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Abstract— A method for the left-inversion of nonlinear fading
memory systems from data is proposed. The method is based
on the identification of a model of the system to invert, and the
computation of the left-inverse directly from this model. It is not
required to identify an inverse system. Such an identification is
in general more difficult than the identification of the “direct”
system. The invertibility of the regression function defining the
system is also not required. The inversion error, defined as the
difference between the desired output and the actual system
output, is shown to be bounded by the identification error,
measured by the L∞ norm of the difference between the system
and the model. The Nonlinear Set Membership identification
approach is used for the identification of the model. This
approach provides models with minimal identification error.
A simulation example on the inversion of a nonlinear dynamic
semi-active suspension shows the effectiveness of the method.

I. INTRODUCTION

Consider a nonlinear discrete-time dynamic system de-

scribed in regression form:

yt = fo

(
yt−1,ut

)
, t ∈ Z (1)

yt−1 = [yt−1; ...; yt−ny ]
ut = [ut; ...; ut−nu ]

where ut, yt ∈ R, fo : W ⊂ R
n → R, n = ny + nu. The

domain W of fo is a compact convex set. The function fo

is differentiable. The notation [...; ...; ...] is used to indicate

vertical concatenation, the notation [..., ..., ...] is used to

indicate horizontal concatenation.

Suppose that the function fo is not known, but a set of

noise-corrupted measurements of yt and ut is available.

The problem considered in this paper is to find a left-

inverse of system (1). A left-inverse of (1) is a system with

input yt and output ut. Suppose that a solution yt
des of (1)

is used as the input of the left-inverse system. The output

of the left-inverse is then a signal ût that, used as input in

(1), yields ŷt = yt
des, ∀t, where ŷt = fo

(
ŷt−1, ût

)
. Note

that, since fo is unknown and the measurements are noise-

corrupted, only an approximate left-inverse can be obtained.

Solving this problem is useful in several applications. A

typical application is open-loop tracking: A certain trajectory

has to be tracked by a system and an input sequence yielding

this trajectory has to be found. Another application is block-

oriented system identification: A system composed of several

subsystems has to be identified, but some of the signals

exchanged between the subsystems are not measured. An

iterative identification algorithm can be used and system

inversion can be performed at each iteration to estimate
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the unknown signals. A third application is internal model

control (IMC) design for nonlinear systems: this design

technique requires an (approximate) inverse of the system

to control. A fourth application, that we consider in Section

V, is actuator inversion: A control law is usually applied to a

plant through an actuator, which in general can be dynamic

and nonlinear. The actuator inversion can be performed to

obtain an actuator output signal (nearly) equal to the desired

control law.

In general, inversion problems play a significant role in

the field of automatic controls. In the case of linear systems,

these problems can be analyzed and, when possible, solved in

a systematic way [21]. In the case of nonlinear systems, these

problems are considerably more difficult. The difficulties

may derive, for instance, from the non invertibility of the

function fo or from the complex nonlinear dynamics which

may characterize a system of the form (1).

The problem of inversion of nonlinear systems has been

addressed in the literature both from the theoretical point

of view, see e.g. [17], [3], [4], [9], [22], and in several

applications, see e.g. [7], [11], [20], [25]. However, the

system to invert is usually assumed known, and very few

works consider the case where it is unknown and has to be

identified from the data [8], [1].

In this paper, a method for left-inversion of unknown

nonlinear systems from data is proposed. In order to ensure

the boundedness of the inversion error |yt
des − ŷt| in open-

loop, a fading memory assumption is made. The method

is based on the identification of a model f̂ of fo, and

on the computation of the left-inverse directly from f̂ . It

is not required to identify an inverse system. In general,

such an identification is more difficult than the identification

of the “direct” system, because an inverse system may be

not differentiable, and even not continuous. The invertibility

of fo is also not required. The inversion error is shown

to be bounded by the identification error, measured by

the L∞ norm of fo − f̂ . The Nonlinear Set Membership

(NSM) approach [13] is used for the identification of f̂ . This

approach allows to derive models with minimal identification

error.

A simulation example regarding the inversion of a non-

linear dynamic semi-active suspension is introduced to show

the effectiveness of the proposed approach.

II. PROBLEM FORMULATION

Let us consider t ∈ [1,∞]. The regression system (1) is

a nonlinear operator fo mapping the initial condition y0 ∈
R

ny , and the input sequence u = [u1; u2; ...] ∈ R
∞ into an

output sequence y = [y1; y2; ...] ∈ R
∞. The operator fo is

defined as

y = fo
(
y0, u

)
= [f1

o

(
y0, u

)
; f2

o

(
y0, u

)
; ...] (2)
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where fo : R
∞ → R

∞, f t
o : R

ny+t → R. The output at a

time τ is given by

yτ = fτ
o

(
y0, u

)
= fτ

o

(
y0, [u1; ...; uτ ]

)

where fτ
o

(
y0, u

)
is computed by iterating τ times the

difference equation (1), starting from the initial condition y0.

The notation y = fo (u) will be used when not necessary to

explicit the dependence on initial conditions.

The sequence y is called solution of system fo corre-

sponding to the initial condition y0 and input sequence

u. A generic sequence z is a solution of system fo if an

initial condition y0 and an input sequence u exist such that

z = fo
(
y0, u

)
.

Suppose that the function fo in (1) is not known, but a set

of noise-corrupted measurements of yt and ut is available.

Problem 1: Find an approximate left-inverse of system fo,

i.e. find a system
u = f̂inv

(
u0, y

)
(3)

and an initial condition u0 for which a N < ∞ exists such

that the inversion error

|yt
des − ŷt| , t ≥ N

ŷ = fo

(
ŷ0, f̂inv (ydes)

)
(4)

is “small”, for any initial condition ŷ0 and any solution

ydes = [y1
des; y

2
des; ...] of the system fo.

III. INVERSION ALGORITHM

Let us consider a function

z = f (x, u)
where z ∈ R, x ∈ X ⊆ R

nx , u ∈ R, f : R
n → R, n =

nx + 1.

Definition 1: A function finv : R
n → R is a left-inverse

of f with respect to u if, for any fixed x ∈ X and for any

zdes in the codomain of the function f (x, ·) : R → R, the

following equality holds:

zdes = f (x, finv (x, zdes)) . (5)

Let us now define the function

f−1 (x, z)
.
= max (U) (6)

U = arg min
u∈R

|z − f (x, u)| . (7)

This function is implicitly defined by means of the optimiza-

tion problem (7). Since (7) is an optimization problem in R, it

can be easily solved using any scalar optimization technique.

Note that the set U of the minimizers of |z − f (x, u)| may

be composed of several elements. The max (U) is performed

to select a unique value, so that the function f−1 is properly

defined.

For any x ∈ X and any zdes in the codomain

of f (x, ·), we have min
u

|zdes − f (x, u)| = 0 and then

f
(
x, f−1 (x, zdes)

)
= zdes. The function f−1 is thus a

left-inverse of f with respect to u. If zdes is not in the

codomain of f (x, ·), f
(
x, f−1 (x, zdes)

)
is nevertheless the

best approximation of zdes. Note that the invertibility of f
is not required.

Let us now suppose that the function f is not know and

it is of interest to find a left-inverse of it. Suppose that an

approximation f̂ of f is available. A possible approach is to

compute the left-inverse f̂−1 of f̂ by means of (6) and to

use f̂−1 as approximate inverse of f . For any x ∈ X and

any zdes in the codomain of f (x, ·), we have

zdes = f̂
(
x, f̂−1 (x, zdes)

)
, ẑ = f

(
x, f̂−1 (x, zdes)

)
.

Clearly, ẑ 6= zdes, since f 6= f̂ , but the inversion error is

bounded as

|zdes − ẑ| ≤
∥∥∥f − f̂

∥∥∥
∞

where ‖f‖
∞

.
= ess-supw∈W |f (w)| is the standard L∞

norm. This inequality shows that the accuracy of the inver-

sion depends on the accuracy of the “direct” approximation

f̂ .

Up to now, static nonlinear functions have been consid-

ered, and the left-inversion problem has been shown quite

simple to solve. More difficult is to solve the inversion

Problem 1, where dynamic nonlinear systems are considered.

We propose the following algorithm for its solution.

Suppose that the function fo in (1) is not known, but a

set of noise-corrupted measurements (ỹt, ũt) of (yt, ut), t =
−T + 1,−T + 2, ..., 0, is available.

Algorithm

1. From the available data (ỹt, ũt), t = −T + 1,−T +
2, ..., 0, identify a model of the system (1) of the form

yt = f̂
(
yt−1,ut

)

where yt−1 = [yt−1; ...; yt−ny ], ut = [ut; ...; ut−nu ] and f̂
is a continuous function approximating fo. This model is

represented by the nonlinear operator f̂ , defined according

to (2).

2. Compute the left-inverse f̂−1 of the model f̂ by means

of the following regression equation:

ut = f̂−1
(
ut−1,yt

)
, t > 0 (8)

where yt = [yt; ...; yt−ny ], ut−1 = [ut−1; ...; ut−nu ], u0 =
[0; ...; 0], and f̂−1 is the left-inverse of f̂ w.r.t. ut, defined

according to (6):

f̂−1
(
ut−1,yt

) .
= max (U) (9)

U = arg min
u∈R

∣∣∣yt − f̂
(
yt−1, [u; ut−1; ...;ut−nu ]

)∣∣∣ . (10)

3. Use f̂−1 as left-inverse of fo.

In order to analyze the properties of this inversion algo-

rithm, let us recall the notion of fading memory system (see

e.g. [2]).

Definition 2: A system f has fading memory if, for any

ǫ > 0, a N > 0 exists such that, for every k ≥ 0, every

t ≥ N , every initial conditions y0, ŷ0, and every sequences

q = [q1; q2; ...; qk], q̂ = [q̂1; q̂2; ...; q̂k], u = [u1; u2; ...;ut],
∣∣fk+t

(
y0, [q;u]

)
− fk+t

(
ŷ0, [q̂; u]

)∣∣ < ǫ.
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We are now in the position of presenting the main result

of this paper. Let ydes be a solution of both systems fo and

f̂ and let

ŷ = fo

(
ŷ0, f̂−1 (ydes)

)

where ŷ0 is a generic initial condition.

Theorem 1: Assume that fo and f̂−1 have fading memory.

Then, for any ǫ > 0, there exist N, K < ∞ such that
∣∣yt

des − ŷt
∣∣ ≤ ǫ + K

∥∥∥fo − f̂
∥∥∥
∞

, ∀t ≥ N

for any initial condition ŷ0 and any sequence ydes =
[y1

des; y
2
des; ...] that is solution of both the systems fo and

f̂ .

Proof. See [16]. ¥

Remarks

1) The proposed left-inversion algorithm does not require

the invertibility of the function fo. According to the opti-

mization problem (6), if z is in the codomain of f (x, ·), it

is sufficient to find a u such that f (x, u) = z to compute the

left-inverse. On the other hand, if fo is invertible, the set U in

(10) is composed of a unique element. This implies that the

sequence ût = f̂−1
(
ût−1,yt

des

)
is univocally determined.

Therefore, in the case that f̂ = fo, the algorithm provides the

(left-right-) inverse of the system (1): for any solution ydes of

fo, û is the unique sequence such that ydes = fo(f
−1
o (ydes))

and û = f−1
o (fo(û)). In the case that f̂ ≃ fo, we have ydes ≃

fo(f̂
−1(ydes)) and û ≃ f̂−1(fo(û)), where the inversion

errors |yt
des − f t

o(f̂
−1(ydes))| and |ût − f̂−1t(fo(û))| are

bounded.
2) While the regression function fo of the system (1)

is differentiable, a left-inverse of this function may be not

differentiable and even not continuous. It is well known that

approximating a discontinuous function is in general more

difficult than approximating a continuous one. The system

inversion approach proposed here, overcomes this problem,

since it does not require to identify an inverse system.
3) Consider a system of the form

yt = fo

(
yt−1,vt,ut

)

where vt = [vt; ...; vt−nv ], vt ∈ R
mv , is an additional input.

The inversion method proposed in this section can be used

to invert this system w.r.t. the input ut with no significant

modifications.

IV. COMPUTATION OF f̂ WITH NONLINEAR SET

MEMBERSHIP IDENTIFICATION

Theorem 1 gives a bound on the inversion error |yt
des − ŷt|

which depends on the identification error

∥∥∥fo − f̂
∥∥∥
∞

. There-

fore, to obtain a small inversion error, it is important to have

a small identification error. In this section, we summarize

the Nonlinear Set Membership (NSM) method [13], which

allows the identification of models with minimal identifica-

tion error.
Let w̃t .

= [ỹt−1; ũt] and T
.
= {−T + 1,−T + 2, ..., 0}.

Consider that a set of noise corrupted data Ỹ T = {ỹt, t ∈
T}, W̃T = {w̃t, t ∈ T} generated by (1) is available. Then:

ỹt = fo(w̃
t) + dt, t ∈ T (11)

where the term dt accounts for the fact yt and wt are not

exactly known.

The aim is to derive an estimate f̂ of fo from available

measurements (Ỹ T , W̃T ).
An identification algorithm φ is an operator mapping

the available data (Ỹ T , W̃T ) into an estimate f̂ of fo:

φ(Ỹ T , W̃T ) = f̂ ≃ fo. The algorithm φ should be chosen

to give small (possibly minimal) Lp error ||fo− f̂ ||p, where:

||f ||p .
=

[∫
W

|f (w)|p dw
] 1

p , p ∈ [1,∞)
||f ||∞ .

= ess-supw∈W |f (w)| ,
and W is a bounded convex set in R

n.

Whatever algorithm φ is chosen, no information on the

identification error can be derived, unless some assumptions

are made on the function fo and the noise d. The typical

approach in the literature is to assume a finitely parametrized

functional form for fo (linear, bilinear, neural network, etc.)

and statistical models for the noise [5], [12], [15], [10]. In the

NSM approach, different and somewhat weaker assumptions

are taken, not requiring the selection of a parametric form

for fo, but related to its derivatives. Moreover, the noise

sequence {dt, t = 1, .., T} is supposed bounded.

Prior assumptions on fo:

fo ∈ K
.
=

{
f ∈ C1(W ) : ‖f ′(w)‖ ≤ γ, ∀w ∈ W

}
.

Prior assumptions on noise: |dt| ≤ ε, t ∈ T.

Here, f ′(w) denotes the gradient of f(w) and ‖x‖ .
=√∑n

i=1
x2

i is the Euclidean norm.

As typical in any estimation theory, the problem of check-

ing the validity of prior assumptions arises. This problem is

considered in [13], where a validation analysis is provided,

which also allows to properly choose the values of the

bounds γ and ε.

A key role in this Set Membership framework is played

by the Feasible Systems Set, often called “unfalsified sys-

tems set”, i.e. the set of all systems consistent with prior

information and measured data.

Definition 3: Feasible Systems Set:

FSST .
= {f ∈ K:

∣∣ỹt − f
(
w̃t

)∣∣ ≤ εt, t ∈ T}. (12)

The Feasible Systems Set FSST summarizes all the

information on the mechanism generating the data that is

available up to time T . If prior assumptions are “true”,

then fo ∈ FSST , an important property for evaluating the

accuracy of identification.

Using the notion of Feasible Systems Set, we can define an

identification algorithm φ as an operator mapping all avail-

able information about function fo, noise d, data (Ỹ T , W̃T )
until time T , summarized by FSST , into an estimate f̂ of

fo:
φ

(
FSST

)
= f̂ ≃ fo.

For given estimate φ
(
FSST

)
= f̂ , the related Lp error∥∥∥fo − f̂

∥∥∥
p

cannot be exactly computed, but its tightest

bound is given by

∥∥∥fo − f̂
∥∥∥

p
≤ supf∈FSST

∥∥∥f − f̂
∥∥∥

p
. This
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motivates the following definition of worst-case identification

error.

Definition 4: The worst-case identification error of the

estimate f̂ = φ
(
FSST

)
is:

E
[
φ

(
FSST

)]
= E(f̂)

.
= sup

f∈FSST

∥∥∥f − f̂
∥∥∥

p
.

Looking for algorithms that minimize the worst-case iden-

tification error, leads to the following optimality concepts.

Definition 5: An algorithm φ∗
is optimal if:

E
[
φ∗

(
FSST

)]
= inf

φ
E

[
φ

(
FSST

)]
= rI .

The quantity rI , called radius of information, gives the

minimal worst-case identification error that can be guaran-

teed by any estimate based on the available information up

to time T .

Define the functions:

f (w)
.
= min

t∈T

(
h

t
+ γ ‖w − w̃t‖

)

f (w)
.
= max

t∈T

(
ht − γ ‖w − w̃t‖

) (13)

where h
t .
= ỹt + ε, ht .

= ỹt − ε. The next result shows that

the algorithm:

φc(FSST ) = fc
.
=

1

2

(
f + f

)

is optimal for any Lp norm.

Theorem 2: [13] For any Lp(W ) norm, with p ∈ [1,∞]:
i) The identification algorithm φc

(
FSST

)
= fc is optimal.

ii) E (fc) = 1

2

∥∥f − f
∥∥

p
= rI = infφ E

[
φ

(
FSST

)]
.

Note that the NSM method can be used either alone or

together with any other identification method. Let us suppose

that an estimate fa has been obtained using any desired

technique. The NSM method can be applied to identify the

residue function f∆ (w)
.
= fo (w) − fa (w) using the set of

values ∆yt = ỹt − fa (w̃t), t ∈ T. Theorem 2 implies that

the estimate fL (w) = fa (w) + fc (w), where fc (w) is the

optimal estimate of f∆ (w), is optimal.

V. APPLICATION TO SEMI-ACTIVE DAMPERS CONTROL

A. Resume of semi-active dampers modeling and control

In this Section, the use of the proposed inversion pro-

cedure is shown in the problem of the input computation

in controlled semi-active suspension systems (see Fig. 1 for

a schematic and a description of a quarter car semi-active

suspension).

Such systems, are based on suitable dampers which allow

the tuning of the suspension force F t according to some

control requirements through the adjustment of the damping

characteristics of the device within its physical limitations.

In order to vary the value of F t several technologies can be

employed which range from the case of hydraulic devices

where a fluid flows through valves whose opening can be

controlled by means of a current to the Magneto-Rheological

(MR) dampers where the damping characteristics are modu-

lated through the variation of a magnetic field generated by

mc

zc

k

zr

kw
βw

mw

?

6
>

F

F
6

y

zw

road profile

(a)

mc

k

kw
βw

mw

(b)

1β

Fig. 1. (a) Quarter car suspension schematic. (b) Quarter car semiactive
suspension schematic. zc sprung mass (1/4 of chassis and load mass)
vertical position, zw unsprung mass (wheel) vertical position zr road profile

a suitable current. The relationships between the suspension

force F t and the relative speed vt
wc = żt

w − żt
c and the

input current it of the considered device are described by

a “damper map”

F t = fD(vt
wc, i

t) (14)

as reported in Fig. 2 which is obtained by the damper manu-

facturer by means of static tests and it is usually provided to

the costumer. In such a map each curve represents the force

behavior for a given constant value of the driving current

(for simplicity in Fig. 2 only the minimum and maximum

current curves are reported).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−3000

−2000

−1000

0

1000

2000

3000

Relative speed (m/s)

S
u

s
p

e
n

s
io

n
 f

o
rc

e
 (

N
)

I = 0 A: maximum damping

I = 1.8 A: minimum damping

Fig. 2. Employed damper map. Dashed line: maximum damping charac-
teristic obtained for a driving current of 0 A. Solid line: minimum damping
characteristic obtained for a driving current of 1.8 A.

The region included into the two curves in Fig. 2 repre-

sents the set of the all the forces that the damper is able to

provide and it is referred to as the “passivity constraints”.

A common strategy to compute the required amount of the

force F t is the Sky-Hook approach (see e.g. [23], [24]):

F t = βrel(ż
t
w − żt

c) − βskyż
t
c (15)
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where the parameters βrel and βsky are suitably chosen to

meet the control requirements. However, since not every

value of the force F t computed in (15) can be realized,

a clipping action (see e.g. [24]) is needed to satisfy the

passivity constraints.

In a real suspension, the control algorithm has to provide

the value of the input current it which realizes the required

clipped force. To this end, a typical procedure consists in

computing it by static inversion (w.r.t. i) of the damper map

(14) (see e.g. [6]):

it = f−1
D (vt

wc, F
t). (16)

However, as discussed in [14] and [19]), the use of the

map (14) provides a poor description of the damper physical

behavior and a more accurate (dynamical) model is needed.

In particular, a model of the form

yt = f
(
yt−1,vt,ut

)
(17)

yt−1 = [yt−1; ...; yt−ny ]
ut = [ut; ...; ut−nu ]
vt = [vt; ...; vt−nv ]

where yt = F t, ut = it, vt = [vt
wc; z

t
w − zt

c] can be suitably

employed to describe the damper dynamics. Models of the

form (17) can be obtained from data collected on a test bench

in both the cases the damper is mounted or not on the vehicle

as described in [14] and [19]. Now, the inversion procedure

defined in Section III performed on an identified model of

this type can be used to obtain the damper current needed to

obtain the force required by the employed control algorithm

(e.g. (15)).

B. Simulation results

In order to show the effectiveness of the proposed inver-

sion procedure, the following simulation setting has been

considered. In the quarter car model of Fig. 1 described by

the physical parameters: mc = 432.82 kg, mw = 40 kg,

k = 20000 N/m, kw = 200000 N/m, βw = 0 Ns/m, the

semi-active damper force F t has been computed according

to a clipped Sky-Hook strategy originated from (15) and

with the value of the design parameters βrel = 3000 Ns/m

and βsky = 1550 Ns/m which are supposed to be given.

The clipping of the force has been performed supposing that

the employed damper is represented by the map depicted

in Fig. 2. The results obtained by the direct application of

such a force define the ideal level of performance to be

reached by the controlled suspension. Subsequently, in the

considered quarter car model, the model described in [14] has

been employed to simulate the damper device. Such a model

requires the current i and the relative position zt
w − zt

c and

speed vt
wc as inputs and produces the force F as output. In

particular, the regression structure (17) has been employed,

with ny = nu = nv = 2. It has to be highlighted that,

as reported in [14], such a model has been identified from

real data collected on a vehicle equipped with a commercial

damper characterized by the map reported in Fig. 2.

At this point, two different kind of simulation tests have

been considered:

1) the damper input current is computed according to

a straightforward static inversion of the map (14)

(IMAP)

2) the damper input current is computed according to the

inversion procedure described in Section III, where the

approximation f̂ is obtained by means of the NSM

identification method of Section IV (INSM)

The simulations have been carried out using “benchmark”

road profiles employed in standard industrial tests (see [14]).

In particular, the following road profiles have been taken into

account:

- English Track: road with irregularly spaced holes and

bumps, maximum amplitude of 0.025 m and run at 60 km/h.

- Short Back: impulse road profile, with amplitude of 0.015

m, width of 0.5 m and run at 30 km/h.

- Drain Well: negative impulse road, with amplitude of 0.05

m, width of 0.5 m and run at 30 km/h.

In this way, the controlled suspensions behavior is tested

in different driving and road regularity conditions. The sim-

ulations were performed using a sampling time T = 1/512
s and a simulation time of about 14 s for each profile type.

The accuracy properties of the inversion procedures IMAP

and INSM are evaluated using the following RMS errors:

EIMAP =
1√
S

∑S−1

k=0
(F

k − F k
IMAP)

2

EINSM =
1√
S

∑S−1

k=0
(F

k − F k
INSM)2

where S is the considered number of samples, F is the

ideal force computed according to the considered clipped

Sky-Hook strategy while FIMAP and FINSM represent the

suspension forces obtained using the IMAP and INSM

inversion procedures respectively. To better highlight the

differences between the IMAP and the INSM approaches

the corresponding suspension comfort performance in terms

of the RMS value of the sprung mass acceleration:

z̈c,RMS =
1√
S

∑S−1

k=0
(z̈k

c )2

have been evaluated too. In Table I the obtained results in

term of inversion accuracy and suspension performance are

reported.

TABLE I

ACCURACY AND COMFORT PERFORMANCE RESULTS.

IMAP INSM F
Road Profile EIMAP z̈c,RMS EINSM z̈c,RMS z̈c,RMS

English Track 150.3 1.270 82.7 1.162 1.154
Short Back 50.3 0.399 29.1 0.362 0.348
Drain Well 73.7 0.570 37.1 0.515 0.513

The data in Table I show the improvements on the required

force computation obtained using the INSM procedure. The

immediate consequence is a significant enhancement of the

suspension comfort characteristics in all the considered road

profiles. In order to evaluate more directly such results,

in Figure 3 the courses of the sprung mass acceleration

and on the computed forces are reported for the case of

the drain well. Observing Figure 3, it can be noted that
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the inaccuracies in the force computation in the IMAP

case cause a worsening also on the bounce performance of

the suspension since the acceleration peaks in the opposite

direction of the hole (i.e. negative for short back) are greater

than the ones obtained with INSM which are quite close to

the case of the direct application of the desired force.
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Fig. 3. Drain Well profile. Above: Desired suspension forces (dotted)
and IMAP (dashed) and INSM (solid) approximations. Below: Comparison
between the desired sprung mass acceleration (dotted) and the ones obtained
with limitations (dotted) IMAP (dashed) and INSM (solid) procedures.

VI. CONCLUSIONS

In this paper a new approach for obtaining an approximate

inverse of fading memory dynamical systems has been intro-

duced. In particular, it has been shown that under some mild

assumptions on the considered system, the inversion error

is bounded. An example related to the inversion of a semi-

active damper has been introduced to show the effectiveness

of the proposed approach.
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