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Abstract— The problem of efficient nonlinear model pre-
dictive control (NMPC) implementation is investigated, using
an approximating function κ̂ to avoid on–line optimization.
At first, sufficient conditions are given for κ̂ to guarantee
a finite computable bound on the approximation error (i.e.
the difference between the exact and approximated control
moves). Then, additional conditions are obtained to make such
a bound arbitrary small. This result makes it possible to derive
guaranteed closed loop stability properties. Finally, it is shown
that set membership (SM) nonlinear function approximation
theory can be employed to improve the performance of κ̂. The
resulting “fast” model predictive control law is given by the
sum of κ̂ with a SM approximated function and satisfies the
above–mentioned conditions even if they are not met by κ̂ alone.
A nonlinear oscillator example shows the effectiveness of the
proposed methodology.

I. INTRODUCTION

Nonlinear Model Predictive Control (NMPC) (see e.g. [1]) is

a model based control technique where the control action is

computed by means of a receding horizon (RH) strategy,

which requires at each sampling time the solution of an

optimization problem. For time invariant systems, the control

move ut at time t is a nonlinear static function of the system

state xt, i.e. ut = κ0(xt), evaluated implicitly by solv-

ing on-line the optimization. The application of predictive

techniques has received an increasing attention in industrial

world due to its efficiency in constraints handling. However,

the RH strategy leads to strong limitations in using MPC

techniques in the presence of fast plant dynamics, which

require small sampling periods that do not allow to perform

the optimization problem on-line. In order to allow the use of

MPC to a larger range of applications, a significant research

effort has been devoted in recent years to the problem of fast

implementation of model predictive control laws. A viable

solution to this problem is the use of an approximated control

law κ̂ ≈ κ0, with low computational time, to be used for on-

line implementation. In this context, a first contribution was

given in [2], who considered the use of a neural approxi-

mation of κ0. However, computational problems may arise

with such approach, related to the “curse of dimensionality”

(causing an exponential dimension increase in the neural net-

work parameter space) and to possible deteriorations in the

approximation, due to trapping in local minima. Moreover,
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no guaranteed approximation error and constraint satisfaction

properties were obtained. Another methodology to approxi-

mate a NMPC controller has been proposed in [3], using an

off-line algorithm for the construction of a piecewise affine

(PWA) approximation of the nominal predictive control law

and its implementation via a binary search tree. Stability

properties can be obtained in this case. However, with this

approach the computational times depend on the number of

the state space partitions, which increases as the required

error tolerance decreases. Moreover, the stability and con-

straint satisfaction properties rely on the assumption of the

convexity of the optimal cost function. If such assumption is

not met, ad-hoc solutions have to be used. Another technique

to approximate a nonlinear MPC controller has been used in

[4], by approximating the nonlinear system model with a set

of PWA systems over the state space and computing for each

one a PWA solution of the quadratic constrained finite-time

optimal control (see e.g. [5] and [6]). Then, a set of off-

line solutions of such PWA control laws is considered and a

polynomial interpolation technique is employed to compute

an approximation of the overall control law. However, the

approximation of a given nonlinear model with a set of

PWA systems is not a trivial task and model approximation

errors are introduced. Moreover, no guarantees are given

on the stabilizing properties of the computed polynomial

law. A further technique has been considered in [7], [8]

and [9], where approximated MPC laws, with guaranteed

performance and stability properties, have been derived using

set membership (SM) function approximation theory. Such

techniques have been also applied to problems like control

of power kites for energy generation ([10]) and control of

semi-active suspension systems ([11]).

In the described scenario, the aim of this paper is to inves-

tigate the properties of generic approximated NMPC laws,

with particular regard to their approximation accuracy. The

paper contribution is twofold. At first, sufficient conditions

are given for a generic approximating function κ̂, derived

with any technique, to obtain a finite approximation error

and to make such error arbitrary small. This makes it possible

to guarantee closed loop stability and constraint satisfaction

properties (see e.g. [8]). Then, it shown how SM function

approximation theory can be employed to improve the per-

formance of κ̂. The resulting “fast” model predictive control

law is given by the sum of κ̂ and of a SM approximated

function and satisfies the above–mentioned conditions even

if they are not met by κ̂ alone. A nonlinear oscillator example

shows the effectiveness of the proposed methodology.
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II. NONLINEAR MODEL PREDICTIVE CONTROL

Consider the following nonlinear state space model:

xt+1 = f(xt, ut) (1)

where xt ∈ R
n and ut ∈ R

m are the system state and control

input respectively. In this paper, it is assumed that function f

in (1) is continuous over R
n ×R

m. Assume that the control

objective is to regulate the system state to the origin under

some input and state constraints represented by a compact

set U ⊆ R
m and a convex set X ⊆ R

n respectively, both

containing the origin in their interiors.

Denoting by Np and Nc ≤ Np the prediction horizon and the

control horizon respectively, the following objective function

J can be defined:

J(U, xt|t, Np) = Φ(xt+Np|t) +
∑Np−1

j=0 L(xt+j|t, ut+j|t)

where xt+j|t denotes j step ahead state prediction using the

model (1), given the input sequence ut|t, . . . , ut+j−1|t and

the “initial” state xt|t = xt. U =
[

uT
t|t, . . . , u

T
t+Nc−1|t

]T

is the vector of the control moves to be optimized. The

remaining predicted control moves [ut+Nc|t, . . . , ut+Np−1|t]
can be computed with different strategies, e.g. by setting

ut+j|t = uNc−1|t or ut+j|t = K xt+j|t, ∀j ∈ [Nc, Np − 1],
where K is a suitable matrix.

The NMPC control law is then obtained applying the fol-

lowing RH strategy:

1) At time instant t, get xt.

2) Solve the optimization problem:

min
U

J(U, xt|t, Np) (2a)

s. t.

xt+j|t ∈ X, j = 1, . . . , Np (2b)

ut+j|t ∈ U, j = 0, . . . , Np (2c)

3) Apply the first element of the solution sequence U to

the optimization problem as the actual control action

ut = ut|t.

4) Repeat from step 1) at time t + 1.

It is assumed that the optimization problem (2) is feasible

over a set F ⊆ R
n which will be referred to as the

“feasibility set”. The application of such RH procedure

implicitly defines the predictive controller as a nonlinear

static function κ0 of the state, i.e.:

ut = κ0(xt)

It is supposed that the nominal control law κ0 is continuous

over the feasibility set F . Such property has been

investigated e.g. in [12], where the continuity of the control

law is studied in the context of general finite-horizon

nonlinear optimal control. Other results can be found

in [13]. Note that stronger regularity assumptions (e.g.

differentiability) cannot be made, since even in the simple

case of linear dynamics, linear constraints and quadratic

objective function, κ0 is a piece-wise linear continuous

function (see e.g. [5] and [6]).

III. APPROXIMATED NMPC LAWS: ACCURACY RESULTS

In the standard NMPC formulation, the nominal control law

κ0 is evaluated by solving the optimization problem (2) on-

line. However, a limitation in the practical use of NMPC is

the presence of fast plant dynamics, for which the required

sampling time may be too low for real-time optimization. A

viable solution to this problem is the use of an approximated

control function κ̂ ≈ κ0, derived off-line, whose on-line

evaluation time is smaller.

It is considered that κ̂ is defined over a compact set X ,

containing the origin in its interior, such that:

κ̂ : X → R, X ⊆ F

Moreover, κ̂ is computed on the basis of the knowledge of

a finite number ν of exact control moves, i.e.:

ũk = κ0(x̃k), k = 1, . . . , ν (3)

where the state values x̃k are suitably chosen and define the

set:

Xν = {x̃k, k = 1, . . . , ν} ⊆ X

In [8], it is shown that if κ̂ has the following key properties:

i) Input constraint satisfaction:

κ̂(x) ∈ U ∀x ∈ X (4)

ii) The pointwise approximation error ∆κ̂(x) =
κ0(x) − κ̂(x) is bounded:

‖∆κ̂(x)‖ ≤ ζ, ∀x ∈ X (5)

where ‖ · ‖ is a suitable norm, e.g. Euclidean.

iii) The bound ζ(ν) converges to zero:

lim
ν→∞

ζ(ν) = 0 (6)

then guaranteed closed loop stability can be achieved, as

well as arbitrary small performance degradation, in terms

of Euclidean distance between the state trajectories obtained

with the nominal and the approximated control laws.

As regards the asymptotic behaviour of ζ as ν → ∞, it is

assumed that Xν is chosen such that the following property

holds:

lim
ν→∞

dH(X ,Xν) = 0 (7)

where dH(X, Xν) is the Hausdorff distance between X and
Xν (see e.g. [14]):

dH(X ,Xν) = max

(

sup
x∈X

inf
x̃∈Xν

(‖x − x̃‖2), sup
x̃∈Xν

inf
x∈X

(‖x − x̃‖2)

)

Note that uniform gridding over X satisfies condition (7).

Thus, in this paper sufficient conditions are given for a

generic approximating function κ̂, derived with any approx-

imation method (e.g. interpolation, neural networks etc.), to

have properties (4)-(6). For simplicity of notation, in the

remaining of the paper it will be assumed that κ0 : R
n → R

and that U = {u ∈ R : u ≤ u ≤ u}, where u, u ∈ R.
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Since the nominal control law κ0 is assumed to be continuous

over F , and both X and U are compact, then κ0 is Lipschitz

continuous over X . Thus, κ0 belongs to the following

function set:

κ0 ∈ AL
κ0

= {κ : X → U,

|κ(x1) − κ(x2)| ≤ Lκ0 ‖x1 − x2‖2, ∀x1, x2 ∈ X}
(8)

where Lκ0 is the Lipschitz constant of κ0 over X . The first

contribution introduced in this paper is to derive sufficient

conditions for any given approximating function κ̂ to obtain

a computable bound on the norm |∆κ̂(x)| of the pointwise

approximation error ∆κ̂(x):

∆κ̂(x)
.
= κ0(x) − κ̂(x)

From the knowledge of the ν exact control moves computed

off–line (3), the exact values of ∆κ̂(x̃) are known:

∆κ̂(x̃) = ũ − κ̂(x̃), ∀x̃ ∈ Xν

The following Theorem shows how to compute a bound on

|∆κ̂(x)| on the basis of the knowledge of ∆κ̂(x̃).
Theorem 1: Let κ0 have property (8). If κ̂ is Lipschitz

continuous with Lipschitz constant Lκ̂ and has property (4),

then:

i) the approximation error ∆κ̂ is a Lipschitz continu-

ous function over X , with Lipschitz constant L∆κ̂

bounded as:

L∆κ̂
≤ Lκ̂ + Lκ0 (9)

ii) |∆κ̂(x)| is bounded:

|∆κ̂(x)| ≤ ζ, ∀x ∈ X

iii) A bound ζ can be computed as:

ζ = sup
x∈X

max
(

∆κ̂(x),−∆κ̂(x)
)

(10)

where

∆κ̂(x)
.
=

min[u − κ̂(x), min
x̃∈Xν

(∆κ̂(x̃) + L∆κ̂
‖x − x̃‖2)]

∆
κ̂
(x)

.
=

max[u − κ̂(x), max
x̃∈Xν

(∆κ̂(x̃) − L∆κ̂
‖x − x̃‖2)]

(11)

iv) if Lκ̂ ≤ L∆κ̂
, the bound ζ (10) is the tightest on

the basis of the available information on κ0

Proof: See [15]

Remark 1: Note that if the approximation method em-

ployed to derive κ̂ does not guarantee input constraint

satisfaction, condition (4) can be imposed by modifying κ̂

as follows:

κ̂S(x) =







κ̂(x) if u ≤ κ̂(x) ≤ u

u if κ̂(x) < u

u if κ̂(x) > u
Remark 2: As regards the computation of the Lipschitz

constant Lκ0 , the following estimate can be employed:

L̂κ0 = inf
(

L : ũh + L‖x̃h − x̃k‖2 ≥ ũk, ∀k, h = 1, . . . , ν
)

(12)

As shown in [8], this estimate is such that:

lim
ν→∞

L̂κ0 = Lκ0

Remark 3: Depending on the properties of κ̂, the Lips-

chitz constant Lκ̂ can be computed analytically or numeri-

cally or using a procedure similar to (12).

Remark 4: Note that the bound (9) on the Lipschitz

constant of the approximation error ∆κ(x) may be too

conservative. Alternatively, an estimate L̂∆κ̂
of L∆κ̂

can be

computed using a procedure similar to (12).

According to Theorem 1, a bound ζ(ν) on the approximation

error can be computed for any continuous approximated

control law κ̂ and any value of ν, thus satisfying property

(5). The next Theorem gives the additional condition needed

to satisfy also property (6), i.e. the capability of guaranteeing

an arbitrary small approximation error.

Theorem 2: Let Xν be chosen such that (7) holds. Let

κ0 satisfy property (8). If κ̂ is Lipschitz continuous with

Lipschitz constant Lκ̂, such that (4) holds, and satisfies the

following property (data interpolation):

κ̂(x̃) = ũ, ∀x̃ ∈ Xν (13)

then, in addition to the results i)–ii) of Theorem 1, the

following hold:

i) the bound ζ on the approximation error norm can

be computed as:

ζ = sup
x∈X

min [max (u − κ̂(x),−u + κ̂(x)) , η(x)]

(14)

where

η(x) = min
x̃∈Xν

(L∆κ̂
‖x − x̃‖2)

ii) ζ(ν) converges to zero:

lim
ν→∞

ζ(ν) = 0

Proof: See [15]

Theorem 2 can be used to compute an upper bound on

the error obtained using any approximated control law κ̂

which interpolates the off–line computed data and to “tune”

ν to guarantee a given desired accuracy. This is sufficient

to guarantee that the closed–loop stability and performance

properties obtained with control law κ̂ are arbitrarily close

to those of κ0, in terms of Euclidean distance between their

respective closed–loop trajectories (see [8] and [9] for further

details).

IV. OPTIMAL APPROXIMATIONS OF NMPC LAWS

In this Section, the problem of deriving approximating func-

tions κ̂ fulfilling the hypotheses of Theorem 2 is studied.

Indeed, standard methods, e.g. based on expansions in term

of suitable basis functions (polynomials, sigmoids, wavelets,

etc.) could be used. However, it is well known that in general,

as the number of basis functions needs to be increased in
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order to achieve the interpolation condition (13), the approx-

imation error e(κ0, κ̂) = ‖κ0 − κ̂‖∞ = sup
x∈X

|κ0(x) − κ̂(x)|

may become very large (curse of dimensionality). Thus,

the problem is to find, among all functions κ̂ fulfilling

the conditions of Theorem 2, an approximation κ̂ of κ0

which gives low (possibly minimal) approximation error.

Let us define more precisely the optimization problem we

investigate. The function κ0 to be approximated is assumed

to belong to the Feasible Function Set defined as:

FFS = {κ : X → U : κ ∈ A; κ(x̃) = ũ, ∀x̃ ∈ Xν} (15)

where A is some given subset of continuous functions. The

aim is to find κOPT as the solution of the optimization

problem:

κOPT = arg min
κ∈FFS

sup
κ0∈FFS

e(κ0, κ̂) = arg min
κ∈FFS

E(κ0, κ)

where E(κ0, κ) = sup
κ0∈FFS

e(κ0, κ) is the guaranteed (i.e.

worst–case) approximation error. Note that such a κOPT, if
found, satisfies the conditions required by Theorem 2 and
has the minimal guaranteed approximation error E(κ0, κOPT)
achievable from the considered information on κ0, summa-
rized in the FFS, which in turn depends on the known
values (3) and on other (possibly qualitative) information
described by A.
A solution to this problem has been given in [8], in the case
that, using the knowledge that κ0 is Lipschitz continuous
over X , the set A = AL

κ0
defined by (8) is considered.

It is clear that the more detailed information on κ0 is used,
the lower is the guaranteed approximation error E(κ0, κOPT).
For example, the set X can be subdivided in subsets X i

over which κ0 has Lipschitz constants Li
κ0 ≤ Lκ0 . Using

the corresponding κOPT
i derived in [8] as approximating

function of κ0 on each subset X i could lead to significant
reductions of the guaranteed approximation error, especially
in the subregions where Li

κ0 ≪ Lκ0 . As the number of
subdivisions grows, this approach allows to use information
on the “local” Lipschitz constants of κ0.
A simpler approach is now presented, allowing to use such
“local” information to derive an optimal approximation sat-
isfying the conditions of Theorem 2, starting from a prelimi-
nary approximating function κ̂ which satisfies conditions for
Theorem 1 only.
Consider the residue function ∆κ̂ = κ0 − κ̂ which, on the
basis of Theorem 1, is Lipschitz continuous over X with
Lipschitz constant L∆κ̂

. Then, the information available on
κ0 is summarized by the following FFS∆:

FFS∆ = {κ : X → U, κ − κ̂ ∈ AL∆
κ̂

, κ(x̃) = ũ, ∀x̃ ∈ Xν}
(16)

where

AL∆
κ̂

= {∆ : X → R,

|∆(x1) − ∆(x2)| ≤ L∆κ̂
‖x1 − x2‖2, ∀x1, x2 ∈ X

}

(17)

Consider the following function:

∆OPT
κ̂ (x) =

1

2
[∆κ̂ (x) + ∆κ̂ (x)] (18)

Theorem 3: For any given function κ̂ satisfying the

conditions of Theorem 1, if Lκ̂ ≤ L∆κ̂
the function κ̃OPT =

κ̂ + ∆OPT
κ̂ has the following properties:

i) κ̃OPT ∈ FFS∆

ii) κ̃OPT is an optimal approximation of κ0 with re-

spect to the information κ0 ∈ FFS∆ :

sup
κ0∈FFS∆

e(κ0, κ̃OPT) =

= inf
κ̃∈FFS∆

sup
κ0∈FFS∆

e(κ0, κ̃) = r∆,∞

Proof: See [15]

According to Theorem 3, SM theory can be employed to

improve the performance of a given approximating function

κ̂. The resulting approximated NMPC law κ̃OPT satisfies

conditions for Theorem 2 to hold, and for a fixed value of ν

it gives the minimum guaranteed approximation error. Note

that the approach presented in [8], which employs an optimal

SM approximation κOPT of a MPC law for linear systems,

is a particular case of the results presented in this paper,

i.e. using κ̂ = 0. In this case, the guaranteed error bound

is given by the L∞-norm radius of information r∞ of the

set FFS (15) with A = AL
κ0

(8). It is worth investigating

when the use of κ̂ 6= 0 improves the worst–case accuracy,

giving lower guaranteed approximation errors. Indeed, since

|κ0(x) − κOPT(x)| ≤ r∞ and |κ0(x) − κ̃OPT(x)| ≤ r∆,∞, it

can be noted that if:

r∆,∞ < r∞ (19)

then the guaranteed accuracy obtained with κ̃OPT is higher

than the one given by κOPT. As a consequence, a lower

number ν of off-line computed values are sufficient for κ̃OPT

to achieve given guaranteed stability and performance prop-

erties according to [8]. Lower ν numbers may lead to lower

function evaluation times, depending on the computational

burden of κ̂. Condition (19) can be evaluated numerically,

e.g. using the results of [16].

As a final remark, note that condition Lκ̂ ≤ L∆κ̂
can be

checked by computing or estimating (e.g. using (12)) the

Lipschitz constants Lκ̂ and L∆κ̂
. Moreover, such assumption

can be always satisfied using a preliminary approximating

function κ̂ whose complexity is not too high with respect to

κ0, with the extreme case of κ̂ = 0, i.e. Lκ̂ = 0. For example,

if κ̂ is computed as the expansion of basis functions, it

is possible to improve the obtained accuracy by gradually

increasing the number of basis functions: in this case the

value of Lκ̂ may grow and condition Lκ̂ ≤ L∆κ̂
can be

used as a stopping criterium, avoiding also data over–fitting.

Then, the optimal SM approximation ∆OPT
κ̂ ≈ ∆κ̂ can be

designed to further improve the performance of κ̂.

V. NUMERICAL EXAMPLE

Consider the two-dimensional nonlinear oscillator obtained

from the Duffing equation (see e.g. [17]):

{

ẋ1(t) = x2(t)
ẋ2(t) = u(t) − 0.6 x2(t) − x1(t)

3 − x1(t)

where the input constraint set U is:

U = {u ∈ R : |u| ≤ 5}
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The following discrete time model to be used in the nom-
inal MPC design has been obtained by forward difference
approximation:

xt+1 =

[

1 Ts

−Ts (1 − 0.6 Ts)

]

xt+

[

0
Ts

]

ut+

[

0 0
−Ts 0

]

x
3
t

with sampling time Ts = 0.05 s. The nominal MPC con-

troller κ0 is designed according to (2) with horizons Np =
100, Nc = 5 and the following functions L and Φ:

L(x, u) = xT Qx + uT Ru, Φ = 0

where

Q =

[

1 0
0 1

]

, R = 0.5

The following linear state inequality constraints define the

considered set X:

X = {x ∈ R
2 : ‖x‖∞ ≤ 3}

The state prediction has been performed setting ut+j|t =
ut+Nc−1|t, j = Nc, ..., Np − 1. The optimization problem

(2) employed to compute κ0(x) has been solved using a se-

quential constrained Gauss-Newton quadratic programming

algorithm (see e.g. [18]), where the underlying quadratic

programs have been solved using the MatLabr function

quadprog. The mean computational time of the on-line

optimization was 4.3 10−2 s, using MATLABr 7 with an

AMD Athlon(tm) 64 3200+ with 1 GB RAM.

Fig. 1 shows the obtained feasibility set F and the set X con-

sidered for the approximation, together with the constraint set

X. The level curves of the optimal cost function

J∗(x) = min
U

J(U, x)

are reported too: it can be noted that J∗(x) is not convex,

thus the technique proposed in [3] cannot be applied without

ad-hoc modifications to guarantee closed loop stability and

constraint satisfaction properties. On the other hand, the

set membership technique proposed in this paper can be

systematically employed since κ0 results to be continuous. A

set Xν of ν = 1 104 off-line computed exact control moves

has been considered to derive the approximating functions.

The values of x̃ ∈ Xν have been chosen with uniform

gridding over X . The following approximating functions

have been considered:

i) Neural network approximation, obtained consider-

ing the set Xν in the design phase:

κ̂NN
NS =

7
∑

i=1

αi tanh(β1
i x1 + β2

i x2 + γi) + α0

where α ∈ R
8, β1 ∈ R

7, β2 ∈ R
7 and γ ∈ R

7 are

suitable weights. To satisfy condition (4), function

κ̂NN
NS has been then modified as:

κ̂NN(x) =







κ̂NN
NS (x) if − 5 ≤ κ̂NN

NS (x) ≤ 5
−5 if κ̂NN

NS (x) < −5
5 if κ̂NN

NS (x) > 5
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Fig. 1. Duffing oscillator example: sets F and X (thick solid line),
constraint set X (thick dotted line) and level curves of the optimal cost
function J∗(x).

ii) Function κ̃OPT,NN obtained by adding to κ̂NN the

optimal SM approximation of the residue function

κ0 − κ̂NN, evaluated off-line at the points x̃ ∈ Xν

iii) Function κOPT obtained directly by performing the

optimal SM approximation of κ0, evaluated off-line

at the points x̃ ∈ Xν

Fig. 2 shows the state trajectories obtained considering the

initial condition x0 = [1, −3.1]T , outside the state con-

straints. It can be noted that all the approximated controllers

are able to regulate the state to the origin and the related

trajectories are practically superimposed. Moreover all the

approximated controllers satisfy the state constraints. The

-3 -2 -1 0 1 2 3
-4

-3

-2

-1

0

1

2

3

4

xxxx
1111

xx xx
22 22

XXXX

Fig. 2. Duffing oscillator example: state trajectories obtained with the
nominal NMPC controller (solid), κ̂NN (dashed), κ̃OPT,NN (dash-dotted) and
κOPT (dotted). Initial condition: x0 = [1, −3.1]T

courses of the input variable u (Fig. 3) show that input

constraints are always satisfied. To evaluate the performance

and computational times of the considered control laws,

300 simulations have been performed starting from different
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Fig. 3. Duffing oscillator example: courses of input variable u obtained
with the nominal NMPC controller (solid), κ̂NN (dashed), κ̃OPT,NN (dash-
dotted) and κOPT (dotted). Initial condition: x0 = [1, −3.1]T

initial conditions chosen with uniform gridding over X . Each

simulation lasted 600 time steps. The mean computational

time t, over all time steps of all simulations, obtained

with each controller is reported in Table I. As a measure

of control system performance, the Euclidean distance d

between the closed loop state trajectories obtained with the

nominal controller and any of the approximated ones has

been considered at each time step. Then, the mean distance

d over all time steps of all simulations has been computed.

The values of d obtained with each approximated controller

are reported in Table I too. Note that the neural network

approximation κ̂NN achieves the lowest value of t, however

its performance is the worst (d = 1 10−2 ). Function κOPT

has better precision, but also higher computational times.

Note that κ̃OPT,NN is able to greatly improve the precision

with respect to κOPT, with the same mean computational

time. Indeed, using a lower value of ν in the computation of

κ̃OPT,NN a precision similar to that of κOPT can be obtained,

but with faster computational times.

Thus, this example shows how the presented “local” SM

approach is able to improve the performance of a given

preliminary approximating function, achieving either the

same precision of the optimal approach of [8], but with faster

computation, or better precision with the same computational

times.

TABLE I

DUFFING OSCILLATOR EXAMPLE: MEAN COMPUTATIONAL TIMES AND

TRAJECTORY DISTANCES.

κ̂NN κ̃OPT,NN κOPT

d 1 10−2 6 10−4 4 10−3

t 2 10−5 s 1 10−3 s 1 10−3 s

VI. CONCLUSIONS

The use of approximated NMPC laws has been investigated,

in order to reduce the computational times. A generic ap-

proximating function κ̂, derived with any method, has been

considered. At first, sufficient conditions have been given for

κ̂ to guarantee a finite computable bound on the approxima-

tion error (i.e. the difference with the nominal control law

κ0). Then, additional conditions have been obtained to make

such a bound arbitrary small. This result makes it possible

to derive guaranteed closed loop stability properties. Finally,

it has been shown that set membership (SM) nonlinear

function approximation theory can be employed to improve

the performance of κ̂. The resulting “fast” model predictive

control law is given by the sum of κ̂ with a SM approximated

function and satisfies the above–mentioned conditions even

if they are not met by κ̂ alone. The only assumptions needed

for the presented results to hold are the continuity of κ0 and

κ̂. A nonlinear oscillator example has been used to show

the effectiveness of the proposed methodology in terms of

accuracy improvement.
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