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Abstract— This paper is concerned with the control prob-
lem of a class of nonholonomic systems having cross-chained
structure. Such systems are structurally incompatible with the
chained systems, so the conventional methods proposed for
chained systems are not valid any more and an entirely new
control approach is required. In this paper, we propose a
switched state feedback law which delivers the initial state to
the origin in finite time using bounded control inputs, without
infinitely high gain and frequent switchings in spite of its
discontinuity. The effectiveness of the proposed method is shown
by numerical simulations. Possible mechanical applications of

this study include snake robots, rolling sphere problem and
attitude control of free-flying robots.

I. INTRODUCTION

Nonholonomic systems have been providing challenging

topics to nonlinear control theory since early 90’s. One of

the most important class of nonholonomic systems is driftless

systems described by nonlinear state equation without drift

vector-fields, which represents kinematic mechanical systems

with non-integrable velocity constraints. Owing to the well-

known necessary condition for asymptotic stabilizability

indicated by Brockett[3], it is impossible to asymptotically

stabilize a driftless system by any continuous state feedback,

even though its reachability is guaranteed by Chow’s rank

condition[6]. Now there remain two ways to get rid of

this restriction: one is to abandon pure state feedback, by

adopting feedforward or time-dependent components with

the aid of off-line path generation technique. The other is

to give up continuity by using discontinuous or switched

terms in the feedback law.

Among several subclasses of driftless systems, chained

systems is the one that has been most actively investigated,

followed by many successful results such as sinusoidal

path generation[12], discontinuous state feedback ([1], [11]),

time-state control[14], time-varying feedback control[15] and

mixed-up approaches([13]). The clue for this success was the

simplicity of its structure, i.e., existence of the single gener-

ator vector-field, along which the controllability is ensured

in the sense of linear approximation. Through these intensive

and thorough studies, the key concept for controlling chained

systems has been well established. Typical time-dependent

feedback approach consists of periodic excitation of the gen-

erator and continuous feedback[15], while the discontinuous

feedback approach consists of monotonic decreasing of the

generator combined with high-gain feedback[1].
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However, there are many stimulating examples of non-

holonomic systems that are structurally incompatible with

chained systems. Multi-generator systemscontains two or

more generator vector-fields in the basis of its controllability

Lie algebra, so the conventional control approaches, based

on single generator structure, are not sufficient any more.

A relatively easy subclass in this category is the first-order

controllable systems, for which some satisfactory feedback

control results have been proposed ([2], [10]).

In this paper, we step further to deal with higher-order

multi-generator systems. The simplest example of such sys-

tems is found in the case of 2 inputs and 5 states with second-

order controllability structure, which we call the cross-

chained system in this paper. This system is not only stimu-

lating from theoretical viewpoint, but also includes interest-

ing physical applications, such as rolling sphere control[7],

3-link snake robot[9], double trailer system with off-axle

hitch[17], attitude control of free-flying robot with two

actuators[16]. So far, the quest for definitive control method

for this system is still on the way; the author proposed a

control algorithm based on generator-switching and extended

time-state control form [8], but its convergence analysis

was not sufficient. Casagrande et al. ([4], [5]) proposed a

switching control algorithm with precise Lyapunov-based

stability analysis, though it was not sufficiently free from

frequent switchings.

snake robot / 

double trailer system
rolling sphere

free-flying robot

with 2 actuators

Fig. 1. Applications of cross-chained systems control

This paper presents an alternative method to this problem,

which delivers the initial state to the origin in finite time

using bounded control inputs, without infinitely high gain

and frequent switchings in spite of its discontinuity. The

key technique includes (i) a careful choice of coordinate

transformation, which is parameterized by twisted loops

filling up R3, and (ii) sliding-mode type switching rule which

makes the predetermined subsets attractive and invariant.

The rest of this paper is organized as follows. We begin

with the definition of the cross-chained system and funda-

mental analysis of its structure and controllability in section

II. The construction of the proposed method is described
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in section III. The effectiveness of the proposed method is

examined by numerical simulation in section IV. Section V

concludes the results.

II. SYSTEM WITH CROSS-CHAINED STRUCTURE

A. State equation

Consider a driftless system of the following form:

ẋ = h1(x)u1 + h2(x)u2 (1)

h1(x) :=













1
0

−x2

−x3 − x1x2

−x2
2













, h2(x) :=













0
1
x1

x2
1

−x3 + x1x2













In this paper, we call this a cross-chained system.

Controllability of this system is systematically checked as

follows. Let [·, ·] denote the Lie bracket of smooth vector-

fields, then

h3(x) := [h1, h2](x) =
(

0, 0, 2, 4x1, 4x2

)T
(2)

h4(x) := [h1, h3](x) =
(

0, 0, 0, 6, 0
)T

(3)

h5(x) := [h2, h3](x) =
(

0, 0, 0, 0, 6
)T

(4)

and the system satisfies the Lie Algebra Rank Condition

(LARC) by considering

C∞ span{h1, h2, h3, h4, h5}(x) = R
n (5)

Note that this system is the simplest example of the non-

chained and higher-order structure. This is the reason why

it is worth exploiting as a basic platform for this class of

systems.

Remark 1 (Virtual first-order form): Suppose the right

hand side of ẋ3 = −x2u1 + x1u2 is regarded as a virtual

input, say u3. Then the system (1) can be written as

d

dt













x1

x2

x3

x4

x5













=













1
0
0

−x3

0













u1+













0
1
0
0

−x3













u2+













0
0
1
x1

x2













u3 (6)

u3 = −x2u1 + x1u2 (7)

which resembles a first-order controllable system with three

inputs[2]. It is interesting to see the derivative equations

dx3 = −x2dx1 + x1dx2 =

∫

dx1 ∧ dx2 (8)

dx4 = −x3dx1 + x1dx3 =

∫

dx1 ∧ dx3 (9)

dx5 = −x3dx2 + x2dx3 =

∫

dx2 ∧ dx3 (10)

which simply exhibit the principle of holonomy (or area rule).

For instance, the displacement of x4 is proportional to the

area encircled by the closed trajectory projected on x1-x3

plane. This observation gives us a clear view of the symmetry

of its controllability structure, as well as a motivation the

coordinate transformation given in the next section. •

III. SWITCHED STATE FEEDBACK CONTROLLER

In this section, we propose a switched state feedback

controller for system (1) which delivers the initial state to

the origin in finite time using bounded control inputs. An

underlying idea of the proposed method is a discontinuous

coordinate transformation motivated by the last remark. The

principle of holonomy tells us, from eq. (8), that a circular

loop on x1-x2 plane yields displacement in x3 which is

parallel to [h1, h2] indeed. Similarly, from eq. (9), we may

expect that a circular loop on x1-x3 plane yields displace-

ment in x4 which is parallel to the second-order Lie bracket

[h1, [h1, h2]]. In order that the system trajectory draws a

circular loop indeed on x1-x3 plane, it should follow the

corresponding figure-8-shaped loop on x1-x2 plane.

The following argument is basically a realization of this

idea by means of coordinate transformation. Roughly speak-

ing, the new coordinates are composed of the specification

parameters for the family of figure-8 loops (r, d), the path

parameter (φ) and a pair of integral invariants along the loop

(z1, z2).

A. Discontinuous coordinate transformation

In the rest of the paper, we adopt the following compact

notations for k ∈ N and φ ∈ S:

C := cosφ, Ck := cos(kφ) (11)

S := sin φ, Sk := sin(kφ) (12)

where S denotes the unit circle, which is isomorphic to

R/2πZ (i.e., the interval [−π, π] with ±π identified).

Suppose a family of continuous closed curves on the x1−
x2 plane characterized by: Thus the parameterization above

is simply rewritten as

x1 = rC (13)

x2 = αrS2 + d. (14)

where r ∈ R+, d ∈ R, φ ∈ S are all scalar parameters and

α ∈ R+ is a constant. As shown in Fig. 2, r implies the size,

d implies the vertical displacement, and φ implies the path

parameter of the figure-8 shaped loop on x1-x2 plane.
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Fig. 2. Parameterization of x1-x2 plane by figure-8 loops (α = 1)

Next, let us assign x3 the following parameterization

x3 =

∫ φ

0

(

−x2

∂x1

∂φ
+ x1

∂x2

∂φ

)

dφ

= αr2

(

1

6
S3 +

3

2
S

)

− rdC, (15)
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then (13)-(15) represent a family of closed spatial curves

parameterized by (r, d, φ) as illustrated in Fig. 3. Now let us
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Fig. 3. Closed spatial curve in x1-x2-x3 space (r=α=1, d=0)
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Fig. 4. Projection of the loops onto x1-x3 plane

introduce a discontinuous coordinate transformation defined

by (13)-(15) together with the following relation

x4 = z1 +

∫ φ

0

(

−x3

∂x1

∂φ
+ x1

∂x3

∂φ

)

dφ

= z1 + αr3

(

1

24
S4 +

1

6
S2 +

3

2
φ

)

(16)

x5 = z2 +

∫ φ

0

(

−x3

∂x2

∂φ
+ x2

∂x3

∂φ

)

dφ

= z2 + α2r3

(

−
1

60
C5 +

1

4
C3 −

11

6
C +

8

5

)

+αr2d

(

1

3
S3 + 3S

)

− rd2C (17)

Then

ξ := (r, d, φ, z1, z2)
T ∈ M (18)

M := R
3 × R+ × S

1 (19)

defines the new coordinate and the new state space instead of

x ∈ R5. For reference, we also denote q := (x1, x2)
T ∈ R2

and z := (z1, z2)
T ∈ R2.

Lemma 1: Let

D := {x ∈ R
5|x2

1 + x2
3 = 0, x2

4 + x2
5 6= 0}. (20)

If x /∈ D, the inverse transformation (x → ξ) of (13)-(17)

is given as follows.

1) If x2
1 + x2

3 6= 0, let r be the only positive real root of

the polynomial

P (s) := s6 + 3x2
1s

4 − ζ2s2 − 4x6
1 (21)

where ζ :=
3(x3 + x1x2)

4α
. With r fixed, the rest of

the coordinates are given by:

φ = arctan

(

x1

r
,

ζ

r2 + 2x2
1

)

(22)

d = x2 − rαS2 (23)

z1 = x4 − αr3

(

1

24
S4 +

1

6
S2 +

3

2
φ

)

(24)

z2 = x5 − α2r3

(

−
1

60
C5+

1

4
C3−

11

6
C+

8

5

)

+d(2x3 + dx1) (25)

where arctan(x, y) implies the unique solution θ for

y cos θ = x sin θ.

2) If x2
1 + x2

3 = 0, let r = 0, d = x2, z1 = z2 = 0. φ ∈ S

is indefinite (can be set arbitrary).

•
Proof: This is verified by intricate but straightforward

computation.

B. Calculus in the new coordinates.

We rewrite the state equation (1) in the new coordinates.

Lemma 2: System (1) is convertible with














































ṙ = Cµ1

ḋ = α

(

1

6
S3 +

3

2
S

)

µ1

φ̇ = µ2

ż1 = −αr3C

(

3

24
S4 +

1

2
S2 +

3

2

)

µ1 +
3

2
αr3 µ2

ż2 = −

(

1

6
S3 +

3

2
S

) (

3αr2

(

1

6
S3 +

3

2
S

)

− rdC

)

µ1

(26)

under the coordinate transformation (13)-(17) and a feedback

transformation






u1 = C2µ1 − rS µ2

u2 = α

(

2

3
S3 + 2S

)

µ1 + 2rαC2 µ2

(27)

•
Proof: The time derivatives of x1, x2, x3 are given by

ẋ1 = u1 = C ṙ − rS φ̇ (28)

ẋ2 = u2 = αS2 ṙ + 2rαC2 φ̇ + q̇2 (29)

ẋ3 =

(

2x3

r
+ dC

)

ṙ +

(

αr2

2
(C3 + 3C) + rdS

)

φ̇

−rC ḋ (30)

Substituting (7) into (30), we have

rx1ḋ = (x3 + dx1)ṙ

or more simply,

C ḋ = α

(

1

6
S3 +

3

2
S

)

ṙ (31)
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which implies that r and d are kinematically related by this

equation. Now the time derivatives of r, d, φ are given in the

form of














ṙ = Cµ1

ḋ = α

(

1

6
S3 +

3

2
S

)

µ1

φ̇ = µ2

(32)

µ1 can be considered the radial velocity which intersects

the closed curve in Fig. 4, while µ2 implies the tangential

velocity which lies along the curve. Similarly, with (24)(25)

and (27),

ż1 =

(

−x3C + αr2

(

−
1

24
S4 +

1

3
S2 −

9

2
φ

))

ṙ

= −αr3C

(

3

24
S4 +

1

2
S2 +

3

2

)

µ1 +
3

2
αr3 µ2

ż2 = −(3x2
3 + 5x1dx3 + 2x2

1d
2)

µ1

r2

= −

(

1

6
S3 +

3

2
S

) (

3αr2

(

1

6
S3 +

3

2
S

)

− rdC

)

µ1

(33)

C. Singularity and pre-rotation of the coordinates

We should note that the proposed coordinate transforma-

tion is discontinuous when x2
1 = x2

3 = 0. However, it is still

possible to avoid the discontinuity if x2 is not equal to zero;

let θ be a constant parameter initialized as

θ := arctan(x1(0), x2(0)) (34)

and Rotθ be the rotation matrix

Rotθ =

(

cos θ − sin θ
sin θ cos θ

)

(35)

Perform the following invertible transformation for coor-

dinates and inputs:
(

x̄1

x̄2

)

:= Rot−1

θ

(

x1

x2

)

(36)

x̄3 := x3 (37)
(

x̄4

x̄5

)

:= Rot−1

θ

(

x4

x5

)

(38)

ū := Rot−1

θ u (39)

The system dynamics (1) is invariant under this transforma-

tion, i.e.:

d

dt













x̄1

x̄2

x̄3

x̄4

x̄5













=













1
0

−x̄2

−x̄3 − x̄1x̄2

−x̄2
2













ū1 +













0
1
x̄1

x̄2
1

−x̄3 + x̄1x̄2













ū2

We see that x̄2(0) = 0 and x̄1(0) =
√

x1(0)2 + x2(0)2,

therefore x̄1(0) = 0 if and only if x1(0) = x2(0) = 0.

With the aid of this pre-transformation, in practice, the set

of singularity reduces to {x ∈ R5 |x2
1 + x2

2 + x2
3 = 0}.

D. Switched State Feedback Law

Now we are ready to consider to control the system (26)

using the new inputs µ1, µ2. To begin with, we check the

following fundamental properties. Let D1 := {φ = 0, π},

D2 := {φ = ± 1

2
π} be subsets of S (Fig. 5). Note that

S = S2 = S3 = 0 on D1 and C = C3 = 0, C2 = ±1 on

D2.

Lemma 3: The following facts hold.

• If φ ∈ D1,











ṙ = Cµ1 ż1 =
3

2
αr2µ1

ḋ = 0 ż2 = 0

φ̇ = µ2

(40)

• If φ ∈ D2,



















ṙ = 0 ż1 =
3

2
αr2µ2

ḋ =
4α

3
µ1 ż2 = −

16

3
αr2µ1

φ̇ = µ2

(41)

• For ∀φ ∈ S and µ1 = 0,











ṙ = 0 ż1 =
3

2
αr2µ2

ḋ = 0 ż2 = 0

φ̇ = µ2

(42)

Proof: Just evaluate (26) under the given conditions.

φ

D1

D2

D1

D2

S

Fig. 5. Switching points on S

Remark 2: In order to extend our free choice in controller

design, let us introduce a binary design parameter

γ ∈ {0, π} ⊂ S, (43)

which specifies the final reference of φ. γ can be chosen

arbitrarily from {0, π}. In case of γ = π, we have to slightly

modify the coordinate transformation as follows:

z1 := x4 − αr3

(

1

24
S4 +

1

6
S2 +

3

2
(φ + π)

)

(44)

•

Basic idea of the proposed method is to use the control

µ1 6= 0 only at φ ∈ D1 ∪ D2 to adjust z1, z2 to zero, while

µ1 = 0 is kept otherwise. On the other hand, φ is moved

towards the final value γ ∈ D1 after passing once through

the other end of D1.
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The feedback law will be described in a switch-case style

using the following series of controlled-invariant sets:

σ0 := {0} (45)

σ1 := {ξ ∈ M |r = 0, z = 0} (46)

σ2 := {ξ ∈ M |z = 0, φ = γ} (47)

σ3 := M (48)

σ0 is the origin to go for. On σ1, only d remains to be

controlled. On σ2, both φ and z are at their desired values

simultaneously. σ3 is the set of all ξ, which corresponds to

the original state space without the singularity set D. The

following inclusion holds among these subsets.

σ0 ⊂ σ1 ⊂ σ2 ⊂ σ3 (49)

[SWITCHED STATE FEEDBACK CONTROL LAW]

Case 4: If x ∈ D [Exit from the singularity]:

Apply a constant input u1 6= 0, u2 = 0 to get out of

D. Use the pre-rotation of the coordinates as in Sec.

III-C if necessary.

Case 3: If ξ ∈ σ3 \ σ2:

This is the main part of the control and divided into

the following sub-cases.

• If φ ∈ D1, z1 6= 0:

let µ1 = − sgn(z1) and µ2 to ensure z1 → 0.

• If φ ∈ D2, z2 6= 0 :

let µ1 = sgn(z2) and µ2 to ensure z2 → 0.

• Otherwise:

let µ1 = 0 and

µ2 =

{

− sgn(φ − γ) if z1 = 0
sgn(φ − γ) if z1 6= 0

(50)

Case 2: If ξ ∈ σ2 \ σ1:

let µ1 = − sgn(C) and µ2 = 0 to ensure r → 0.

Case 1: If ξ ∈ σ1 \ σ0:

let µ1 = − sgn(d), µ2 = 0 to ensure d → 0.

Case 0: If ξ ∈ σ0: terminate. •

Whilst we omit the detailed convergence analysis due to lack

of space, it is almost obvious that the number of switchings

is finite, the control inputs are bounded and the reaching time

is also finite since µ1 and µ2 belong to {0,±1}.

IV. SIMULATION RESULTS

Simulation results of the proposed method is shown in Fig.

6-9. The given initial state of (1) is

x(0) = (−1.5, −0.1, −2.55, −1.58, 3.12 )T . (51)

Aspect ratio of the figure-8 loop is α = 1.0, and the final

value of φ is set as γ = π.

Fig.6 shows the trajectory of x projected on x1-x2 and x1-

x3 plane. The time response in terms of the new coordinates

are shown in Fig. 7 and 8. The initial state starts from σ3

(Case 3). Since γ = π, φ goes towards 0 at the beginning

and gets to D1 at around t = 0.4, followed by z1 reaches

0 at around t = 1.0. Next, φ turns to head for γ = −π(≡
π mod 2π), passing through D2(φ = −π

2
) at around t = 2.5.

Then z2 starts to decrease and reaches 0 at around t = 4.4.

After that, φ goes on and reaches γ = −π at around t = 6.0.

Now the z1 = z2 = 0 and φ = γ are achieved, the Case 2 is

selected; r = 0 is achieved at around t = 6.9. Finally, Case

1 is selected to make d → 0, terminating at t = 8.7. The

corresponding control inputs µ are shown in Fig. 9.

V. CONCLUSION

In this paper, we dealt with the control problem of non-

holonomic drift-free systems with cross chained structure.

We proposed a switched feedback state controller which

delivers the initial state to the origin in finite time using

bounded control inputs, without (infinitely) high gain and

frequent switchings. Here we re-emphasize that the proposed

method is not a control procedure, but a feedback law in the

sense that the control input is statically and uniquely assigned

to each point in the state space.
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