simply drive up the steep
slope. Rather, it must use the features of the landscape
to build momentum and eventually escape the steep valley
centered at x = —0.5. The system response under the optimal
policy (computed using value iteration) is shown as the
dashed line in Figure 1; notice that the car initially moves
away from the parking area before reaching it at time t = 14.

In order to apply the support vector policy iteration
algorithm, an evenly spaced 9x9 grid of sample states,

s ={(x,%) | x=-1.0,—0.75,...,0.75,1.0
x=-2.0,—15,...,1.5,2.0}
was chosen. Furthermore, a squared exponential kernel
—%2)%)
was used. The algorithm was executed, resulting in a se-
quence of policies (and associated cost functions) that con-

verged after three iterations. The sequence of cost functions
is shown in Figure 2 along with the optimal cost function

K((x1,%1), (x2,%2)) = exp (—(x1 —x2)* — (%1

3815

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008

Fig. 1. System response under the optimal policy (dashed line) and the
policy learned by the support vector policy iteration algorithm (solid line).

2.0

xdot
xdot

8.4
-0.5

8.1
-1.0

7.8
-1.5

7.5

0.5 0

2% 05 o0 1.
8
7
6
5
4
3
2
1
0
1.0

X

2.0
15
1.0
0.5
-0.5
-1.0
-1.5

280 05 00 05

xdot
o
o

xdot

=

[

290 05 00 05 10
x x

Fig. 2. Approximate cost-to-go for iterations 1 (upper left), 2 (upper right),
and 3 (lower left); exact cost-to-go (lower right).

for comparison. Of course, the main objective is to learn a
policy that is similar to the optimal one. The solid line in
Figure 1 shows the system response under the approximate
policy generated by the algorithm after 3 iterations. Notice
that the qualitative behavior is the same as the optimal policy;
that is, the car first accelerates away from the parking area
to gain momentum. The approximate policy arrives at the
parking area at + = 17, only 3 time steps slower than the
optimal policy.

VI. CONCLUSION

This paper has presented an approximate policy iteration
algorithm based on support vector regression that avoids
some of the difficulties encountered in other approximate
dynamic programming methods. In particular, the approxi-
mation architecture used in this algorithm is kernel-based,
allowing it to implicitly work with a very large set of basis
functions. This is a significant advantage over other methods,

ThA02.1

which encounter computational difficulties as the number
of basis functions increases. In addition, the architecture is
“trained” by solving a simple, convex optimization problem
(unlike, for example, the neural network training process).
Furthermore, the support vector policy iteration algorithm
avoids simulations and the associated simulation noise prob-
lem by minimizing the Bellman error of the approximation
directly. Although not discussed here, it is possible to prove
that the algorithm has the attractive theoretical property of
reducing to exact policy iteration in the limit of sampling the
entire state space.

Computational results of implementing the algorithm on a
classic reinforcement learning problem indicate that it yields
a high-quality policy after a small number of iterations.

ACKNOWLEDGMENTS

Research supported in part by the Boeing Company under
the guidance of Dr. John Vian at the Boeing Phantom Works,
Seattle and by AFOSR grant FA9550-04-1-0458. The first
author is also supported by the Hertz Foundation and the
American Society for Engineering Education.

REFERENCES

[1] D. Bertsekas, Dynamic Programming and Optimal Control. Belmont,
MA: Athena Scientific, 2007.

[2] D. Bertsekas, J. Tsitsiklis, Neuro-Dynamic Programming. Belmont,
MA: Athena Scientific, 1996.

[3] G. Tesauro, “Temporal difference learning and TD-Gammon,” Com-
mun. ACM, vol. 38, no. 3, pp. 58-68, 1995.

[4] M. Lagoudakis and R. Parr, “Least-squares policy iteration,” Journal
of Machine Learning Research, vol. 4, pp. 1107-1149, 2003.

[51 A. B. W. P. J. Si and D. Wunsch, Learning and Approximate
Dynamic Programming. NY: IEEE Press, 2004. [Online]. Available:
http://citeseer.ist.psu.edu/651143.html

[6] D. Bertsekas and S. Ioffe, “Temporal Differences-Based Pol-
icy Iteration and Applications in Neuro-Dynamic Programming,”
http://web.mit.edu/people/dimitrib/Tempdif.pdf, 1996.

[7]1 M. Valenti, “Approximate Dynamic Programming with Applications
in Multi-Agent Systems,” Ph.D. dissertation, Massachusetts Institute
of Technology, 2007.

[8] A. Smola, B. Scholkopf, “A Tutorial on Support Vector Regression,”
Statistics and Computing, vol. 14, pp. 199-222, 2004.

[9]1 B. Curry and P. Morgan, “Model selection in neural networks: Some
difficulties,” European Journal of Operational Research, vol. Volume
170, Issue 2, pp. p.567-577, 2006.

[10] R. Patrascu, “Linear approximations for factored markov decision
processes,” PhD Dissertation, University of Waterloo, Department of
Computer Science, February 2004.

[11] A. S. B. Scholkopf, Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge,
MA, 2002.

[12] C. Rasmussen and C. Williams, Gaussian Processes for Machine
Learning. MIT Press, Cambridge, MA, 2006.

[13] J. Platt, “Using sparseness and analytic QP to speed training of support
vector machines,” in Advances in Neural Information Processing
Systems, 1999, pp. 557-563.

[14] S. Keerthi, S. Shevade, C. Bhattacharyya, and K. Murthy, “Im-
provements to Platt’s SMO algorithm for SVM classifier design,”
http://citeseer.ist.psu.edu/244558.html, 1999.

[15] C.-C. Chang and C.-J. Lin, LIBSVM: a
support vector machines, 2001, Software
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[16] R.S. Sutton, “Learning to Predict by the Methods of Temporal Differ-
ences,” Machine Learning, vol. 3, pp. 9—44, 1988.

[17] R. Sutton, A. Barto, Reinforcement learning: An introduction. MIT
Press, 1998.

[18] C. Rasmussen and M. Kuss, “Gaussian processes in reinforce-
ment learning,” Advances in Neural Information Processing Systems,
vol. 16, pp. 751-759, 2004.

library for
available at

3816

