
Broadcast Gossip Algorithms: Design and Analysis for Consensus

Tuncer C. Aysal, Mehmet E. Yildiz, Anand D. Sarwate, and Anna Scaglione

Abstract— Motivated by applications to wireless sensor, peer-
to-peer, and ad hoc networks, we have recently proposed a
broadcasting-based gossiping protocol to compute the (possibly
weighted) average of the initial measurements of the nodes
at every node in the network. The class of broadcast gossip
algorithms achieve consensus almost surely at a value that is in
the neighborhood of the initial node measurements’ average.

In this paper, we further study the broadcast gossip algo-
rithms: we derive and analyze the optimal mixing parameter of
the algorithm when approached from worst-case convergence
rate, present theoretical results on limiting mean square error
performance of the algorithm, and find the convergence rate
order of the proposed protocol.

I. INTRODUCTION

A fundamental problem in decentralized networked sys-

tems is that of having nodes reach a state of agreement [1],

[2]. Distributed agreement is a fundamental problem in ad

hoc network applications, including distributed agreement

and synchronization problems [3], distributed coordination

of mobile autonomous agents [2], and distributed data fusion

in sensor networks [1], [4]. It is also a central topic for load

balancing (with divisible tasks) in parallel computers [5].

This paper focuses on a prototypical example of agreement

in asynchronous networked systems, namely, the randomized

average consensus problem.

A. Average Consensus

At time slot t ≥ 0, each node i = 1, 2, . . . , N has an

estimate xi(t) of the global average, and we use x(t) to

denote the N -vector of these estimates. The ultimate goal is

to drive the estimate x(t) to the average vector x(0)1 (with

1 denoting the vector of ones) or as close as possible, where

x(0) =
1

N

N
∑

i=1

xi(0) (1)

using minimal amount of communication. The quantity x(t)
for t > 0 is a random vector, since the algorithms are

randomized in their behavior.

B. Related Work

Gossip-based algorithms were initially introduced by Tsit-

siklis [6] to achieve consensus over a set of agents, and
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have recently received renewed attention from other re-

searchers [1], [2], [7]–[11]. The standard pairwise random-

ized gossip algorithm uses an asynchronous time model

in which a node chosen uniformly at random contacts a

randomly chosen neighbor within its connectivity radius,

and exchanges values with that neighbor. The two nodes

then update their own values with the pairwise average of

their values. This operation preserves both the total sum,

and hence also the mean, of the node values. This algorithm

converges to a consensus if the graph is strongly connected

on the average.

Because the transmitting node must send a packet to the

chosen neighbor and then wait for the neighbor’s packet,

this scheme is vulnerable to packet collisions and yields

a communication complexity (measured by number of ra-

dio transmissions to drive the estimation error to within

Θ(N−α), for any α > 0) on the order of Θ(N2 log N) over

random geometric graphs [7].

Pairwise gossip was recently extended in the geographic

pairwise gossip algorithm to include geographic routing [12].

As in the standard pairwise gossip algorithm, a node ran-

domly wakes up, but instead chooses a node randomly in

the whole network, rather than in its neighborhood and

performs a pairwise averaging with this node. Geographic

pairwise gossiping increases the diversity of every pairwise

averaging operation. The authors show that the communica-

tion complexity is in the order of O(N3/2
√

log(N)), which

is an improvement with respect to the standard gossiping

algorithm. More recently, a variety of the algorithm that

“averages along the way” has been shown to converge in

O(N log N) transmissions [13].

C. Primary Motivations

The algorithms discussed above incur extra overhead be-

cause each node needs to know its own location as well

as learn and memorize the locations of its neighbors. The

problem of packet loss is exacerbated by the requirement that

messages must be sent on long routes, creating congestion

and complex routing issues. Finally, the routing protocol

requires storage and computation resources that may grow

with N .

Wireless media have the advantage of being broadcast and,

at the cost of only one transmission, one can reach several

terminals. Our objective in this paper is to propose and

analyze a broadcasting-based gossip algorithm that enables

all nodes in range to simultaneously perform an update by

exploiting the wireless medium, thereby avoiding the need

for complex routing and pairwise exchanging operations.
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D. Summary of Main Contributions

We recently proposed broadcast gossip algorithms as an

alternative to the one discussed above, especially, for wireless

sensor networks [14]. We have shown that the broadcast

gossip achieves consensus almost surely at a value within

a neighborhood of the initial node measurements’ average.

The expectation of this value is equal to the average of the

initial node measurements, as desired. We further described

some characteristics of the convergence of the mean square

error (MSE) through the iterations.

In this paper we provide a more complete analysis and

optimization for the broadcast gossip algorithm. We derive

the optimal mixing parameter (i.e. the coefficient used to

average) based on the worst-case convergence rate. Interest-

ingly, the optimal mixing parameter depends on the graph

Laplacian, and converges to zero as graph connectivity

increases. We also present the limiting MSE expression

for the broadcast gossip protocol and analyze its behavior

with respect to the mixing parameter. Finally, we present

theoretical and numerical results on the convergence rate of

the broadcast gossip protocol.

E. Paper Organization

We introduce the broadcast gossip algorithm along with

its convergence characteristics in Section II. The perfor-

mance analysis of the proposed algorithm where we focus

on the MSE and communication complexity is detailed in

Section III. Finally, we conclude with Section IV.

II. BROADCAST BASED GOSSIPING

Following previous work, we model our wireless sensor

network as a random geometric graph [7], [12], [15] and

we represent the N–node topology by the N ×N adjacency

matrix Φ and denote the connectivity radius by R and the

neighborhood of the node i by Ni = {j : Φij = 1}. More-

over, we use the asynchronous time model which is well–

matched to the distributed nature of sensor networks [7],

[12]. For a more thorough treatment of the graph and time

models, see [7], [12], [14].

Suppose at time step t, node i ∈ {1, 2, . . . , N} clock ticks.

Then, node i activates and the following events occur in the

network:

1) Node i broadcasts its current state value, xi(t) over

the wireless medium.

2) The broadcasted value is successfully received by all

nodes that are within a radius R of node i. These are

precisely the nodes in the neighbor set Ni.

3) Each node k in Ni uses the broadcasted value xi(t) to

update its own state value according to:

xk(t + 1) = γxk(t) + (1 − γ)xi(t), ∀k ∈ Ni , (2)

where γ ∈ (0, 1) is the mixing parameter of the

algorithm.

4) The remaining nodes in the network, including i,
update their state values as

xk(t + 1) = xk(t), ∀k 6∈ Ni . (3)

Formally, let x(t) denote the vector of values at the end

of the time-slot t. Then, the network-wide update is given

by

x(t + 1) = W (t)x(t) (4)

where the random matrix W (t), with probability 1/N is

(assuming that the i–th clock ticks)

W
(i)
jk =















1 j 6∈ Ni, k = j
γ j ∈ Ni, k = j

1 − γ j ∈ Ni, k = i
0 elsewhere

(5)

where W (i) denotes the weight matrix corresponding to the

case where node i’s clock ticks. In the following, mostly

borrowing from our previous work [14], we present the

convergence properties of the broadcast gossip algorithms.

A. Convergence Properties

Through the analysis of per-node weight matrices, i.e.,

W (i)’s, we have recently shown that for some c ∈ R, the

vector c1 is a fixed point of the broadcasting gossip algo-

rithm. That is, W (i)c1 = c1 for all i [14]. If the algorithm

converges to a consensus, the preceding algorithm will not

leave the consensus state. In the same work, we have also

shown that 1T W (i) 6= 1
T for all i, which means that the sum

(and therefore the average) of the vector of node values is not

preserved at each step. Thus, the broadcast gossip algorithm

does not converge to the initial node measurements’ average

in strict sense.

1) Convergence in Expectation: Although the broadcast

gossip algorithm does not converge to the initial node mea-

surements’ average, in the following, we show that it does

converge to the desired value in expectation.

Proposition 1 ( [14]) The limiting random vector obtained

through broadcast gossip iterations, in expectation, is

E

{

lim
t→∞

x(t)
}

=
1

N
11

T x(0) . (6)

2) Convergence in Second Moment: It is of interest to

consider the second order convergence properties of the

broadcast gossip algorithm. Since the sum is not preserved

throughout broadcast gossip iterations, instead of tracking

the distance to the average as in pairwise gossip, we use a

more useful measure of consensus for the sequence x(t).
We define β(t) to be the vector of deviations of the com-

ponents of x(t) from their average. This can be expressed in

component form as βi(t) = xi(t) − x(t), or as

β(t) = x(t) − Jx(t) = (I − J)x(t) (7)

where J = (1/N)11
T . This is a measure of relative devi-

ation of the node values from their average. The following

Lemma that gives necessary and sufficient conditions on β(t)
guarantee that consensus is reached.

Lemma 1 ( [14]) There is a consensus at time-slot T ∈
N of the broadcast gossip algorithm if and only if

E{||β(T )||22} = 0.
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Thus, if the expectation of the norm of the deviation

vector converges to zero then the node values converge

to a consensus. Let λi(·) and W (t) denote the ith ranked

eigenvalue of its argument and the random weights matrix

at time step t, respectively. In the following, we present

a sufficient condition guaranteeing the convergence of the

expectation of the deviation vector norm to zero and show

that this condition is indeed satisfied.

Proposition 2 ( [14]) The following statements hold.

(i) limt→∞ E{||β(t)||22} = 0 (i.e., E{||β(t)||22} converges

to zero), if

λ1(E{W (t)T (I − J)W (t)}) < 1 , (8)

where I denotes the identity matrix.

(ii) The broadcast gossip algorithm satisfies the above

condition.

It is important to emphasize that the Proposition 2

gives a sufficient condition for any consensus protocol that

does not preserve network sum. Moreover, note that the

condition λ1(E{W (t)T (I − J)W (t)}) < 1 is different

than the convergence condition obtained for the standard

pairwise gossip algorithms where one only need to have

λ2(E{W (t)T W (t)}) < 1 to ensure the second–order con-

vergence to the initial node measurements average [7], [12].

Broadcast gossip is different from pairwise gossip and the

condition ensures the convergence of the deviation vector

and not the distance to initial node measurements average

vector. However, it is of interest to note the sufficiency

condition derived for the broadcast gossip algorithms reduces

to the one for average-preserving gossip algorithms when

1
T W (i) = 1

T , ∀i.
3) Almost-Sure Convergence: Given, the previous results,

we can compile the following theorem, which was the main

result in [14].

Theorem 1 ( [14]) The broadcast gossip algorithm con-

verges, almost surely, to a consensus:

Pr
{

lim
t→∞

x(t) = c1
}

= 1 , (9)

for some c ∈ R where

E{c} =
1

N
1

T x(0). (10)

The theorem indicates that the broadcasting gossip al-

gorithms achieve consensus with probability one, and the

consensus value is, in expectation, equal to the desired value,

i.e., average of initial nodes measurements.

B. Optimal Mixing Parameter

In the following, we focus on the mixing parameter γ ∈
(0, 1) and find the optimal γ when approached from the

worst-cast convergence rate. The worst-case convergence rate

is given by Proposition 2 as λ1(E{W (t)T (I−J)W (t)}). We

first present the following Lemma which will prove useful

in characterizing this eigenvalue of significant interest. The

proofs of Lemmas, Propositions, Theorems are omitted due

to space constraints, but they can be found in [16].

Lemma 2 Let L = diag(Φ1) − Φ denote the graph Lapla-

cian. The following two formulas hold:

(i) Let W ′ , E{W (t)T W (t)}. Then

W ′ = I − 2γ(1 − γ)

N
L. (11)

(ii) Let W ′′ , E{W (t)T JW (t)}. Then

W ′′ =
(1 − γ)2

N2
L2 + J. (12)

Given the Lemma above, the eigenvalue of interest can

now be written as:

λ1(W
′ − W ′′) = 1 − 2γ(1 − γ)

N
λN−1(L)

− (1 − γ)2

N2
λN−1(L)2. (13)

In the following, we investigate the effect of the mixing

parameter on the eigenvalue of interest in Proposition 2,

thereby revealing its effect on the convergence characteristic

of the broadcast gossip algorithms.

Corollary 1 Let us introduce λ1(W
′ − W ′′; γ) to show

the dependency of the eigenvalue of interest to the mixing

parameter γ. Then the following statements hold.

(i) λ1(W
′ − W ′′; γ) is convex in γ.

(ii) The optimal mixing parameter is given by

γ∗ =
N − λN−1(L)

2N − λN−1(L)
. (14)

The above Corollary, thus, indicates that the optimal

mixing parameter, interestingly, depends on the graph for

finite N . However, a stronger result holds for large N as

discussed in the following.

Corollary 2 For graphs such that λN−1(L) = Θ(f(N)) for

some function f(·), with limN→∞ f(N)/N = 0, the optimal

mixing parameter is given by

lim
N→∞

γ∗ =
1

2
. (15)

Hence, for large enough N and standard radius connec-

tivity considerations for random geometric graphs (e.g., R =
Θ(

√

log N/N) and λN−1(L) = Θ(log N)), the eigenvalue

λ1(W
′−W ′′) increases as |γ−1/2| increases. Therefore the

worst-case convergence rate, characterized by λ1(W
′−W ′′),

decreases. In words, γ values that are closer to 1/2 yield a

faster worst-case convergence rate compared to the γ values

closer to its boundaries, i.e., zero and one.

In the following, we investigate the effect of the graph

Laplacian on the optimal mixing parameter.

Corollary 3 Let us introduce γ∗(L) , γ∗ to denote the

dependency of the optimal γ on the graph Laplacian. Then,

γ∗(L) is monotonically decreasing function of λN−1(L).
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Thus, the above corollary indicates that, as the graph

connectivity increases, i.e., the eigenvalues of the Laplacian

increases, the optimal mixing parameter tends to zero. This

result corroborates with intuition. For instance consider a

fully connected graph, then clearly γ = 0 would result in a

consensus at the first iteration.

III. PERFORMANCE ANALYSIS OF BROADCAST GOSSIP

In this section, we first consider the mean-square error per-

formance of the broadcast gossip algorithm. We present an

upper bound on the limiting mean-square error performance

and study the effect of the mixing parameter. Moreover, we

prove an upper bound on the discrete time (or equivalently,

number of clock ticks) required to get within ǫ of the

consensus c1, c ∈ R. Finally, we examine the communication

complexity of the broadcast gossip algorithms to achieve a

certain distance to consensus.

A. Mean Square Error

Because the broadcast gossip algorithm does not in gen-

eral converge to the initial node measurements average

(N)−1
1

T x(0), it is of interest to consider the distance of

the consensus value to x(0). In the remaining, we use

α(t) = x(t) − Jx(0) . (16)

to denote the difference between the state vector at time step

t and the average of initial node measurements.

Lemma 3 ( [14]) Let E{‖α(t)‖2
2} denote the mean square

error at time step t. The following two statements hold:

(i) The MSE obeys the following recursion:

E{‖α(t + 1)‖2
2} ≤ (1 − λ2(W

′))E{‖Jα(t)‖2
2}

+ λ2(W
′)E{‖α(t)‖2

2}.
(17)

(ii) For some c ∈ R,

x(t) 6= c1 ⇔ E{‖α(t + 1)‖2
2|α(t)} < ‖α(t)‖2

2 . (18)

The above Lemma reveals that the mean square error

(MSE) is a strictly decreasing function of time and strict

inequality becomes equality when the nodes converge to

consensus. In the following, we consider the limiting MSE

behavior of the broadcast gossip algorithms.

Proposition 3 Let W = E{W (t)}. The limiting MSE of the

broadcast gossip algorithms is upper bounded by

E{ lim
t→∞

‖α(t)‖2
2} ≤ ‖α(0)‖2

2

(

1 − 1 − λ2(W
′)

1 − λ2
N−1(W − J)

)

.

(19)

As in the worst-case convergence-rate case, it is of interest

to characterize the effect of the mixing parameter γ on

the limiting MSE performance. This is considered in the

following Corollary.

Corollary 4 Let U∞(γ) be the upper-bound on the limiting

MSE of the broadcast gossip iterations, given in Proposi-

tion 3, as a function of the mixing parameter γ. Then, the

following statements hold.

(i) The boundary cases, i.e., γ → 0 and γ → 1, are given

by

lim
γ→0

U∞(γ) = ||α(0)||22 (20)

and

lim
γ→1

U∞(γ) = ||α(0)||22
(

1 − λN−2(L)

λ1(L)

)

(21)

respectively.

(ii) U∞(γ) is a monotonically decreasing function of γ.

(iii) U∞(γ), for γ = γ∗, is given by

U∞(γ∗) = ||α(0)||22
(

1 − C(L)
λN−2(L)

λ1(L)

)

(22)

where

C(L) =
2N − 2λN−1(L)

4N − 2λN−1(L) − λ1(L)
. (23)

The Corollary indicates that the limiting MSE value of

the broadcast gossip algorithm decreases with increasing γ.

Thus, when approached from the minimum MSE perspective,

the optimal γ value is 1 − ǫ for some small ǫ. This is due

to the fact that as γ approaches zero, the broadcasting nodes

create a local dominance possibly shifting away from the

desired mean, whereas for γ values closer to unity, the nodes

receiving the broadcasted value adjust their own state only

slightly, and given the large number of iterations, the end

result resembles more closely its expectation, which is the

average of the initial states. In addition, under the standard

assumption on the connectivity radius and large enough N ,

it is interesting to note that the factor C(L) tends to 1/2.

B. Communication Cost to Achieve Consensus

Deviating, but in a similar fashion, from the standard sum

preserving gossip–based averaging algorithms, we define the

ǫ–converging time in the following.

Definition 1 Given ǫ > 0, the ǫ–converging time is the

earliest time at which the vector x(t) is ǫ close to the

normalized initial deviation with probability greater than

1 − ǫ:

T (N, ǫ) = sup
x(0)

inf

{

t : Pr

{ ‖x(t) − Jx(t)‖2

‖x(0) − Jx(0)‖2
≥ ǫ

}

≤ ǫ

}

.

(24)

We will need the following lemma characterizing the

behavior of the eigenvalue of interest before we present the

main result of this section.

Lemma 4 For the broadcast gossip algorithm,

1 − O

(

log4 N

N2

)

≤ λ1 (W ′ − W ′′) < 1 − Ω

(√
log N

N5/2

)

.

(25)
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Proof: We would like to calculate the eigenvalue

λ1(W
′ − W ′′). The matrix W ′ − W ′′ is given by:

W ′ − W ′′ = I − J − 2γ(1 − γ)

N
L − (1 − γ)2

N2
L2 . (26)

First note that the vector 1 is an eigenvector of W ′−W ′′ with

eigenvalue 0. The vector 1 corresponds to the only nonzero

eigenvalue of the matrix J and the only zero eigenvalue for

the Laplacian matrix L. Therefore the eigenvectors of W ′ −
W ′′ are exactly the eigenvectors of L, and the k-th eigenvalue

of W ′ − W ′′ for k = 1, 2, . . .N − 1 is:

λk(W ′ − W ′′) = 1 − 2γ(1 − γ)

N
λN−k(L)

− (1 − γ)2

N2
λN−k(L)2. (27)

Thus to characterize λ1(W
′−W ′′) we must characterize the

second-smallest eigenvalue of the Laplacian matrix L (the

algebraic connectivity of the graph).

An upper bound on λN−1(L) will yield a lower bound on

the largest eigenvalue of W ′ − W ′′. A result of Alon and

Milman [17, Theorem 2.7] shows that:

λN−1(L) ≤ 8dmax

diam(G)2
log2

2 N (28)

where diam(G) denotes the graph diameter. If the com-

munication radius is chosen large enough, for the random

geometric graph with standard connectivity assumptions,

dmax = Θ(log N) (see [13]). The diameter can be found as

the number of hops to get from one corner to the diagonally

opposite corner, so it is Θ(
√

N/ logN). Thus the whole

bound is:

λN−1(L) = O

(

log4 N

N

)

. (29)

This gives the bound

λ1(W
′ − W ′′) = 1 − O

(

log4 N

N2

)

. (30)

To upper bound λ1(W −W ′′) we need a nontrivial lower

bound on λN−1(L). A result of Mohar states that [18]:

λN−1(L) ≥ 4

N · diam(G)
. (31)

Therefore

λN−1(L) = Ω

(√
log N

N3/2

)

(32)

and

λ1(W
′ − W ′′) = 1 − Ω

(√
log N

N5/2

)

(33)

completing the proof.

Unfortunately, the upper and lower bounds do not coincide

– they differ (ignoring logarithmic terms) by a
√

N factor.

It may be possible to tighten the upper bound by exploiting

the fact that for a communication radius slightly larger than

the threshold the random geometric graph is regular in an

order sense with degree Θ(log N) [13]. However, we do not

pursue this here.

Given the convergence rate definition, and the previous

lemma, we obtain, utilizing steps similar to [7], the following

rate of convergence to a consensus for broadcast gossip.

Proposition 4 The consensus time for the asynchronous

broadcast average consensus, for t ≥ T (N, ǫ) is bounded

as follows:

Pr

{ ‖x(t) − Jx(t)‖2

‖x(0) − Jx(0)‖2
≥ ǫ

}

≤ ǫ (34)

where

Ω

(

N2 log ǫ−1

log4 N

)

= T (N, ǫ) = O

(

N5/2 log ǫ−1

√
log N

)

. (35)

Moreover, note that if we set ǫ = 1/Nα in the above

equation, then we obtain T (N, 1/Nα) = Ω(N2/ log3 N).
Since the number of transmissions per iteration is 1 in the

broadcast gossip algorithm, this result corresponds to the

communication complexity. Of note is that broadcast gossip

algorithms improves upon randomized gossip algorithms

(Θ(N2 log N)), but appears to be worse than the geographic

gossip which has communication complexity in the order

of O(N3/2
√

log N). However, as we will see very shortly

through numerical examples, broadcast gossip significantly

outperforms both algorithms for practical network sizes,

revealing that the asymptotic scaling results may not be

relevant for finite and practical network sizes.

C. Numerical Examples

To simulate the random geometric graph, we consider

nodes that are uniformly distributed over a unit square. Their

initial values are initialized as uniformly distributed random

values with unit variance and zero mean. The connectivity

radius is chosen as R =
√

log(N)/N .
1) Communication Cost: In the following, as in [12], we

compare the number of radio transmissions to achieve a

certain distance from consensus of broadcast gossiping. We

choose γ = 1/2, since this is the optimal value for large

enough N and it furthermore offers a good trade-off for

MSE. We present plots comparing the communication cost of

standard pairwise gossip algorithm [7], geographic pairwise

gossip algorithm [12], and the broadcast gossip algorithm for

varying network sizes.

Figure 1 depicts per-node variance versus the number

of radio transmissions (each data point is an ensemble

average of 25 trials). Broadcast gossip requires a single radio

transmission per iteration, whereas standard gossip requires

two and geographic gossip requires the number of hops

between the nodes. Simulation results suggest that broadcast

gossiping significantly outperforms both protocols from the

communication cost perspective for the given network sizes.

Furthermore, broadcast gossip avoids some complexities in

the geographic gossiping protocol, such as costs due to

memory and routing operations (which are not incorporated

into simulations).
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Fig. 1. Number of radio transmissions required to achieve a given distance
(per node variance) from the consensus for N = 500.

2) Mean Square Error: Next, we consider the MSE per-

formance of the broadcast gossip algorithm through iterations

and compare the performance of our algorithm to those of

randomized and geographic gossip algorithms. Recall that

the MSE of randomized and geographic gossip algorithms

achieve zero in the limit, whereas the MSE of the broadcast

algorithm saturates to a non-zero value as the algorithm

converges to a consensus.

Figures 2 depicts the MSE performance of the random-

ized, geographic and broadcast gossip algorithms through

number of radio transmissions for N = 500, respectively.

An interesting observation is that, for reasonable number of

radio transmissions, the MSE performance of the broadcast

gossip is better than those of the randomized and geographic.

However, as the number of radio transmissions increases, the

randomized and geographic gossip outperform the broadcast-

ing one, as they tend to zero whereas the performance of the

broadcast gossip saturates to a non-zero value.

These simulations results are in corroboration with the

theoretical ones stating that the MSE strictly decreases as

long as consensus is not achieved and the previous simulation

results showing that the broadcast gossip achieves consensus

significantly faster than randomized, and geographic pairwise

gossip algorithms.

IV. CONCLUDING REMARKS

In this paper, we provided further analysis and optimiza-

tion of the recently proposed broadcast gossip algorithm.

By requiring only that nodes “lend their ears” to a broad-

caster’s transmission, these algorithms avoid some potential

difficulties that could arise in the implementation of other

gossip protocols. Specifically, we have derived the optimal

mixing parameter when approached from the worst-case

convergence rate perspective and we studied its effect of the

limiting MSE performance. The results indicate that good

MSE performance is achievable trading off the speed of

convergence. Finally, we presented theoretical and numerical

examples evaluating and comparing the communication cost

of gossiping algorithms which demonstrated the fast conver-

gence of our algorithm.
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