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Abstract— A method to design feedback control laws that
guarantee state-constraint satisfaction for a class of uncertain
nonlinear systems is proposed. A recursive procedure is used
to construct robustly controlled invariant sets for input affine
nonlinear systems with bounded disturbances or parametric
uncertainties. Constraint satisfaction is achieved by a modifica-
tion of the control input on the boundaries of the constructed
sets. The results are illustrated on a design example.

I. INTRODUCTION

Every physical control system must deal with some limits
or constraints in the operation space. Such limits can arise
from physical constraints imposed on the system by its
surroundings. They can also arise from safety constraints.
In process control, for example, it is often economically
desirable to operate close to limits of the feasible region.
Unfortunately, such operating practices are not sustainable
due to the potential damage and safety problems associated
with the violations of the operation bounds. To avoid such
problems, it is imperative that one incorporates all process
constraints, and especially safety constraints, as an essential
performance requirement in the design of a control system.
While the problem of saturated actuators has already gained
much interest in recent years [5], structural results for
state-constrained problems remain rare. A good insight in
the problem is given in [12] and the references therein
where state-constrained linear systems are considered. In
the study of state-constrained nonlinear systems, different
approaches have been proposed over the last few years.
Basically two types of approaches have been considered.
The first category consists of controller design methods
in which state constraints are taken into account explicitly
during the controller design procedure. Such approaches
result in control schemes that guarantee closed-loop stability,
constraint satisfaction and other specifications. In [10], an
approach based on backstepping is proposed. A second
category of strategies seeks to modify the command signal
on-line to prevent constraint violations. A very successful
example of such methods is the well-known Nonlinear Model
Predictive Control [3], where optimization methods are used
to determine a control signal that avoids constraint violation.
Other approaches include so-called override schemes [7],
[14] and reference governors [1], [6]. Of particular interest in
this study is the invariance control approach proposed in [16].
In this method, an invariance control law is designed a priori
and a subset of the state space that can be rendered invariant
by this control law is defined. Using this method, it is
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possible to apply a nominal controller inside the invariant set,
while switching to the invariance controller on the boundaries
guarantees constraint satisfaction. The approach presented in
the following is based on the ideas of invariance control.
The advantage of this approach is that the controller design
method is greatly simplified by considering the stabilization
and the constraint satisfaction problem separately. The key
point of the proposed approach is the construction of a
robustly controlled invariant set. An interesting feature is
that finally only a first order constraint has to be considered
to guarantee the invariance of the resulting set. This leads
directly to conditions on the control input that can be
integrated in the controller design. The proposed design
procedure is flexible and can handle bounded uncertainties
in the system.
The remainder of the paper is organized as follows. In section
II, the relevant class of systems is identified and a general
problem formulation is given. The main result of this work
is stated in section III where a method to construct robustly
controlled invariant sets is presented. The controller synthesis
is explained in section IV. In section V, the proposed design
procedure is illustrated on a simulation example. A summary
and an outlook on future work are given in section VI.

II. PROBLEM FORMULATION

Throughout this paper we consider the following class of
uncertain input affine control systems

ẋ = f(x) + g(x)u+ q(x, θ(t)) (1)

where x ∈ Rn are the state variables and u ∈ R is
the input variable. The vector fields f(x) and g(x) are
assumed to be sufficiently smooth on a domain D ⊂ Rn.
The uncertainty vector θ(t) = [θ1, . . . , θp] ∈ Ω ⊂ Rp
belongs to a known compact set Ω ⊂ Rp. Furthermore
the uncertainty is assumed to be linearly parametrized, i.e.
q(x, θ(t)) =

∑p
l=1 ql(x)θl(t). State constraints of the system

are given by a set of output functions

yi = hi(x) ≤ 0, i = 1, . . . ,m (2)

where hi(x) : Rn → R are sufficiently smooth functions.
Each output is assumed to have a well defined relative degree
ρi, that is

Lghi(x) = · · · = LgL
ρi−2
f hi(x) = 0, LgL

ρi−1
f hi(x) 6= 0

for all x ∈ D, where Lghi(x) denotes the standard Lie (di-
rectional) derivative of hi(x) along the vector field g(x). The
disturbances are assumed to satisfy the triagularity condition
[9, Theorem 3.1.1]. Therefore the following assumption is
made.
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Assumption 1. For each output function hi(x), there exists
a change of coordinates

T (x) =



Φ1(x)
...

Φn−ρ(x)

hi(x)
...

Lρ−1
f hi(x)


=:
[
ξ
z

]
, (3)

where Φ1 to Φn−ρ are chosen such that T (x) is a diffeomor-
phism on the domain D ⊂ Rn, that transforms the system
into the normal form

ξ̇ = Φ(ξ, z, θ(t)) (4)

żj = zj+1 +
p∑
l=1

φjl(z1, . . . , zj)θl(t), 1 ≤ j ≤ ρi − 1

żρi
= a(z, ξ) + b(z, ξ)u+

p∑
l=1

φρil(z1, . . . , zρl
)θl(t) (5)

yi = z1.

Note that no further assumption on the ξ-dynamics needs
to be made at this point. It will become obvious in the
following that for the purpose of constraint satisfaction no
other requirement, i.e. no minimum-phase assumption is
needed since only the z-dynamics will be considered for
the construction of robustly controlled invariant sets. Thus,
a transformation T (x) can be found in a straight forward
manner for many control problems. The most restrictive
assumption concerns the existence of the b(z, ξ) term, that is
the well defined relative degree. This term has to exist and
be bounded in specific regions of the state space yet to be
determined.
A feedback controller for the system (1) can be designed
using conventional design techniques while ignoring the con-
straints. Well known robust controller design techniques can
be found in [4] or [9]. In the following, this robust feedback
controller is termed nominal controller and is denoted by
unom. It is assumed that the nominal controller stabilizes
the system (1) with respect to an equilibrium xd or a time-
varying trajectory xd(t). Furthermore, it is assumed that a
suitable Lyapunov function V (e), e = x−xd, for the closed-
loop system is known.

III. DESIGN PROCEDURE

In this section, we state the main contribution of this study.
A design method,based on the idea of backstepping, is pro-
posed for the construction of robustly invariant sets that are
constraint admissible. First, a well known result is reviewed
for the sake of clarity.

Definition [[2], Def. 2.3] The set S ⊂ Rn is said to be
robustly controlled invariant for the system

ẋ = f(x(t), u(t), θ(t)), θ(t) ∈ Ω,

if there exists a feedback control law u(t) = k(x(t)) which
assures the existence and uniqueness of the solution on R+

and is s.t. for all x(0) ∈ S the solution x(t) ∈ S for t > 0.

Clearly not every subset of the state space is robustly
controlled invariant. In the following, a procedure is
proposed to design suitable sets and to derive corresponding
conditions on the control inputs for systems of the
form (1),(2). The basic idea is to restrict the set of
safe initial conditions step by step by constructing
new constraints, whereas satisfaction of each constraint
guarantees satisfaction of the previous constraint. The
procedure is repeated until one obtains a constraint whose
time derivative depends explicitly on the control input.
Starting inside the constructed set, the control input can be
used to guarantee constraint satisfaction for the last and
therefore for all previous constraints.
The construction algorithm is first introduced for a single
constraint. However, it is possible to repeat the algorithm for
each constraint hi(x) and under some additional conditions
on the constraint relation is it possible to guarantee
satisfaction for the whole set of constraints (2). This topic
will be discussed later on. Under the previous assumptions,
the main result can be stated as follows.

Theorem 1: Consider the uncertain nonlinear system (1)
subject to one of the constraints (2). Suppose furthermore
that assumption 1 holds, then a constraint admissible safe
set S can be constructed and there exists a control law uinv
that guarantees robust invariance of this set.

Remark The proof of this result is constructive and intro-
duces an algorithm for the construction of robustly controlled
invariant sets. For simplicity, ρi will be denoted by ρ and
the ξ-dynamics is neglected in the following. This does not
impose a problem as clarified later.

Proof. By assumption 1, there exists a change of coordinates
that transforms the system into the normal form

żj = zj+1 +
p∑
i=1

φji(z1, . . . , zj)θi(t), 1 ≤ j ≤ ρ− 1

żρ = a(z) + b(z)u+
p∑
i=1

φρ(z1, . . . , zρ)θi(t),

where the constraint is now imposed on the coordinate z1,
i.e. y = z1 ≤ 0. To construct a set of safe initial conditions,
one starts with the first subsystem

ż1 = z2 +
p∑
i=1

φ1i(z1)θi(t). (6)

Since the uncertainties belong to a known and compact set
Ω one can find a bound such that |θi(t)| ≤ θ̄i. To guarantee
safety in the system, one has to consider the worst case
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disturbance and find an upper bound for the right hand
side of (6). This can be done in different ways, but it
is advantageous to find a smoothly differentiable bounding
function. In general, it is possible to find some smooth
functions Ξ and Ψ that guarantee

p∑
i=1

φ1i(z1)θi(t) ≤ Ξ1(z1) + Ψ1(θ̄) (7)

for t > 0 in the subset of interest in the state-space, i.e. where
z1 ≤ 0. Now, the right hand side of (6) can be overestimated
and rewritten as

ż1 = z2 +
p∑
i=1

φ1i(z1)θi(t) ≤ z2 + Ξ1(z1) + Ψ1(θ̄)

= −k1z1 +
[
z2 + k1z1 + Ξ1(z1) + Ψ1(θ̄)

]
,

where k1 is a positive constant. The new variable

v1 := z2 + k1z1 + Ξ1(z1) + Ψ1(θ̄)

can be introduced and one can rewrite the upper system as

ż1 ≤ −k1z1 + v1.

The comparison principle [8, Lemma 3.4] can be used to
provide an upper bound for the trajectories of the differential
inequality above by those of the comparison system ˙̃z1 =
−k1z̃ + v1 ( i.e. whenever it holds that z1(t0) ≤ z̃1(t0)
then z1(t) ≤ z̃1(t), (∀t > 0)). The main objective here is
to guarantee that z1(t) ≤ 0 which implies that z1(0) ≤ 0.
Considering now the comparison system, one can use the
Lyapunov function V1 = 1

2 z̃
2
1 that satisfies V̇ ≤ −z̃2

1 + z̃1v1
to show that if z̃1(0) ≤ 0 and v1(t) ≤ 0 then it is guaranteed
that z̃1(t) ≤ 0 and therefore that z1(t) ≤ 0. The second
requirement for constraint satisfaction is that supt v1(t) ≤ 0
which yields a new constraint given by

v1 := z2 + k1z1 + Ξ1(z1) + Ψ1(θ̄) ≤ 0.

If the initial condition x(0) satisfies z1 ≤ 0 and v1 ≤ 0 and
if it can be guaranteed furthermore that v1(t) ≤ 0, (∀t > 0)
than it holds that z1(t) ≤ 0, (∀t > 0).
The next steps are to apply the procedure inductively to
determine ρ− 2 more constraints written as

vl := zl+1 + Ξl(z1, . . . , zl) + Ψl(θ̄), l = 1 . . . n− 2.

Taking their time derivatives, one obtains the following
expressions

v̇l = zl+2 + Ξ
′

l+1(z1, . . . , zl+1) +
p∑
i=1

φ̄l+1,iθi(t),

where all terms without uncertainty resulting from the deriva-
tives of klvl−1 and Ξl are collected in the new expression
Ξ′l+1. Using the inequality conditions, this derivative can be
bounded by a smoothly differentiable function, i.e.

v̇l ≤ zl+2 + Ξl+1(z1, . . . , zl+1) + Ψl+1(θ̄i)

with Ξl+1 resulting from Ξ
′

l+1 and the bounding of∑p
i=1 φ̄l+1,iθi(t). Again, applying the same reasoning as

above, the next constraint can be defined as

vl+1 = zl+2 + kl+1vl + Ξl+1(z1, . . . , zl+1) + Ψl+1(θ̄i) ≤ 0

The last constraint that has to be defined is the constraint
vρ−1. As above, this constraint takes the form

vρ−1 := zρ + Ξρ−1(z1, . . . , zρ−1) + Ψρ−1(θ̄),

but its derivative can be controlled directly by the input, i.e.

v̇ρ−1 ≤ a(z) + b(z)u+ Ξρ(z1, . . . , zρ) + Ψρ(θ̄).

By the input-output linearizability of the nominal system, it
follows that b(z) 6= 0. Therefore the control input u can be
used to guarantee v̇ρ−1 ≤ 0 using an appropriate control law
uinv(x). More precisely, any control law that guarantees

a(z) + b(z)u+ Ξρ(z1, . . . , zn) + Ψρ(θ̄) ≤ 0, (8)

guarantees constraint satisfaction. There are different ways
to construct such a controller. One possible choice will be
proposed later in this paper. The constraint admissible set of
safe initial conditions is given by

S = {x ∈ Rn|z1 ≤ 0, vi ≤ 0, i = 1, . . . , ρ− 1} (9)

This completes the proof. �

At this point, the results can be shortly summarized as
follows. Starting with the given state constraint y = h(x) ≤
0, ρ − 1 new constraints v1(x), . . . , vρ−1 are designed
recursively. The satisfaction of each constraint vi ≤ 0
guarantees satisfaction of the previous constraint vi−1 ≤ 0
directly. Therefore, if the initial state is such that z1(x(0)) ≤
0, vi(x(0)) ≤ 0, i = 1 . . . ρ − 1, it is sufficient to verify
satisfaction of the last constraint vρ−1(x(t)) ≤ 0, (∀t > 0),
which can be achieved with the control input. The function
vρ−1(x) is negative inside the safe set that should be rendered
invariant, it is zero on its boundary and positive in the unsafe
region. Due to the special importance of this last constraint
the function B(x) := vρ−1 referred to as a barrier certificate
[11], [15] for the constraint admissible set S. Control inputs
that guarantee the invariance of the set S are described by
the condition (8). It remains to select a suitable control input
in accordance to this condition.
The advantage of the backstepping-like procedure proposed
here is that, like the original backstepping methods, it al-
lows one to tailor the approach to address many problem
dependent issues often encountered in the study of nonlinear
control systems. Note that it is not necessary to transform
each constraint’s dynamics to v̇i ≤ −kivi + vi+1. Alterna-
tively, one could easily assign another function with similar
properties e.g. v̇i ≤ −α(vi) + vi+1, where α is a Lipschitz
function in (0,∞). For most cases however, the proposed
approach yields good results.

Remark When the system (1) is not subject to disturbances,
all inequalities become equalities and the system takes the
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form
ż1 = −k1z1 + v1

v̇1 = −k2v1 + v2
...

v̇ρ−1 = a(z) + b(z)u.

If furthermore the remaining ξ-dynamics are input-to-state
stable, then the controller u = (−a(z)−vρ−1)/b(z) stabilizes
the system on the original constraint y = h(x) = 0.

If the system (1) is subject to more than one constraint, the
proposed algorithm has to be repeated for each constraint
hi(x) to construct the different sets Si. The overall safe
set is then given by S =

⋂
Si and is characterized by

the barrier certificate B(x) = max
i

[Bi(x)]. In this case it
might happen that two or more constraints are active at
the same time. It is necessary to guarantee that there is no
contradiction in the constraint satisfaction. In general, the
question is whether there exists at least one control input
uinv that decreases simultaneously the barrier certificates of
all active constraints. This very general question of existence
is hard to answer and therefore a simplifying assumption on
the intersecting constraints is made here.
Assumption 2 For constraint satisfaction of multiple inter-
secting constraints, it is assumed that the LgB(x)-terms have
the same sign at the intersection points. That is,

signLgBi(x) = signLgBj(x), if Bi,j(x) = 0, x ∈ S. (10)

If this requirement is not met, it might still be possible to
find an inner approximation of one constraint or to introduce
an additional constraint such that the condition is satisfied.
The reasoning for this additional assumption is the following.
When the given condition is satisfied, both invariance control
laws have the same sign and therefore uinv = uinvi

+ uinvj

renders Ḃi(x) as well as Ḃj(x) negative. However, even if
the given condition on the constraint relation seems to be
satisfied quite often, situations where the condition is not
met require clearly further investigation.

IV. CONTROLLER SYNTHESIS

In this section, some basic concepts associated with the con-
troller design procedure and the controller implementation
are presented. The basic premise of the controller design
and implementation is to use the nominal controller inside
the safe set and to design a complementary controller that
renders the safe set robustly positively invariant. The nominal
controller unom is assumed to be known. The complementary
controller implementation seeks to minimize its effects on the
nominal controller. The strategy is to use the function B(x)
as a decision variable for the activation of the complementary
controller.
The first step is to design controllers, uinvi

that guarantee
the invariance of the sets Si. A good choice, derived from
(8), could be the following

uinvi
=

{
unom, if unom, sat. (8)
b(z)−1(−a(z)− Ξρ −Ψρ(θ̄)), o.w.

This control law uinvi guarantees that

Ḃi(x) = LfBi(x) + LgBi(x)uinvi
(x) + LpBi(x) ≤ 0,

for all disturbances θ ∈ Ω. Note that the function uinvi
is

continuous since there exists a unique u that makes the con-
dition (8) hold with an equality sign. To avoid discontinuities
in the control law, the switching procedure is implemented
using a sigmoidal switching surface as proposed in [15]. The
applied control input is defined by

u = k(x) =
m

Π
i=1

(1− σi(x)) · unom +
m∑
i=1

σi(x)uinvi
(11)

with

σi(x) =


1, −Bi(x) < 0

1− 2
(
Bi(x)
ε

)3

− 3
(
Bi(x)
ε

)2

, 0 ≤ −Bi(x) ≤ ε
0, −Bi(x) > ε

for some small constant ε > 0. The control law u acts like
a feed-through term for the nominal controller inside the set
S. If the systems’ states come close to a given constraint,
the proposed controller structure guarantees that the
corresponding invariance controller is activated, ensuring
that Ḃ ≤ 0. Hence the switching controller affects the
nominal controller as little as possible while guaranteeing
constraint satisfaction for the system. As mentioned in the
previous section, the sum of two invariance control laws
guarantees constraint satisfaction for both constraints. The
proposed structure is a suitable choice for a continuous
controller that guarantees constraint satisfaction.

A crucial problem in systems with switching controls is the
question of stability. One way to ensure complete integration
of the constraints into a Lyapunov based control approach is
to further impose the restriction that

sign {LgV (x)} = sign {LgBi(x)}, (12)

whenever −ε ≤ B(x) ≤ 0. In this case the control actions
of both controllers act in the same direction. More precisely,
the invariance controller decreases the Lyapunov function
and stability is guaranteed since V (x) can be seen as a
common Lyapunov function for the switching control law.
This case is very convenient, since stabilization of the
desired equilibrium is possible without violation of the
constraint. This property may not be satisfied everywhere
on the constraint or at all times, e.g. it may be violated
when a reference signal to be tracked lays outside of the set
S. However, many situations may arise where the geometry
of the constraint vis-a-vis the system dynamics is such that
the sign-condition is violated (even in situations where the
reference point lies inside the set S). Such cases remain
highly problematic because they single out areas on the
boundary of the set S where constraint satisfaction and
minimization of the Lyapunov function are in contradiction.
Since this situation can lead to convergence of the closed-
loop system on the boundary of S, it is of interest to change
the overall control objective to stabilization on or close to the
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constraint. Note that, as mentioned in the previous section,
this is always possible for minimum phase constraints and
undisturbed systems. In this case stability can be concluded
using simple dwell-time considerations. Unfortunately,
the quest for Lyapunov functions of the switch controller
remains an open problem at this and is beyond the scope of
the current study. It will be considered further in future work.

V. SIMULATION EXAMPLE

In this section, the design procedure is illustrated on an
Active Magnetic Bearing (AMB). An AMB is an apparatus
that is used to bear a rotating mass between two electromag-
nets. It is advantageous for various reasons. It avoids friction
losses due to the lack of contact between the rotor and the
stator. It also provides active disturbance rejection.
A simplified one-dimensional AMB system, shown in figure
1 is considered in the following. A nominal model for the
system is proposed in [13]. In this study, a time-varying
disturbance is added to the nominal system yielding the
following uncertain system representation

ẋ1 = x2

ẋ2 = εx3 + x3|x3|+ θx1 sin(bt)
ẋ3 = u,

(13)

where x1 represents the position and x2 the velocity of the
mass. The third state x3 is proportional to the magnetic flux.
The system parameter ε ≥ 0 is in general smaller than one. In
the following it is assumed that ε = 0.1. The voltage V1 = V
and V2 = −V is used as the control input u. A stabilizing
controller for the nominal system is proposed in [13], i.e.
unom = −1.7538x1 − 6.6957x2 − 2.588x3 − 3.1582x3|x3|.
The additional uncertainty influences the acceleration, i.e. it
can be seen as an external force. In the disturbance term, the
constant θ is known, but b is unknown. To avoid collisions
with the magnet, the position x1 has to be constrained such
that |x1| ≤ a. The nominal controller cannot stabilize the
disturbed problem adequately. Nevertheless one needs to
guarantee that the mass does not come too close to the
magnets. This should be done via a robust invariance control.
The design starts with the upper constraint x1 < a. For
the nominal system and with respect to the fictive output
y = x1 − a one can define a coordinate transformation
z1 := x1 − a, z2 := x2, z3 := εx3 + x3|x3|. In the new
coordinates the system can be written as

ż1 = z2

ż2 = z3 + θ(z1 + a) sin bt
ż3 = (ε+ 2|x3|)u.

(14)

Note that the disturbance does not satisfy the matching con-
dition but he triangularity condition is met. The backstepping
procedure can now be applied to design a robustly invariant
set and the corresponding controller. One starts with the z1
subsystem and rewrites it as

ż1 = −k1z1 + [z2 + k1z1] = −k1z1 + v1.

Rotor

+q

F2F1

Electromagnet 2

V2

Electromagnet 1

−q

V1

Fig. 1. Active Magnetic Bearing.

The second constraint is now given by v1 := z2 + k1z1 ≤ 0.
The dynamics of the constraint is given by

v̇1 = k1z2 + θ(z1 + a) sin bt+ z3.

Therefore a third constraint can be defined by considering

z3 + k2(z2 + k1z1) + k1z2 + θ(z1 + a) sin bt
≤ z3 + (k2 + k1)z2 + k2k1z1 + θ|z1|+ θ|a|
≤ z3 + (k2 + k1)z2 + k2k1z1 − θz1 + θa,

since z1 ≤ 0. Hence, the third relevant constraint is set as

v2 := z3 + (k2 + k1)z2 + (k2k1 − θ)z1 + θa ≤ 0. (15)

This is the ρ-th constraint and, by construction, provides a
barrier certificate for the constrained system. Its derivative
depends directly on the input, i.e.

v̇2 = (ε+ 2|x3|)u+ (k2 + k1)z3 + (k2k1 − θ)z2
+ (k2 + k1)θ(z1 + a) sin bt.

Since (k2 + k1)θ(z1 + a) sin bt ≤ (k2 + k1)θ|z1 + a|, any
control law that satisfies the inequality

u ≤ 1
(ε+ 2|x3|)

(−(k2 + k1)z3 − (k2k1 − θ)z2

− (k2 + k1)θ|z1 + a|)

is an invariance controller for the designed safe set S = {x ∈
Rn|z1(x) ≤ 0, v1(x) ≤ 0, v2(x) ≤ 0}.
The same design procedure can be applied to design a
invariance controller that guarantees safety for the lower
constraint x1 ≥ −a. Proceeding as above, the following new
states are defined, i.e. ξ1 = −x1 − a, ξ2 = −x2 ξ3 =
−εx3−x3|x3|. In these new coordinates a barrier certificate
can be defined as B2 = (k1 +k2)ξ2 +(k1k2−θ)ξ1 +ξ3 +θa,
and a corresponding invariance control law has to satisfy

u ≥ − 1
(ε+ 2|x3|)

(−(k1k2 − θ)ξ2

+ (k1 + k2)ξ3 + (k1 + k2)θ| − ξ1 − a|).

The control law is implemented as proposed in section IV.
For both constraints an invariance control law uinv and a
switching surface σ are designed as proposed previously. The
control input u is synthesized in the form (11).
Simulation results for the given problem with a = 1, b = 0.2
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and θ = 0.3 are shown In figure 2. The nominal controller
fails to stabilize the disturbed system in this case. It has to
be redesigned. Nevertheless the invariance control guarantees
that the mass does not hit the magnet, while this would
clearly happen without the invariance control. In figure 3 the
time trajectories of the three constraint variables z1, v1, v2
are shown. All three constraints are kept below zero at all
times, hence the overall constraint is satisfied. The constraint
v2 (solid line) would be the first to become positive, which
is avoided by the invariance controller.

VI. CONCLUSION

An algorithm to construct control laws for uncertain
nonlinear systems under state constraints is proposed. In a
recursive design procedure, a set of safe initial conditions is
constructed that is robustly controlled invariant. The design
leaves some degree of freedom that can be used to adapt
the procedure to specific requirements. A switching control
is designed to guarantee positive invariance of the set and
to satisfy a nominal control objective whenever possible.
The proposed method allows one to consider constraints
on single states as well as on combinations of states and
can handle multiple constraints. The applicability of the
proposed procedure is illustrated on a design example. It
is shown that the ideas are easily applicable to constraints
with a high relative degree.
Even if the current work focuses primarily on single input
systems, a generalization to multi-input systems can be
easily establshed at this point. An open problem that remains
is with regards to the simultaneous satisfaction of state and
input constraints. This question is connected to the problem
of maximizing the set S. Furthermore it is of interest to
focus on robust stabilization of the system on the constraint
if the nominal control objective and constraint satisfaction
contradict each other.

0 20 40 60 80 100
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1

2

3

4
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Fig. 2. Position x1 of the uncertain Active Magnetic Bearing System for
the initial condition x(0) = [0.5, 0, 0] with (solid) and without (dotted)
the invariance control. The systems constraints are indicated by the solid
horizontal lines.
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Fig. 3. Constraint variables z1 (dotted), v1 (dashed), and v2 (solid) for
the upper constraint of the uncertain Active Magnetic Bearing System for
the initial condition x(0) = [0.5, 0, 0] and the safety control law.

VII. ACKNOWLEDGMENTS

Thanks to Peter Wieland for his constructive comments on
this work. Mathias Bürger wants also to thank the German
Academic Exchange Service (DAAD).

REFERENCES

[1] A. Bemporad. Reference governor for constrained nonlinear systems.
IEEE Trans. Autom. Cont., 43:415–419, 1998.

[2] F. Blanchini. Set invariance in control. Automatica, 35:1747–1767,
1999.

[3] R. Findeisen, L. Imsland, and F. Allgöwer. State and output feedback
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