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Abstract— The problem of designing a globally convergent
observer for a class of tubular chemical reactors is addressed.
The proposed approach combines dissipativity and modal
detectability notions for distributed systems in the light of
the particular tubular reactor properties due to the interplay
between convective-diffusive transport and nonlinear reaction.
The result is a nonlinear single-sensor observer with distributed
modal measurement injection, and a global convergence con-
dition in terms of the convection-to-diffusion Peclet number,
the dominant frequency of the non-innovated dynamics, the
maximum reaction rate slope, and the sensor location. The
proposed design is illustrated for a representative example with
non-monotonic reaction rate through simulations.

I. INTRODUCTION

The last decades were marked by an intensive research

activity in distributed parameter systems (DPS) theory ([1],

[2], [3], [4], [5] and references therein), with the early-

lumping (EL) and late-lumping (LL) approaches. In the EL

approach lumped parameter systems (LPS) approximations

of the original model equations are employed for control

and observer design. The use of the EL approach enables the

application of well-established design methods (see e.g. [6],

[5]), but make difficult the exploitation of intrinsic structural

and dynamic properties reflected in the DPS model. On the

other hand, the LL approach refer to methods based directly

on the distributed model and therefore enables designs on the

basis of intrinsic information contained in the original model

equations, but leads to higher technical complexity due to the

infinite-dimensional features of the related framework.

In the light of practical applications the observer design

should: (i) contain a sensor location criterium, (ii) provide

solvability conditions with physical meaning, and (iii) enable

the assurance of a suitable compromise between convergence

speed and robustness. These design characteristics have been

achieved for lumped parameter systems (LPS) [7], [8] and

DPS [9]. The idea is to set a data-assimilation scheme so

that the resulting estimation error dynamics are made of

two dissipative subsystems, one that is linear, dynamical and

driven by standard measurement injection, and one that is

nonlinear, static and (eventually) subjected also to measure-

ment injection. The estimation error convergence is ensured

by adequately matching the dissipative properties of both
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subsystems, or equivalently, choosing a suitable two-way

energy exchange mechanism, within Popov’s well-known ab-

solute stability framework (see e.g. [10],[11]). This approach

has been applied to biochemical ([12]) and chemical ([8])

continuous lumped reactors with non-isotonic kinetic rates,

in the understanding that this kind of kinetics represent a

difficult observer and control design problem, because of the

lack of local observability around the concentration which

maximizes the reaction rate. The approach has already been

extended to tubular reactors via variational LL techniques [9]

considering point-injections for a single species isothermic

process. The main features are: (i) explicit physical solvabil-

ity conditions, (ii) rigorous mathematical basis for a practical

gain adjustment in the sense of a compromise between

convergence speed and robustness issues, and (iii) only basic

knowledge of advanced calculus is required. Nevertheless,

the results do not provide explicit criteria for sensor location.

The linear observer design case without reaction has been

satisfactorily solved in the middle 70’s and 80’s [13], [14],

[15]. The bilinear case with boundary innovation mechanism

has been satisfactorily treated in [16]. The nonlinear prob-

lem considering chemical reaction has been tackled with

a diversity of approaches, among them are: Kalman filters

[17], [6], orthogonal collocation truncations [18], [19], modal

truncation-based dissipativity [20], Riccatti approaches based

on spectral factorizations [21], open-loop (asymptotic) ob-

servers [22] and approximate inertial manifolds (see e.g. [23],

[5]).

In this work, we propose an alternative approach based

on the results for linear parabolic systems ([13],[15]) in

combination with our results on observer design for lumped

(continuous or batch) reactors ([12], [8]) and our previous

variational approach to tubular reactor state estimators [9].

These results are combined in an energy interchange frame-

work, enabling the solution of the nonlinear problem via

linear design methods. The present work thus provides a

basis for extensions to the more complicated cases of the

dissipativity-based design framework [7]. For this purpose,

the scope is circumscribed to a rather simple single-reaction

axial tubular reactor class which captures the fundamental

transport, reaction, and measurement mechanisms which

underlie an ample class of tubular reactors. The reactor

case example has one spatial (axial) dimension and includes

the basic dynamical mechanisms inherent to tubular reactor

problems: diffusion, convection and nonlinear (possibly non-

monotonic) reaction kinetic rate.

The main result is an innovation gain condition in con-

junction with a criterion for sensor location, ensuring the

global observer convergence. Such condition involves the di-
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mensionless Peclet number (convection-to-diffusion quotient

measure) as well as the reaction frequency. The proposed

approach is illustrated and tested through numerical simula-

tions with a case example with non-monotonic kinetics. The

global convergence feature is verified and, as expected, the

measurement injection speeds up the error dynamics with

respect to the natural ones. Furthermore, the results provide

insight on how to establish a practical compromise between

convergence speed and robustness issues.

The paper is organized as follows. In Section 2 the

observation problem is formulated. The observer design is

presented in Section 3. Its application to a representative

case example with non-monotonic reaction rate is presented

in Section 4. Section 5 concludes the paper.

II. OBSERVATION PROBLEM

Consider an (open or packed) isothermal tubular reac-

tor with diffusion/ dispersion, convection, nonlinear single

species kinetics over the axial spatial domain [0, 1], and

a single domain measurement y(t) located in the domain

ξ ∈ (0, 1). The spatial concentration profile is governed by

the partial differential equation:

∂c

∂t
=

∂2c

∂x2
− πe

∂c

∂x
− r(c), x ∈ (0, 1)

∂c

∂x
= πe (c − ce(t)) , x = 0

∂c

∂x
= 0, x = 1

c(x, 0) = c0(x), x ∈ (0, 1)
y(t) = c(ξ, t)

, (1)

where

πe =
tD
tC

=
Lv

D
, tD =

L2

D
, tC =

L

v
, v =

q

A
.

c is the dimensionless reaction concentration (referred to

pure reactant), x is the dimensionless axial position re-

ferred to the reactor length L, t is the dimensionless time

referred to Einstein’s diffusion time tD, D is the diffu-

sion/ dispersion coefficient, πe is Peclet’s number, or equiva-

lently the diffusion(tD)-to-convection(tC) characteristic time

quotient, v is the axial flow velocity, meaning the volumetric

flow rate(q)-to-area(A) quotient, and r(c) is the (monotonic

or non-monotonic) reaction rate function. Typically, the

Peclet number ranges over [104, 106] for open tubes and over

[10, 103] for packed beds ([24]).

Given a dominant frequency and the related set of high fre-

quency harmonics, our reactor observation problem consists

in designing a globally convergent observer on the basis of

a suitably located concentration measurement y(t) = c(ξ, t).
We are interested in: (i) performing the estimation task with a

low dimensional measurement injection scheme, in the sense

that only a set of slow (linear) modes is speeded up while the

rapid-stable modes are left in open-loop estimation mode,

and (ii) drawing a global convergence condition in terms

of parameters associated with convection, diffusion, reaction

and sensor location. The proposed design is illustrated with

a representative example through simulations for low and

high convection-to-diffusion regimes. It must be pointed

out, that the tackling of this problem is a step towards the

consideration of the more complex non-isothermal multi-

species tubular reactor case.

III. OBSERVER DESIGN

A. Linear estimation without reaction

The observer problem for linear distributed systems has

been satisfactorily resolved: Gressang and Lamont [13]

considered regional sensors mean value measurements, and

Curtain [15] employed point sensors. Following the latter

approach (for a reactor without chemical reaction, i.e. r =
0), introducing the measurement operator Cξ = δ(x − ξ),
(δ being the Dirac-distribution), one obtains the following

observer:

∂ĉ

∂t
=

∂2ĉ

∂x2
−πe

∂ĉ

∂x
−L(x)[Cξĉ−y(t)] , x ∈ (0, 1)

∂ĉ

∂x
= πe (c − ce(t))−L(0)[Cξ ĉ−y(t)] , x = 0

∂ĉ

∂x
= −L(1)[Cξ ĉ−y(t)] , x = 1

ĉ(x, 0) = ĉ0(x), x ∈ (0, 1),

(2)

with finite-dimensional measurement injection mechanism

L(x) = L0

N
∑

n=0

φn(x), (3)

where L0 is an adjustable scalar gain function, and φi(x)
the i-th (real) eigenfunction of the convective-diffusive linear

operator (cp. [1], [3])

A =
d2

dx2
− πe

d

dx
, where Aφi = λiφi (4)

(λi is the i-th eigenvalue). The operator A is defined in the

underlying Hilbert space Z = L2([0, 1]) with domain D(A).
Note that −A is a Sturm-Liouville operator, has a completely

disconnected (pure point) spectrum σ(A) = σp(A) (see [3])

and is a Riesz spectral operator (see [25]). The eigenvalues

λi of A are all real, negative and diverge to −∞, so that A
generates an exponentially stable C0-semigroup.

The sensor location ξ is chosen so that ξ is not a root of

any of the N -eigenfunction set {φ1, . . . , φN}, this is

φi(ξ) 6= 0, i = 1, . . . , N, (5)

where N is chosen such that the corresponding dominant

frequency λN+1 of the non-observable modes ensures a

prescribed convergence velocity. This means that the first

N eigenfunctions are involved in the measurement injection

scheme.

Set r = 0 in (1), subtract it from (2), and obtain the linear

estimation error dynamics

∂c̃

∂t
= (A − LCξ) c̃, x ∈ (0, 1)

∂c̃

∂x
= (πe − L(0)) c̃, x = 0

∂c̃

∂x
= −L(1)c̃, x = 1

c̃(x, 0) = c̃0(x), x ∈ [0, 1]

(6)
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where c̃(x, t) = ĉ(x, t) − c(x, t), A is the linear convective-

diffusive spatial differential operator (4), L is the innovation

injection (3) and Cξ is the measurement operator.

Introduce a storage functional S(c̃) defined by the

weighted squared concentration error norm1

S(c̃) ,
1

2
〈c̃, P c̃〉 =

1

2
||z||P , with P (x) = e−πex, (7)

with P (x) being the positive weight so that the operator

(PA) is self-adjoint. Denote by AL the innovated linear

diffusive-convective operator A − LCξ, and write the time-

derivative

dS

dt
=

1

2
〈c̃, (A∗

LP + PAL), c̃〉 = 〈c̃, PALc̃〉 . (8)

Express the operator PAL in a spectral form

PALz =

∞
∑

i=1

λ̄i 〈z, φi〉φi, (9)

where the λ̄i are the eigenvalues manipulated by the inno-

vation mechanism. Next, conclude from the spectral decom-

position (9) and the definition of L(x) (3) that

dS

dt
≤ λ̄+ 〈P c̃, c̃〉 = λ̄+S, (10)

where λ̄+ is the dominant eigenvalue2 of the innovated

convective-diffusive linear operator A − LCξ. Thus, the

exponential dissipation for λ̄+ < 0 follows ([7], [26]). The

innovation effect can therefore be interpreted as an injection

of dissipative terms into the estimation error dynamics,

ensuring the global dissipation, with a prescribed rate ǫ > 0,

of the energy stored in the error state. As mentioned before

this has to be ensured by meeting the sensor location criterion

(5) [15], this is φi(ξ) 6= 0 for all i ≤ N such that

λN+1 < −ǫ. Thus, the corresponding innovation gain L0

(3) is then determined by

L0 ≥ λ1 + ǫ. (11)

Finally, from the application of Lyapunov’s second method

([27]) the exponential convergence of the observer is con-

cluded.

B. Nonlinear observer construction

Motivated by the known solutions for linear systems

([13],[15]) let us consider a candidate observer for the

reactor system (1) with chemical reaction (r 6= 0), given

by a copy of the system itself with adjustable-gain (L) for

distributed injection of the measurement at position ξ, over

the first N (to be determined) dominant eigenfunctions of

1Note that since P (x) is continuous and positive it attains positive
maximum and minimum values over the compact interval [0, 1] and the
P -norm is thus equivalent to the standard L2-norm.

2Due to the Sturm-Liouville property of −A this corresponds to the first
eigenvalue, this is λ̄+ = λ̄1.

the convective-diffusive linear operator:

∂ĉ

∂t
=

∂2ĉ

∂x2
−πe

∂ĉ

∂x
−r(ĉ)−L(x)[Cξĉ−y(t)] ,x∈ (0,1)

∂ĉ

∂x
= πe (ĉ−ce(t))−L(0)[Cξ ĉ−y(t)] , x = 0

∂ĉ

∂x
= −L(1)[Cξ ĉ−y(t)] , x = 1

ĉ(x, 0) = ĉ0(x), x ∈ (0, 1),
(12)

where the distributed innovation L(x) is defined by (3). The

nonlinearity due to chemical reaction will be handled with

a sector condition, which characterizes the corresponding

regions of energy production or consumption. This will

enable the observer design within the preceding dissipativity

interpretation of the linear modal estimation framework

([13],[15]), by separating the error dynamics into a linear

dynamic (convective-diffusive) subsystem and a non-linear

static (reactive) one. This approach has been recently applied

in a continious stirred tank reactor study ([8]) and a tubular

reactor study via a non-spectral approach ([9]) and is tackled

in the next paragraph.

C. Error Dynamics

From the subtraction of (12) from (1) the dynamics of the

estimation error c̃(x, t) = ĉ(x, t) − c(x, t) follows:

∂c̃

∂t
= (A − LCξ) c̃ − ρ (c; c̃) , x ∈ (0, 1)

∂c̃

∂x
= (πe − L(0)) c̃, x = 0

∂c̃

∂x
= −L(1)c̃, x = 1

ρ (c; c̃) , r (c + c̃) − r (c)
c̃(x, 0) = c̃0(x), x ∈ [0, 1],

(13)

with c̃ and ρ denoting the concentration and reaction rate

estimation errors, respectively. Recall the definitions of the

spatial linear operator A (4), the finite-dimensional dis-

tributed innovation L(x) (3) and the measurement operator

Cξ = δ(x − ξ). Following the dissipativity framework,

let us write the error dynamics (13) in negative feedback

interconnection form

·

c̃ = (A − LCξ)c̃ + ν, c̃(0) = c̃0

ν = −ρ (c; c̃) ,
(14)

with two subsystems: (i) one linear dynamical subsystem

ΣL(A+LC) with the convection, diffusion and measurement

injection mechanisms, and forced by the exogenous input

ν, and (ii) a nonlinear static (time-varying) subsystem ν =
−ρ(c; c̃) which, driven by the estimation error, generates

the reaction rate error. The dissipative method is based

upon the concept of performing a suitable abstract energy

release, in the sense that: (i) zero energy content means zero

estimation error, (ii) the energy dissipation sets the prescribed

convergence rate, and (iii) an adequate compromise between

robustness and reconstruction speed amounts to appropriately

performing the energy dissipation task in the two system

interconnection. For this aim, the energy interchange prop-

erty of each subsystem will be characterized in terms of the
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output injection gain L, the sensor location, and the conic

bounds of the nonlinear (possibly non-monotonic) reaction

rate. Then the overall energy dissipation in the two subsystem

interconnection will be ensured.

D. Dissipation shaping

To design the innovation in such a way that the two-

subsystem interconnection (13) is strictly dissipative ([26],

[7]) consider the quadratic storage candidate functional

S(c̃) = 1/2 〈c̃, P c̃〉 defined above (7) with weighting func-

tion P = e−πex, so that (PA)∗ = PA, write the time

derivative is

dS

dt
= 〈P (A − LCξ)c̃, c̃〉 + 〈Pν(c; c̃), c̃〉 . (15)

Observe that the energy interchange property of the linear

subsystem has been determined in (10), say

〈P (A − LCξ)c̃, c̃〉 ≤ λ̄+S, (16)

where λ̄+ is the dominant eigenvalue of the innovated linear

operator A − LCξ. From a recent study on continuous

chemical (LPS) reactor [8], the sector condition for the

reaction rate estimation error ρ(c; c̃) has been determined

(via an application of the mean value theorem), yielding

K1c̃
2 ≤ ρ (c; c̃) c̃ ≤ K2c̃

2, (17)

where K1 and K2 represent the minimum and maximum

values of the reaction rate derivative r′(c), respectively. It

must be pointed out that the bounds K1 and K2 depend on

the reaction rate function and not on the specific reactor con-

figuration (continuous, batch or tubular), and correspond to

an extreme case drawn from mass conservation arguments.3

In the distributed case this is a pointwise condition which,

by the exponential weighted integration in the second term

of (15) yields an bound for the maximal energy content of

the reactive subsystem:

〈Pν, c̃〉=−〈Pρ(c; c̃), c̃〉=−

∫ 1

0

Pρ(c; c̃)c̃≤−K1S, (18)

meaning that the energy exchange property of the nonlinear

part is completely bounded by the lower bound of the

reaction rate’s slope. Summarizing, we obtain that from (16)

and (18)

dS

dt
≤

(

λ̄+ − K1

)

S, (19)

meaning that the presence of the nonlinearity increases (or

diminishes) the dissipation or equivalently the convergence

rate, if the reaction is monotonic (or non-monotonic).4 In

virtue of (19) we obtain the following result:

The strict dissipation with adjustable rate ǫ > 0 of the

linear (transport)–nonlinear (reaction) interconnection can

be ensured by placing the dominant eigenvalues λ̄+ of the

3In a practical application this task has to be performed in correspon-
dence to the actual process operation mode conditions (initial condition
estimations, optimal inlet concentration, etc.).

4A non-monotonic rate is characterized by the presence of an antitonic
branch with negative slope.

convective-diffusive linear subsystem, by the innovation gain

L0 such that5

λ̄+ − K1 ≤ −ǫ, (20)

which is a task that can be executed with existing procedures

[13], [15]. For this aim the following conditions must be met:

(I) The N dominant modes of the convective-diffusive lin-

ear operator A (4), with N such that λN+1 − K1 ≤
−ǫ ≤ λN − K1, are observable.

(II) The innovation gain L0 (3) is chosen such that (20)

holds.5

The first condition ensures that all dominant (slow) eigen-

values λi, i ≤ N can be arbitrarily located, provided a

sensor location criterion is met. The second condition on

the innovation gain L0 ensures that the slow eigenvalues are

located so that all the eigenvalues of the innovated linear

operator A − L(x)C(x, ξ) are sufficiently small. This in

turn ensures the exponential dissipation and the exponential

observer convergence. The main condition is therefore con-

dition (I), which amounts to ensuring the exponential output-

feedback stabilizability with prescribed rate in the linear case

(5) [15]. Thus, the global estimator convergence assurance

amounts to finding a joint gain–sensor location condition

so that the (stabilizing or destabilizing) speed modification

effect of the non-linear reaction rate is compensated with

respect to a prescribed exponential dissipation.

E. Global Convergence

The preceding results are summarized in the next propo-

sition.

Proposition 1: The observer (12) is globally exponentially

convergent with a prescribed exponential rate ǫ if:

(i) The innovation dimension N is chosen so that

λN+1 ≤ K1 − ǫ, (21)

(ii) The sensor location ξ is in no root of the N eigenfunc-

tions φn(x), i.e.

φn(ξ) 6= 0 ∀ n ≤ N, (22)

(iii) The gain L0 is chosen so that

λ+ − L0 − K1 ≤ −ǫ, (23)

with λ+ = λ1 the dominant eigenvalue6 of the linear

convective-diffusive operator A (4) and K1 the mini-

mum value of the reaction rate’s slope r′(c) (17).

Note that in the case of a monotonic (or non-monotonic)

reaction rate K1 is nonnegative (or negative). Monotonic

reactions rates therefore improve dissipation (convergence

rate) as (20) is satisfied even for L0 = 0. In contrast, in the

non-monotonic case, globally thinking, there are divergence

effects at play, due to the inhibition feature in the chemical

reaction.

Next the proposed approach is applied to a subclass of

tubular reactors with non-monotonic kinetics.

5Compare with the condition (11) on L0 in the linear case.
6Remember the Sturm-Liouville property of the linear diffusive-

convective operator A.
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IV. A CASE STUDY

A. Problem statement and characterization

In the chemical reactor engineering field, it is known that

continuous reactors (LPS) with non-monotonic kinetic rates

rise, due to lack of observability, observer and control design

difficulties, a problem recently addressed via the dissipativity

approach ([8],[9]). The observability problem is due to the

problem that, given the actual reaction rates value it is not

possible to establish if the concentration is in the isotonic or

antitonic branch of the function.

Let us consider our reactor (1) observation problem with

the non-monotonic (Langmuir-Hinshelwood) kinetics em-

ployed in our previous LPS [8] and DPS [9] studies:

r(c) =
kc

(1 + σc)2
, tR =

1

k
(24)

where k > 0 [1/s] is the reaction frequency factor, tR its

corresponding characteristic reaction time, and σ is the auto-

inhibition constant, the rate error function ρ(c; c̃) in (14)

encompasses the sector [− k
27

, k], implying that (cp. with

(17)) [8]

−
k

27
||c̃||

2

P ≤ ρ(c; c̃)c̃ ≤ k ||c̃||
2

P . (25)

On the other hand, the eigenvalues λi of A (4) are λi =
−π2

e/4 − ω2
i , with the eigenfrequencies ωi correspond-

ing to the (symmetric) solutions of the implicit equation

4ωiπe cos(ωi) = sin(ωi)
[

π2
e − 4ω2

i

]

. It can be easily ver-

ified that for πe ≥ π it holds:

λn ≤ −
π2

e

4
− (n − 1)2π2, λ1 ≤ −

π2
e + π2

4
. (26)

Correspondingly, the innovation dimension N is determined

according to (21). The observer gain L0 is then deter-

mined so that (23) is satisfied. The functioning is en-

sured by sensor location in base of the knowledge of the

first N eigenfunctions φi, i = 1, . . . , N of A: φi(x) =
Ωie

πe/2x [2ωi/πe cos(ωix) + sin(ωix)] , Ωi ∈ R. These

eigenfunctions define a non-orthogonal Riesz basis (cp.

[28]). The fulfillment of the given conditions (21-23) in

turn implies the strict dissipativity of the two-subsystem

interconnection and thus the exponential convergence of the

estimation error c̃(x, t).
Summarizing, the above conditions: (i) establish that the

measurement innovation injection must be chosen according

with the Peclet (πe) and reaction frequency (k) value, (ii)

show the key interplay between sensor location and observer

design, and (iii) constitute the basis of a sensor-location

dependent gain tuning procedure in the sense of a practical

compromise between reconstruction speed-up and robustness

issues.

B. Implementation and Simulation study

To illustrate the observer performance in a con-

crete example, the reactor (1) was regarded with the

(diffusion-dominated) Peclet-inhibition-reaction frequency

triplet (πe, σ, k) = (10, 3, 20) and the initial concentration

profile c0(x) = 0.3 (on the isotonic branch). The observer

was set with the deviated initial profile ĉ0(x) = 0.4 (on

the antitonic branch). Innovation is imposed on the first 4

eigenmodes of the linear subsystem. The sensor is located

in ξ = 0.5 and the corresponding behavior is illustrated in

Fig. 1, in comparison to the natural system response (i.e.

for L0 = 0). The simulations have been carried out with a

standard finite-difference algorithm. Keeping in mind that the

reactor time is scaled with respect to the diffusion time, the

corresponding estimation behavior is interpreted as follows:

(i) the natural convergence behavior is wave-like from the

entrance towards the output while the measurement injection

smoothes this up and down stream by diffusing the sensor

information from the sensor location, and (ii) practical profile

convergence of around 2% is attained with a rate about 40%
faster than the natural ones.

From the preceding implementation results, the following

comments are in order:

(i) The proposed convergence conditions of Proposition 1

is a point of departure for a gain tuning procedure, in

the understanding of a compromise between convergence

speed up and robustness against model-uncertainties and

measurement noise.

(ii) The strict dissipativity itself implies a practical (input-

to-state) stability property (see e.g. [8]), in the sense of

estimation error convergence to a tube around the zero solu-

tion (in the presence of some uncertainties). This issue has

been numerically tested for representative reaction parameter

error of (−5%, +10%) bias in (σ, k) and measurement noise:

ŷ(t) = c(ξ, t)+0.01sin(300t). The results, presented in Fig.

2, show:(a) the convergence acceleration is maintained and

(b) the predicted deviation is remarkably improved.

0

1 0.2

0
0

0.14

c̃
(x

,
t)

distance x time t

0

1 0.2

0
0

0.14

c̃
(x

,
t)

distance x time t

Fig. 1. Estimation error profile evolution. Above: natural response, below:
with measurement innovation.
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(iii) The observer performance can be enhanced applying

various simultaneous measurements ensuring that at least one

of the p sensors in ξi, i = 1, . . . , p yields φj(ξi) 6= 0 for

j = 1, . . . , N (compare [15]).

V. CONCLUSIONS

The problem of designing a globally convergent observer

for a class of tubular reactors with domain measurement

has been tackled with a spectral dissipativity approach. The

data-assimilation scheme was designed so that the estimation

error dynamics were given by a two-dissipative system in-

terconnection: one linear distributed dynamical system with

convective and diffusive mechanisms, and one nonlinear

lumped static system with the (monotonic or non-monotonic)

reaction kinetics. The convergence conditions were drawn

on the basis of Lyapunov’s second method. The interplay

between observer design and sensor location has been identi-

fied and interpreted, and sufficient conditions for the observer

existence have been drawn based on earlier works on linear

DPS observer design by different authors. The considered

reactor class covers monotonic as well as non-monotonic

reactions and the different implications on the corresponding

stability properties and conditions have been delimited and

discussed. The proposed approach was illustrated through

simulations with a representative tubular reactor with non-

monotonic reaction.
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Fig. 2. Estimation error profile evolution for a (−5%,+10%) bias in
(σ, k). Above: natural response, below: with measurement innovation.
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[14] M. Köhne. State-observers for systems with distributed parameters

- Theory and Application (in german). Fortschrittsberichte Nr. 8/26,
1977.

[15] R. Curtain. Finite-dimensinoal compensator design for parabolic
distributed systems with point sensors and boundary input. IEEE

Trans. Autom. Cont., (27)1:98–104, 1982.
[16] D. Vries. Estimation and Prediction of Convection-Diffusion-Reaction

Systems from Point Measurements. PhD thesis, Univeristy of Wagenin-
gen, The Netherlands, 2008.

[17] M.A. Soliman and H.W. Ray. Nonlinear state estimation of packed
bed tubular reactors. AIChe, (25)4:718–720, 1979.

[18] J. Alvarez and G. Stephanopoulos. An estimator for a class of non-
linear distributed systems. Int. J. Cont., (36)5:787–802, 1982.

[19] M. Ksouri, O. Boubaker and J.P. Babary Variable structure
estimation and control of nonlinear distributed parameter bioreactors.
In IEEE International Conference on Systems, Man, and Cybernetics

1998, pages 3770–3774, 1998.
[20] G. Hagen and I. Mezic. Spillover stabilization in finite-dimensional

control and observer design for dissipative evolution equations. SIAM

J. Cont. Optim., (42)2:746–768, 2003.
[21] R.F. Curtain, M.A. Demetriou and K. Ito. Adaptive compensators

for perturbed positive real infinite dimensional systems. Int. J. Appl.

Math. Comp. Sci., (13)4:441–452, 2003.
[22] D. Dochain. State observers for tubular reactors with unknown

kinetics. JPC, 10:259–268, 2000.
[23] P.D. Christofides and P. Daoutidis. Finite-dimensional control of

parabolic pde systems using approximate iniertial manifolds. JMAA,
(216)2:398–420, 1997.

[24] H.S. Fogler. Elements of chemical reaction engineering. Prentice Hall,
1999.

[25] C. Delattre, D. Dochain and J. Winkin. Sturm-liouville systems are
riesz spectral systems. Int. J. Apl. Math. Comp. Sci., (13)4:481–484,
2003.

[26] J.C. Willems. Dissipative dynamical systems: Part i - general theory,
part ii - linear systems with quadratic supply rates. Archive for

Rational Mechanics and Analysis, 45:321–393, 1972.
[27] V.I. Zubov. Methods of A.M. Lyapunov and their application. P.

Noordhoff LTD - Groningen - The Netherlands, 1964.
[28] J.J. Winkin, D. Dochain and P. Ligarius. Dynamical analysis of

distributed parameter tubular reactors. Automatica, 36:349–361, 2000.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThC17.2

5661


