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Power Spectral Geodesics and Tracking

Xianhua Jiang, Zhi-Quan Luo, and Tryphon T. Georgiou

Abstract—1t is often reasonable to assume that a power
spectral density can be used to reflect, locally in time, properties
of a non-stationary time series; for instance, the short-time
Fourier transform is based on this hypothesis and provides
a succession of estimated power spectra over successive time
intervals. In this paper we consider such families of power
spectral densities, indexed by time, to represent changes in
the spectral content of non-stationary processes. We propose
as a model for the drift in spectral power over time, the
model of mass transport; that is, at least locally, spectral power
shifts along geodesics of a suitable mass-transport metric. We
show that fitting spectral geodesics in the Wasserstein metric
to data is a convex quadratic program. Finally, we highlight
the effectiveness of this proposition in tracking features (e.g.,
spectral lines, peaks) of non-stationary processes.

I. INTRODUCTION

Changes in the frequency content of a signal, whether this
is speech, a bird song, the echo of a radar, or the whistle of an
incoming train, often carry important and useful information.
The desire to resolve and track “frequency components,’
over time, has led to a vast subject in signal processing
known as time-frequency analysis [5], [6]. In this, one of
the most basic questions is how to deal with time-variability
and randomness at the same time. Ensemble averages are
not available and time averages smooth out time-varying
properties. A compromise is to postulate that the time-
variability is relatively tame and that local averages can
give accurate information on the frequency content. Thus,
one is naturally led to a concept of “time-varying spectra.”
Traditionally, the most common tool for estimating time-
varying spectra is the short-time Fourier transform (STFT).
In the present paper, we will not be concerned with the exact
correspondence between random time-signals and ‘“‘time-
varying spectra.” Instead, we consider that a collection of
local-in-time power spectra is available and we propose a
non-parametric viewpoint for modeling time-changes. This
viewpoint relies on a suitable metric and the corresponding
geometry on the space (cone) of power spectral densities.

Driven by applications in speech, imaging, prediction
of time-series, etc., a variety of measures have been de-
vised/adapted to quantify distance between spectral density
functions (see e.g., [10], [16], [11], [18]) often disregarding
the fact that these failed to satisfy the triangular inequality
(e.g., Itakura-Saito, Kullback-Leibler, etc.). In recent years
there has been a renewed interest in developing natural
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spectral metrics and to study of the associated geometries
[71, [8], [13], [14], [19], [20]. In the present work we
consider one such particular metric, the Wasserstein metric.
This and other transportation metrics quantify the mismatch
between distributions as the optimal cost when transferring
the corresponding mass of one to the other; the Wasserstein
metric averages the square of the distance that mass needs
to be transported. Transportation metrics have been adapted
to quantify distance between distributions of unequal mass
motivated by a variety of applications (e.g., see [2], [4], [9]).

Because power spectral densities of discrete-time random
processes have support on an interval (e.g., [—=, 7)), the
geometry of mass transport (in one dimension) allows for a
rather concrete description of geodesics (see [1], [21]). Our
proposition is to view geodesics as the “simplest curves”
that may link particular density functions, and thereby,
as the simplest models for the evolution of “time-varying
spectra”. They can be thought of as the analog of straight
lines in Euclidean geometry where points would take the
place of density functions. Following such a reasoning, a
“least-squares” fit of a geodesic to a collection of power
spectra is analogous to Gauss’ paradigm of fitting a celestial
geodesic to observations of planetary motions. Carrying out
this program for modeling time-varying spectra is the subject
of the present paper.

More specifically, in Section II we discuss the optimal
transportation problem. We define the Wasserstein met-
ric, and present certain key facts about the corresponding
geodesics. In Section III we formulate the problem of fitting
geodesics to a collection of spectral density functions and
explain how this can be expressed as a convex quadratic
optimization program. Then, in Section IV we discuss repre-
sentative examples (numerical experiments). In these, we first
obtain STFT-estimates of time-varying spectra for simulated
time-series. We fit geodesics to interpolate these estimated
power spectra, and explain the relevance of such geodesics
in capturing the underlying time-varying properties of the
data.

II. THE WASSERSTEIN METRIC

Throughout we consider power spectral densities f(8),
g(0), with 6 € [-m, 7] and normalized to have integral
equal to one. The case of non-normalized densities has been
considered in [2], [9], [12].

The optimal transportation problem between f and g asks
for the minimal cost of transferring mass f(6)d0 to a
new location 6 = s(8) € [~7, 7] so as to equalize the two
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distributions, i.e., so that for any measurable set S C [—7, 7]

/S £(8)d6 = / (00 (1)

The transportation cost is given by the integral

/” c(0,5(6))f(6)d0

-7
for a choice of a measurable and non-negative cost function
¢(0,0). For the special case where

C(evé) = |6 - é|23

the square root of the optimal cost is the Wasserstein 2-

distance
_ inf{\//” 16 —5(0)[2/(0)d6

between f and g. It turns out that this is a metric [1], [21]
and, moreover, there is an optimal map

s: 00 2

subject to (1)}

for which the infimum is achieved. In fact, this optimal map
is non-decreasing and specified (uniquely) by

0 0
/ g(o)do = [ f(o)do. 3)

In any metric space, geodesics correspond (locally) to the
shortest paths between points. Thus, in our case, a geodesic
between two density functions fp and fi is an indexed family
fr with 7 € [0,1], of minimal length

1
/0 WZ(fT7f‘C+d‘L’)'

A lot is known about W>-geodesics; even in higher dimen-
sions where they follow a gradient flow [21, page 252]. For
the case at hand, where fj, f1 are one-dimensional densities,
the W,-geodesic connecting the two is unique and specified

b
Y (I-7)6+71s(0) 0
/ fr(o)do = _ﬂfo(c)dc )

-7

where s(0) is the optimizer in Wa(fo, f1).

III. GEODESIC “LEAST-SQUARES” FIT

We begin with a sequence of power spectral densities
4G :={g(0) : 0 c[—m ] fori=1,...,n},

where 7; is an increasing sequence of time-indices, nor-
malized so that 7y =0 and 7, = 1. These power spectra
may typically be obtained from time-series data using STFT,
and 7; (i = 1,...,n) may represent the mid-points of the
corresponding time-windows. We seek to interpolate this
“points” by fitting a W,-geodesic that deviates least from the
estimated power spectra. Thus, our problem can be stated as
follows:

Problem 1: Determine a W,-geodesic fr, T € [0,1], which
minimizes

M:

Jg(fe) == (WZ(fr,agr,)) .

i=1
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A geodesic f; is completely specified by any two of fj,
f1, or s for which

5(0) 0
/ fi(o)do = | _h(o)do, 5)

and can be determined using (4). Thus, the optimal choice
of fo, f1, s needs to be determined from the data, i.e., the
spectra ¢ and the times 7; (i =1,...,n).

Computation of W>(fz,,8r) requires only the correspon-
dence 6 — 6 for which

/igq(c)dc = /ifr,-(o)dﬁ, ©)

for 6,0 € [—7, 7). Combining (4) and (6), we have

-0 6=(1—-7,)0+1;5(0) -0
/ gTi(G)dGZ/ ffi(c)dcr:/iﬂfo(c)do

-7 -7
(7N
Thus,

(1-1)0+15(0)))’ ¢5(6)db

where the correspondence
00— 06— 6= ((1 —T,»)@—}—r,»s(G))

can be unravelled from (7).
To simplify the above expression for Jy(f;) we bring in
mass distribution functions

F(0)= _9 flo)do

denoted by capital letters; that is, Fz, is the integral of fz,,
and similarly for g;. Then (7) reduces to

Go(0) = Fo(1-1)0 +15(0)) = Fo(6), ()

whereas the objective function can be re-written as

- L[
—,’2/

where the second equality is obtained directly by using (8).
The function F is non-decreasing and takes values in [0, 1].
Thus, Jo(fr) is expressed as a function of Fy and s (which
together determine f;). Despite that apparent complexity in
how Fy and s enter, the latter expression is amenable to a
numerically attractive re-formulation as follows.

Numerical integration in (9) can be carried out along the
axis where Fp takes values. To do this, divide the Fy-range
of values [0, 1] into N subintervals of equal length 1/N and
denote by 6, k=0,1,...,N the values of 6 for which

k
Fy(6k) = N
Similarly, denote by é,'_yk i=1,...
values for which

(1-1)0+75(6)))*dGs(6)

(1-7)6+75(6)))" dFo(8), ()

n, k=0,1,...,N) the

G‘Fi(éik) =

y

S
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and by 6, the values for which

Thereby, Jy (fr) is approximated by the following finite sum

N
J:l Z(é,'_’k—((l—’l?,')ek—kfiék))z.
N=E
The values of é,-’k (i=1,...,n,k=0,1,...,N) can be readily
computed from the problem data ¢, and the only unknowns
in this “discretization” of Jg(f;) are the vector of 6’s,
namely 6, k =0,1,...,N (which help determine Fy) and
the vector of corresponding 0’s (which help determine F,
and then s). Therefore, Problem 1 can be solved numerically
via the following convex quadratic program with linear

constraints:

-

Il
-

(10)

14

min{J: subjectto — T <O, <Oy <7
and —1< <G <m

for 0<k<N-—1}. (11)

The objective function is convex, so the optimal solution
can be found efficiently [3]. For all numerical examples that
follow, we used the software package SeDuMi, available
through [15], to solve (11).

IV. NUMERICAL EXAMPLES

We present two examples. The first example demonstrates
smoothing properties of geodesic fit, as expected, whereas
the second highlights how such a technique behaves when
tracking chirp signals in noise.

A. Example 1

In this first example we generate time-series data by driv-
ing a time-varying system with unit-variance white noise and
then superimposing white measurement noise with variance
equal to 2. The time-varying system consists of a succession
of (15™-order) auto-regressive filters chosen to match the
spectral character of a W,-geodesic between an ideal power
spectum

1-0.5z71+0.6772

2
fOJdeal(e) = | 14+0.82-1 +0.9z2 |z:ef9
and a final
140.577" +0.6272 2
fidear(6) = | =082 110972 |-

These are shown in Figure 1. Then, we use STFT with a
window of 128 points and an overlapping between successive
windows by 64 points to obtain a collection of power spectral
¢ as before.

The spectrogram obtained by STFT is shown in Figure
2. Figure 3 shows the time-series data (in the first row)
and then, below, it compares STFT power spectra (g, (0))
in the second row with corresponding spectra obtained via a
geodesic fit (f7,(0)). It is clear that the geodesic path captures
quite accurately the drift of power in the spectrum over
time. Furthermore, the corresponding “frozen time” spectra
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Fig. 2. STFT spectrogram.

fz(0) for i=1,...,n appear to reproduce quite accurately
the expected power distribution at the particular points in
time. On the other hand, due to the small signal to noise
ratio (SNR) the STFT seem quite unreliable.

B. Example 2

In this example, we generate two chirp signals with
additive noise. The spectrogram using STFT is shown in
Figure 4. Because of the apparent discontinuity in the path
of spectral lines, as we allow the chirp to exceed the Nyquist
frequency, we determine a piecewise geodesic approximation
(every 20 psd’s of the STFT). Figure 5, as before, shows the
time-series and right below, compares the spectra obtained
by the STFT with “frozen time” samples of the estimated
geodesic path. The apparent improvement in SNR between
the STFT spectra g¢,’s and the geodesic samples f7.’s is rather
evident. A final example along a similar vain is shown in
Figure 6 and 7. Here, the frequency of the chirp follows a
more complicated trajectory. Tracking requires shorter piece-
wise segments for constructing geodesic approximations.
The result is shown in Figure 6, and similarly, it compares
favorably to the STFT spectra with regard to SNR.

1317



47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008

Time
; J’\!r«'\ i |
"ﬂ“l‘"ﬂ'\iﬁrwlﬁ "\WW’ il ’]“{I{V' ﬂJI' | (\,H’frﬁlvﬁmw\ F{mf\mlwhﬁ‘
PSD by STFT
8
4 Y
P/ﬂ/} \\} L o \"x! r///k \\m_\ —“//\\_L‘\ ldf’( d\\““
Estimated FDF

Frequency (Hz)
"

Time

Fig. 3. First row: time-series data; second row: STFT spectra based on
the highlighted parts of the time-series; third row: samples of geodesic fit
to STFT spectra; fourth row: estimated geodesic path.
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Fig. 4. STFT spectrogram

V. CONCLUDING REMARKS

In recent years there has been an interest to endow the
space of power spectral densities with a natural metric (see
[71, [14], [13], [9]). This has been motivated by a desire to
develop tools for quantitative spectral analysis and modeling.
Besides the relevance of metrics in quantifying modeling
uncertainty, comparing spectra, etc., a metric topology brings
up the concept of geodesics. These are the analogs of the
straight lines of Euclidean geometry and represent the sim-
plest models of paths across the space of density functions.
In the present paper we sought to explore the concept of
spectral geodesics for tracking features of a “time-varying”

Time

oo

PSD by STET

we

Estimated PDF

Freguency (Hz)

Time

Fig. 5. Top row: time-series with two chirp signals and additive noise;
second row: STFT spectra corresponding to windows marked with blue;
third row: estimated geodesic-fit samples; last row: the estimate geodesic
path.
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Fig. 7. Top row: time-series with a ’quadratic chirp signal” and additive

noise; second row: STFT spectra corresponding to windows marked with
blue; third row: estimated geodesic-fit samples; last row: the estimate
geodesic path.

power spectrum. Such “time-varying spectra” are typically
associated with non-stationary time-series [5], [6] modeling
of which has always been somewhat of a conundrum in
signal analysis. In this work, we first formulate the prob-
lem of approximating spectra with geodesics utilizing the
Wasserstein Wp-metric. We then show that this “geodesic fit”
problem is amenable to standard numerical tools of convex
optimization. We use numerical examples to highlight the
potential of the concept of a geodesic between spectra as a
model for time-variability. The data for our formulations can
be provided by standard spectral analysis techniques and, in
particular, by the short-time Fourier transform. It is perhaps a
distant goal, but always worth pondering, how to circumvent
that intermediate step and compute geodesics directly based
on time-domain data.
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