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Abstract— The traveling salesman problem (TSP) is consid-
ered in this paper with the aim of determining optimal control
strategies, which provide the optimal decisions as functions of
the system state. The adopted TSP model takes into account the
travel time between cities and is characterized by the presence
of a constraint on the time instant by which a city has to be
visited (due date); in this connection, the cost to be minimized
is the total weighted tardiness cost, and the decision variables
are those concerning the sequence of cities to be visited. The
optimal (closed-loop) strategies are determined through a two-
step procedure. In the second part of the paper, an extended
version of the TSP model, which includes stopover times, is
considered, and optimal control strategies are determined also
for this model (in this case, through a four-step procedure).

I. INTRODUCTION

The traveling salesman problem (TSP) [1], [2] is one of the

most studied problems in the literature, especially in the field

of combinatorial optimization and computation complexity,

and this topic continues to attract the attention of researchers

from various areas [3]. The original problem statement of

TSP is: “given n cities and their intermediate distance, find

a shortest round trip tour that visits each city once and then

returns to the starting city”. Since such statement, several

extensions have been proposed in order to solve similar

problems. The TSP is known to be NP-hard and the decision

version of the problem is NP-complete. Then, researchers

have mainly focused their attention to the determination of

methods and heuristic algorithms to compute the solution of

TSP, in reasonable time [4], [5], [6].

In this paper, the traveling salesman problem is considered

under a viewpoint different from the one commonly adopted

within combinatorial optimization theory. In fact, the objec-

tive of this paper is not the development of an algorithm to

find the optimal decisions. Instead, the decision problem is

set within a control-theoretic framework, as optimal control

strategies are sought, capable of providing, at each decision

step, the optimal decisions as functions of the current system

state. The advantages of providing optimal control strategies

are apparent. Travel times are strongly dependent on the

traffic, and then a trip between two cities may last more

or less than the “nominal” travel time defined in advance.

In addition, other unpredictable events may cause delays on

the trip schedule. Then, taking into account the presence

of constraints over the visit time instants, the determination

of optimal control strategies, instead of optimal decisions,
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makes the proposed approach utilizable when deviations

from the nominal behaviour may be recognized in real-time.

The adopted TSP model takes into account the travel time

between cities, and the cost to be minimized in the optimal

control problem is the total weighted tardiness cost, where

each tardiness is computed by assuming that each city should

be visited no later than a certain time instant (due date). The

decision variables are binary variables whose values define

the sequence of visits in the round trip. An extension of

the TSP model is then proposed, where the time intervals

of staying in the cities (stopover times) are also considered.

Stopover times are not fixed; however, they are constrained

between a lower and an upper bound (nominal value). Then,

in the extended TSP model, a further decision (continuous)

variable exists (stopover time in the next city to be visited)

and the cost function takes into account also the deviation

of the actual stopover times from the nominal ones.

The optimal control strategies are determined by apply-

ing dynamic programming to the considered model. The

proposed procedure is of constructive type, hence it does

not require the solution of a mixed-integer programming

problem. It is worth noting that the proposed methodology is

based on some results [7], [8] which have been obtained in

connection with the scheduling of jobs, belonging to different

classes, on a single machine with controllable processing

times [9] and generalized due dates [10].

The rest of the paper is organized as follows. In the next

section, the adopted TSP model is presented along with the

formalization of the optimal control problem. Section III

provides the theorem which allows the determination of

optimal control strategies. Section IV outlines an example

of the application of the proposed method. The extended

version of the TSP model is presented in Section V. Some

conclusions are reported in the last section.

II. THE TSP MODEL AND THE OPTIMAL

CONTROL PROBLEM

Consider a traveling salesman which must visit K cities,

being Tk, k = 1, . . . ,K, the generic city to be visited. It is

assumed that the salesman starts and finishes its travel in city

T1, and that all the other cities can be visited in whichever

sequence (the only precedence constraint is relevant to the

initial and final city, i.e., T1). Moreover, each city (different

from T1) must be visited only once. A trip from one city

to another cannot be interrupted (no preemption). The travel

time ξh,k > 0 from Th to Tk, with h, k = 1, . . . ,K, h 6= k,

is fixed and known in advance; ξh,k is generally allowed

to be different from ξk,h. It is further assumed that the
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stopover times are negligible with respect to the travel time

between cities. The salesman starts its travel from T1 at time

0, and each city should be visited by a certain time instant

dk, k = 1, . . . ,K (d1 is the scheduled time for returning

to T1 and then for finishing the travel); in case of non

fulfillment of such a requirement, a tardiness cost is paid;

in this connection, let αk, k = 1, . . . ,K, be the coefficient

specifying the unitary tardiness penalty.

This TSP model is similar to the model proposed in [7],

[8], where Nk jobs of class Pk, k = 1, . . . ,K, have to be

executed. In this case, Nk = 1, the execution of the jobs

corresponds to visit the cities, and due dates correspond

to the scheduled times for visiting the cities. Moreover,

the setup time ξh,k, h, k = 1, . . . ,K, corresponds to the

travel time between cities. However, in this definition of TSP

model, service times τk,i, k = 1, . . . ,K, i = 1, . . . , Nk, as

well as their lower and upper bounds, namely τ low
k and τ nom

k ,

respectively, are not considered due to the assumption on

stopover time. In any case, the results presented in [7], [8]

can be applied to the TSP model here proposed.

Consider again the traveling salesman problem; the objec-

tive function to be minimized is

K
∑

k=1

αk max{Ck − dk, 0} (1)

where Ck, k = 1, . . . ,K, is the time at which Tk is visited

(C1 is the time at which the salesman returns back home).

It is worth noting that, as the cost function to be minimized

takes into account the tardiness (and not, for example, the

earliness), there is no advantage in delaying any visit if the

other ones remain unchanged. Hence, there is an optimal

solution of the traveling salesman problem where no idle

time is inserted between the visit of two cities.

The aforementioned model can be easily formalized

through a state space representation, where the system state,

when a new decision has to be taken, i.e., at an instant t at

which a city has been visited, is the (K + 2)-tuple x(t) =
[v1(t), . . . , vk(t), h(t), t]T , being vk(t), k = 1, . . . ,K, a

value equal to 1 if city Tk has been already visited at time

instant t, and 0 otherwise, and being h(t) the index of the

last visited city.

In this model, the decisions are taken only at specific time

instants corresponding to the visit of a city (but for the last

one, that is, T1), and to the initial time instant; thus, decision

instants are actually discrete in time (although not equally

spaced), and are denoted by tj , j = 0, 1, . . . ,K − 1. Since

the salesman starts its travel from T1 at time 0, then t0 = 0.

At time instant tj , j cities have already been visited. The

action u(tj), function of x(tj), that has to be taken at time

instant tj corresponds to the choice of the next city to be

visited (and then of the next movement). In this connection,

let δk(tj) ∈ {0, 1}, k = 1, . . . ,K, denote a decision variable

whose value is 1 if the next city to be visited is Tk, and 0

otherwise. Obviously,
∑K

k=1 δk(tj) = 1 ∀ tj . Thus, u(tj) =
[δ1(tj), . . . , δK(tj)]

T . For the sake of brevity, notations xj ,

vk,j , hj , uj , and δk,j will be used instead of x(tj), vk(tj),
h(tj), u(tj), and δk(tj), respectively.

Since idle times are not allowed, the state equations of the

system can be written as follows

xj+1 =















v1,j+1

...
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
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








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vK,j + δK,j
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k=1 kδk,j

tj +
∑K

k=1 ξhj ,kδk,j















(2)

j = 0, 1, . . . ,K − 1, where decision variables δk,j , k =
1, . . . ,K, are constrained by

δ1,j = 0 ∀ j = 0, 1, . . . ,K − 2 (3)

δ1,K−1 = 1 (4)

K
∑

k=1

δk,j = 1 ∀ j = 0, 1, . . . ,K − 1 (5)

K−1
∑

j=0

δk,j = 1 ∀ k = 1, . . . ,K (6)

with initial state x0 = [0, . . . , 0, 1, 0]T . In figure 1, all

possible evolutions of the system state in the case of K = 4
are represented. Note that, the state diagram is structured in

K + 1 stages (K decision stages plus the final stage); for

each decision stage, a variable number of possible decisions

is allowed.

In order to formally state the optimal control problem, it

is convenient to rewrite the objective function. To this end,

consider the mapping k(j) =
∑K

l=1 l δl,j , j = 0, 1, . . . ,K −
1; k(j) is the index of the city which is selected, at time

instant tj , as the next city to be visited (and then Tk(j) is

to be visited at tj+1). In this way, the objective function (1)

can be rewritten as

K−1
∑

j=0

αk(j) max{Ck(j) − dk(j), 0} (7)

On the basis of such a notation, it is possible to formalize

the following optimal control problem for the aforemen-

tioned TSP model.

Problem 1 (Basic TSP): With reference to the dynamic

system represented through the state equation (2), and

taking into account constraints (3), (4), (5), and (6),

find control strategies δ◦k,j(v1,j , . . . , vK,j , hj , tj), k =
1, . . . ,K, j = 0, 1, . . . ,K − 1, to be applied at any state

[v1,j , . . . , vK,j , hj , tj ]
T such that j = 0, 1, . . . ,K − 1, with

tj non-negative real and vk,j ∈ {0, 1}, k = 1, . . . ,K, that

minimize the objective function (7).

III. OPTIMAL CONTROL STRATEGIES FOR THE

BASIC TSP

The main result of the paper (procedure to find the optimal

control strategies for the basic TSP) can be obtained by

introducing a specific class of functions.

Definition 1: Given an integer number M , M ≥ 1, and

a positive real number ν, a function f(x) is said to be a
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Fig. 1. A representation of the state diagram of the TSP model, when
K = 4.

“PWL(M,ν)-function” (Piece-Wise Linear(M,ν)-function)

if:

• f(x) is a non-decreasing continuous piece-wise linear

function of x, characterized by:

– M break points γi, i = 1, . . . ,M , being γi+1 > γi,

i = 1, . . . ,M − 1;

– (M + 1) slopes, namely µ0 in interval (−∞, γ1),
µi in (γi, γi+1), i = 1, . . . ,M − 1, and µM in

(γM ,+∞); of course, µi+1 6= µi, i = 0, . . . ,M −
1;

• f(x) = 0 for any x ≤ γ1, that is, µ0 = 0;

• µi ≥ ν, i = 1, . . . ,M . △
The graphical structure of a generic PWL(M,ν)-function

f(x) is represented in figure 2.

Moreover, it is necessary to introduce two preliminary

results regarding the sum of two PWL(·, ·)-functions and

the minimum of k PWL(·, ·)-functions. The proofs of the

two lemmas are here omitted (they can be found in [8]).

Lemma 1: Let f(x) be a PWL(M,ν)-function, whose

first break point is γf
1, and g(x) a PWL(N, ξ)-function,

whose first break point is γ
g
1 . Then the function

h(x) = f(x) + g(x) (8)

is a PWL(Q, ρ)-function, where ρ = min{ν, ξ} and 1 ≤

f(x)

xµ0
µ1

µ2

µ3

µ4

µM

γ1 γ2 γ3 γ4 γM

Fig. 2. A PWL(M, ν)-function f(x).

Q ≤ M + N , having the first break point in min{γf
1, γ

g
1}.�

Lemma 2: Let fk(x) be a PWL(Mk, νk)-function having

its first break point in γk
1 , k = 1, . . . ,K (being K an arbitrary

integer number). Then the function

h(x) = min
{

fk(x), k = 1, . . . ,K
}

(9)

is a PWL(Q, ρ)-function, where ρ =
min {νk, k = 1, . . . ,K} and 1 ≤ Q ≤ 2

(

2K−2 · M1 +

(
∑K

i=2 2K−i · Mi) − (2K−1 − 1)
)

, having the first break

point in max{γk
1 , k = 1, . . . ,K}. �

Consider now Problem 1, and let J ◦
v1,...,vK ,h(tṽ), where

ṽ =
∑K

k=1 vk, denote the optimal cost-to-go associated

with state [v1, . . . , vK , h, tṽ]T (note that ṽ = j). When

ṽ = K (final stage), the optimal cost-to-go is obviously zero,

whereas when ṽ < K it can be expressed as

J ◦
v1,...,vK ,h(tṽ) =

= min
δ1,j ,...,δK,j

j=ṽ,...,K

K−1
∑

j=ṽ

αk(j) max{Ck(j) − dk(j), 0}
(10)

where the following constraints have to be fulfilled in the

minimization:

• δ1,j = 0, ∀ j = ṽ, . . . ,K − 2;

• δ1,K−1 = 1;

•

∑K
k=1 δk,j = 1, ∀ j = ṽ, . . . ,K − 1;

•

∑K−1
j=ṽ δk,j = 1, for any state [v1, . . . , vK , h, tṽ]T such

that vk = 0, k = 1, . . . ,K, ∀ j = ṽ, . . . ,K − 1;

along with the state equation (2). Such constraints will be

understood in any expression of the cost-to-go hereafter.

Then, taking into account the absence of idle times in

the service sequence, the general dynamic programming

recursion for the determination of optimal control strategies

for the Basic TSP (Problem 1) is

J ◦
v1,...,vK ,h(tṽ) =

= min
δk,ṽ

k=1,...,K

{ K
∑

k=1

δk,ṽ

[

αk max{tṽ + ξh,k − dk, 0}+

+ J ◦
v1,...,vk+1,...,vK ,k(tṽ + ξh,k)

]

}

(11)
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being [v1, . . . , vk +1, . . . , vK , k, tṽ +ξh,k]T the state reached

from [v1, . . . , vK , h, tṽ]T , when city k is visited after city h.

Note that, since tṽ+1 = tṽ + ξh,k, the optimal cost-to-go

in (11), relevant to state [v1, . . . , vk + 1, . . . , vK , k, tṽ+1]
T ,

can be expressed as function of the current time instant. Cost-

to-go (11) is equivalent to

J ◦
v1,...,vK ,h(tṽ) = min

{

J ◦
v1,...,vK ,h(tṽ | δ1,ṽ = 1), . . .

J ◦
v1,...,vK ,h(tṽ | δK,ṽ = 1)

} (12)

where symbol J ◦
v1,...,vK ,h(tṽ | δk,ṽ = 1) denotes the value

of J ◦
v1,...,vK ,h(tṽ) conditioned to the choice of the control

variable δk,ṽ = 1, k = 1, . . . ,K.

Then, a general result concerning the solution to Problem 1

can be expressed in the following form.

Theorem 1: The optimal control strategies solving Prob-

lem 1 (Basic TSP) can be obtained through a two-steps

procedure.

1) Determine, for each (K + 1)-tuple (v1, . . . , vK , h),
such that vk ∈ {0, 1}, k = 1, . . . ,K, ṽ < K, and

h ∈ {1, . . . ,K}, the conditioned costs-to-go and the

optimal costs-to-go through the backward recursive

relations

Jv1,...,vK ,h(tṽ | δk,ṽ = 1) =

= αk max{tṽ + ξh,k − dk, 0}+

+ J ◦
v1,...,vk+1,...,vK ,k(tṽ + ξh,k)

(13)

for each k ∈ Av1,...,vK ,h, being Av1,...,vK ,h = {i :
i ∈ {2, . . . ,K} and vi = 0} when ṽ < K − 1 and

Av1,...,vK ,h = {1} when ṽ = K − 1,

J ◦
v1,...,vK ,h(tṽ) =

= min
k∈Av1,...,vK ,h

{

Jv1,...,vK ,h(tṽ | δk,ṽ = 1)
} (14)

Observe that Av1,...,vK ,k is the set of indexes

of cities that still have to be visited in state

[v1, . . . , vK , k, tṽ+1]
T . Backward recursion (13) is ini-

tialized by

J ◦
1,...,1,1(tK) = 0 (15)

2) Then, the optimal control strategies, for each (K +
1)-tuple (v1, . . . , vK , h), such that vk ∈ {0, 1}, k =
1, . . . ,K, and ṽ < K, are obtained as

• if ṽ ≤ K − 3:

δ◦k,ṽ(v1, . . . , vK , h, tṽ) =

=















1 if k = argminp

{

Jv1,...,vK ,h(tṽ | δp,ṽ = 1),
p ∈ Av1,...,vK ,h

}

0 otherwise

(16)

(in case of multiple values of the argmin, ties are

broken arbitrarily)

• if ṽ = K − 2:

δ◦k,ṽ(v1, . . . , vK , h, tṽ) =

=

{

1 if k ∈ {2, . . . ,K} and vk = 0
0 otherwise

(17)

• if ṽ = K − 1:

δ◦k,ṽ(v1, . . . , vK , h, tṽ) =

{

1 if k = 1
0 otherwise

(18)

Besides, the optimal cost-to-go J ◦
v1,...,vK ,h(tṽ) is a

PWL(M, α̂)-function, for some M and where α̂ =
min{α1, . . . , αK}, for any set (v1, . . . , vK , h) such that vk ∈
{0, 1}, k = 1, . . . ,K, and ṽ < K. �

Proof: The proof of Theorem 1 is based on the

application of dynamic programming. Consider the system

state diagram (illustrated in figure 1) and the first decision

stage, that is, stage K − 1.

In the considered TSP model, the decision to be taken

in this stage, at time instant tK−1, is mandatory, since all

cities but T1 have been already visited, and then the traveling

salesman must return to its starting point. Then, the optimal

control strategies are

δ1,K−1(0, 1, . . . , 1, h, tK−1) = 1 (19)

δk,K−1(0, 1, . . . , 1, h, tK−1) = 0 (20)

∀h, k ∈ {2, . . . ,K}, being [0, 1, . . . , 1, h, tK−1]
T the

generic state of stage K −1. Then, taking into account (15),

the optimal cost-to-go of the generic state in stage K − 1 is

simply

J ◦
0,1,...,1,1,h(tK−1) = J0,1,...,1,1,h(tK−1 | δ1,K−1 = 1) =

= α1 max{tK−1 + ξh,1 − d1, 0}
(21)

for each h = 2, . . . ,K. Such optimal cost-to-go is a

PWL(1, α1)-function.

Consider now stage K − 2. The decision to be taken at

tK−2, in the states belonging to this stage, is mandatory

again. The fact is that the generic state of this stage, namely

[0, 1, . . . , 0, . . . , 1, h, tK−2]
T , is characterized by v1 = 0,

vj = 0, and vk = 1, for some j ∈ {2, . . . ,K} and for

any k ∈ {2, . . . ,K}, k 6= j. Then, the next city to be visited

is Tj , since T1 must be the last city to be visited. Thus, the

optimal control strategies are

δj,K−2(0, 1, . . . , 0, . . . , 1, h, tK−2) = 1 (22)

δk,K−2(0, 1, . . . , 0, . . . , 1, h, tK−2) = 0 (23)

for any k ∈ {2, . . . ,K}, k 6= j. The optimal cost-to-go in

the generic state in stage K − 2 is simply

J ◦
0,1,...,0,...,1,h(tK−2) =

= J0,1,...,0,...,1,h(tK−2 | δj,K−2 = 1) =

= αj max{tK−2 + ξh,j − dj , 0} + J ◦
0,1,...,1,j(tK−1)

(24)

Note that the optimal cost-to-go J ◦
0,1,...,1,j(tK−1) can be

expressed as function of tK−2, as tK−1 = tK−2+ξh,j ; then,

J ◦
0,1,...,1,j(tK−2+ξh,j) is still a PWL(1, α1)-function. Also

αj max{tK−2 + ξh,j −dj , 0} is a PWL(1, αj)-function and

then, by applying Lemma 1 to the r.h.s. of (24), it is possible

to conclude that the optimal cost-to-go of the generic state
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of stage K−2 is a PWL(Z0,1,...,0,...,1,h, α̂)-function, where

Z0,1,...,0,...,1,h ≤ 2 and α̂ = min{α1, . . . , αK}.

Consider now stage K − 3 and its generic state

[0, 1, . . . , 0, . . . , 0, . . . , 1, h, tK−2]
T , which is characterized

by v1 = 0, vi = 0, vj = 0, for some i, j ∈ {2, . . . ,K},

i 6= j, and vk = 1, for any k ∈ {2, . . . ,K}, k 6= i, j. At

this stage, a decision has to be taken since it is necessary

to choice the next city to be visited among Ti and Tj . The

optimal cost-to-go is

J ◦
0,1,...,0,...,0,...,1,h(tK−3) =

= min
δi,K−3,δj,K−3

{

δi,K−3

[

αi max{tK−3 + ξh,i − di, 0}+

+ J ◦
0,1,...,0,...,1,i(tK−2)

]

+

+ δj,K−3

[

αj max{tK−3 + ξh,j − di, 0}+

+ J ◦
0,1,...,0,...,1,j(tK−2)

]

}

(25)

The minimization in (25) has to be carried out with respect

to the binary decision variables δi,K−3 and δj,K−3. Consider

first the case in which δi,K−3 = 1 (hence δj,K−3 = 0). In

this case, the conditioned cost-to-go is

J ◦
0,1,...,0,...,0,...,1,h(tK−3 | δi,K−3 = 1) =

= αi max{tK−3 + ξh,i − di, 0} + J ◦
0,1,...,0,...,1,i(tK−2)

(26)

The optimal cost-to-go J ◦
0,1,...,0,...,1,i(tK−2) can be

expressed as a function of tK−3, as tK−2 = tK−3 + ξh,i,

and then, the r.h.s of (26) is the sum of a PWL(1, αi)-
function with a PWL(Z0,1,...,0,...,1,i, α̂)-function. By

applying Lemma 1, it turns out that the conditioned

cost-to-go J ◦
0,1,...,0,...,0,...,1,h(tK−3 | δi,K−3 = 1)

is a PWL(Y i
0,1,...,0,...,0,...,1,h, α̂)-function, where

Y i
0,1,...,0,...,0,...,1,h ≤ 3.

In the same way, when δj,K−3 = 1 (hence δi,K−3 = 0),

the conditioned cost-to-go is

J ◦
0,1,...,0,...,0,...,1,h(tK−3 | δj,K−3 = 1) =

= αj max{tK−3 + ξh,j − dj , 0} + J ◦
0,1,...,0,...,1,j(tK−2)

(27)

which is a PWL(Y j
0,1,...,0,...,0,...,1,h, α̂)-function, where

Y
j
0,1,...,0,...,0,...,1,h ≤ 3.

Having considered separately the two cases, it

is possible to determine the optimal cost-to-go

J ◦
0,1,...,0,...,0,...,1,h(tK−3), which is simply

J ◦
0,1,...,0,...,0,...,1,h(tK−3) =

= min
{

J ◦
0,1,...,0,...,0,...,1,h(tK−3 | δi,K−3 = 1),

,J ◦
0,1,...,0,...,0,...,1,h(tK−3 | δj,K−3 = 1)

}

(28)

and, owing to Lemma 2, J ◦
0,1,...,0,...,0,...,1,h(tK−3) turns

out to be a PWL(Z0,1,...,0,...,0,...,1,h, α̂)-function,

where Z0,1,...,0,...,0,...,1,h ≤ 2(Y i
0,1,...,0,...,0,...,1,h +

Y
j
0,1,...,0,...,0,...,1,h − 1).

Then, the optimal control strategies at the generic state

[0, 1, . . . , 0, . . . , 0, . . . , 1, h, tK−2]
T of stage K − 3, with

v1 = 0, vi = 0, vj = 0, for some i, j ∈ {2, . . . ,K}, i 6= j,

and vk = 1, for any k ∈ {2, . . . ,K}, k 6= i, j, are given by

δ◦i,K−3(0, 1, . . . , 0, . . . , 0, . . . , 1, h, tK−3) =

=







1 if J ◦
0,1,...,0,...,0,...,1,h(tK−3 | δi,K−3 = 1) ≤

≤ J ◦
0,1,...,0,...,0,...,1,h(tK−3 | δj,K−3 = 1)

0 otherwise

(29)

δ◦j,K−3(0, 1, . . . , 0, . . . , 0, . . . , 1, h, tK−3) =

= 1 − δ◦i,K−3(0, 1, . . . , 0, . . . , 0, . . . , 1, h, tK−3)
(30)

δ◦k,K−3(0, 1, . . . , 0, . . . , 0, . . . , 1, h, tK−3) = 0 (31)

for any k ∈ {2, . . . ,K}, k 6= i, j.

At this point, by the induction principle, it is only

necessary to prove that the following implication is true:

“assume that the cost-to-go relevant to states belonging

to stage (ṽ + 1) and reachable from [v1, . . . , vK , h, tṽ]T ,

namely J ◦
v1,...,vk+1,...,vK ,k(tṽ+1), k ∈ Av1,...,vK ,h, are

PWL(Zv1,...,vk+1,...,vK ,k, α̂)-functions; then, the optimal

control strategies at state [v1, . . . , vK , h, tṽ]T are those pro-

vided by (16), and the optimal cost-to-go J ◦
v1,...,vK ,h(tṽ) is

a PWL(M, α̂)-function, for some M”.

To prove such implication, consider the decision to be

taken in state [v1, . . . , vK , h, tṽ]T . If decision δk,ṽ = 1
is taken (assuming k ∈ Av1,...,vK ,h), then the cost-to-go

(conditioned) is

J ◦
v1,...,vK ,h(tṽ | δk,ṽ = 1) =

= αk max{tṽ + ξh,k − dk, 0} + J ◦
v1,...,vk+1,...,vK ,k(tṽ+1)

(32)

As tṽ+1 = tṽ + ξh,k, the optimal cost-to-go

J ◦
v1,...,vk+1,...,vK ,k(tṽ+1) is a PWL(Zv1,...,vk+1,...,vK ,k, α̂)-

function of tṽ . Then, by applying Lemma 1, it turns out

that the conditioned cost-to-go J ◦
v1,...,vK ,h(tṽ | δk,ṽ = 1)

is a PWL(Y k
v1,...,vK ,h, α̂)-function, where Y k

v1,...,vK ,h ≤
Zv1,...,vk+1,...,vK ,k + 1.

Once determined the conditioned costs-to-go for all values

of k ∈ Av1,...,vK ,h, the optimal cost-to-go is simply

J ◦
v1,...,vK ,h(tṽ) =

= min
k∈Av1,...,vK,h

{

Jv1,...,vK ,h(tṽ | δk,ṽ = 1)
} (33)

and, then, the optimal control strategies are

δ◦k,ṽ(v1, . . . , vK , h, tṽ) =

=















1 if k = argminp

{

Jv1,...,vK ,h(tṽ | δp,ṽ = 1),
p ∈ Av1,...,vK ,h

}

0 otherwise

(34)

Moreover, owing to Lemma 2, J ◦
v1,...,vK ,h(tṽ) turns out

to be a PWL(Zv1,...,vK ,h, α̂)-function, where Zv1,...,vK ,h ≤

2
(

2K−2Y k
v1,...,vK ,h+(

∑K
i=2 2K−iY i

v1,...,vK ,h)−(2K−1−1)
)

.

This complete the proof.
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IV. EXAMPLE

A traveling salesman must visit Alessandria, Milano, Pi-

acenza, and Torino, starting from Genova, in the northern

part of Italy (see figure 3). The proposed TSP model, with

K = 5 is adopted in order to find optimal control strategies.

Fig. 3. Example – Map of the considered area.

The travel salesman starts from Genova at 8:00 a.m. and

should reach Alessandria by 12:15 p.m., Milano by 11:00

a.m. (with higher priority), Piacenza by 10:30 a.m., and

Torino by 11:15 a.m. Moreover, it should return to Genova by

1:00 p.m. Then, due dates are those reported in table I, where

unitary tardiness penalty coefficients are also indicated. In

table II, travel times (minutes) between cities are reported.

TABLE I

DUE DATES AND UNITARY TARDINESS PENALTY COEFFICIENTS.

City Due date Coefficient

T1 Genova d1 300 α1 1
T2 Alessandria d2 255 α2 1
T3 Milano d3 180 α3 2
T4 Piacenza d4 150 α4 1
T5 Torino d5 195 α5 1

TABLE II

TRAVEL TIMES BETWEEN CITIES (MINUTES).

T1 T2 T3 T4 T5

T1 0 63 99 99 111
T2 69 0 73 70 70
T3 104 70 0 61 114
T4 108 68 62 0 115
T5 121 73 108 119 0

Theorem 1 can be applied to find the optimal control

strategies for each of the 34 states of the state space.

As an example, the optimal control strategies in initial

state [0, 0, 0, 0, 0, 1, t0]
T , namely δ◦k,0(0, 0, 0, 0, 0, 1, t0), k =

1, . . . , 5, are

δ◦1,0(0, 0, 0, 0, 0, 1, t0) = 0 (35)

δ◦2,0(0, 0, 0, 0, 0, 1, t0) =

{

1 if t0 ≥ 166
0 if t0 < 166

(36)

δ◦3,0(0, 0, 0, 0, 0, 1, t0) =

=

{

1 if −68 ≤ t0 ≤ −4 ∪ 39 ≤ t0 ≤ 166
0 if t0 < −68 ∪ −4 ≤ t0 ≤ 39 ∪ t0 ≥ 166

(37)

δ◦4,0(0, 0, 0, 0, 0, 1, t0) =

=

{

1 if t0 < −68 ∪ −4 ≤ t0 ≤ 39
0 if −68 ≤ t0 ≤ −4 ∪ t0 ≥ 39

(38)

δ◦5,0(0, 0, 0, 0, 0, 1, t0) = 0 (39)

Such control strategies can be summarized as in figure 4,

where the next (first) city to be visited is expressed as

function of the initial time instant t0. Then, in case of start

at 8:00 a.m., as scheduled, the first city to be visited is T4

(Piacenza); however, in case of a 1-hour delay, the first city

to be visited becomes T3 (Milano); T2 (Alessandria) is the

first city to be visited only in the case of severe delays; note

also that T1 and T5 cannot be the first city to be visited in

any case (in particular, T1 is always the last city to be visited

being the starting / ending point).

It is worth noting that also the negative values of t0 have

been considered. In fact, the traveling salesman could start

its travel before the scheduled time. In this case, a different

optimal sequence of visits could arise. As an example, if the

salesman starts at 7:00 a.m., then the first city to be visited

is T3 (Milano) and not T4 (Piacenza).

V. THE EXTENDED TSP MODEL

Assume now that the stopover times are not negligible with

respect to the travel times between cities. In this connection,

let sk, k = 1, . . . ,K, be the stopover time in city Tk. sk is a

continuous variable whose value ranges from a lower bound

sL
k up to an upper bound sU

k , which is also the nominal

(“standard”) value of such stopover time. The stopover time

can be reduced in order, for example, to cope with urgent

due dates.

The reduction of the stopover time may be attained, in

general, at the price of the payment of an extra cost. Then,

the objective function to be minimized becomes

K
∑

k=1

[

αk max{Ck − dk, 0} + βk(sU
k − sk)

]

(40)

where βk is a weighting coefficients. It is assumed that

βk = β̂ and that αk > β̂, for any k = 1, . . . ,K. The first

assumption states that the extra-cost paid for the reduction

of the stopover time is simply proportional to this reduction,

with a coefficient that isn’t dependent on the city; the second

assumption states that any unitary tardiness cost is greater

than the unitary cost related to the deviation from the nominal

stopover time.

The stopover time is a continuous decision variable. In

this connection, let τj , j = 0, 1, . . . ,K − 1, indicate the

time, determined at tj , which represents the stopover time

for the next city to be visited (that is, for the (j +1)-th city).
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−68 −4 39 166

T2T3T3 T4T4 t0

Fig. 4. Example – First city to be visited expressed as function of initial time instant t0.

The state equations of the system are now

xj+1 =















v1,j+1

...

vK,j+1

hj+1

tj+1















=















v1,j + δ1,j

...

vK,j + δK,j
∑K

k=1 kδk,j

tj +
∑K

k=1 ξhj ,kδk,j + τj















(41)

j = 0, 1, . . . ,K − 1, where δk,j , k = 1, . . . ,K, are

constrained by (3)–(6), and where τj is constrained by

K
∑

k=1

(sL
kδk,j) ≤ τj ≤

K
∑

k=1

(sU
k δk,j) ∀ j = 0, 1, . . . ,K − 1

(42)

It is further assumed that sL
1 = sU

1 = 0, which means that

τK−1 = 0 (43)

The objective function (40) can be rewritten as

K−1
∑

j=0

[

αk(j) max{Ck(j) − dk(j), 0} + β̂(sU
k(j) − τj)

]

(44)

and, then, it is possible to consider the following optimization

problem for the extended TSP model.

Problem 2 (Extended TSP): With reference to the

dynamic system represented through the state equation (41),

and taking into account constraints (3), (4), (5), (6), (42),

and (43), find control strategies δ◦k,j(v1,j , . . . , vK,j , hj , tj),
k = 1, . . . ,K, j = 0, 1, . . . ,K − 1, and

τ◦
j (v1,j , . . . , vK,j , hj , tj), j = 0, 1, . . . ,K − 1, to be

applied at any state [v1,j , . . . , vK,j , hj , tj ]
T such that

j = 0, 1, . . . ,K − 1, with tj non-negative real and

vk,j ∈ {0, 1}, k = 1, . . . ,K, that minimize the objective

function (44).

The optimal cost-to-go which is defined for the general

dynamic programming recursion is now

J ◦
v1,...,vK ,h(tṽ) =

= min
δk,ṽ,τṽ

k=1,...,K

{ K
∑

k=1

δk,ṽ

[

αk max{tṽ + ξh,k + τṽ − dk, 0}+

+ β̂(sU
k − τṽ) + J ◦

v1,...,vk+1,...,vK ,k(tṽ + ξh,k + τṽ)
]

}

(45)

Then, the solution to Problem 2 is provided by the

following theorem (whose proof is here omitted for the sake

of brevity).

Theorem 2: The optimal control strategies solving Prob-

lem 2 (Extended TSP) can be obtained through a four-steps

procedure.

1) Determine, for each (K+1)-tuple (v1, . . . , vK , h), such

that vk ∈ {0, 1}, k = 1, . . . ,K, ṽ < K, and h ∈
{1, . . . ,K}, the set of coefficients λk

v1,...,vK ,h, k ∈
Av1,...,vK ,h, through a backward recursion expressed

by

λk
v1,...,vK ,h = min

{

ddk, max
i∈Av1,...,vk+1,...,vK ,k

{

λi
v1,...,vk+1,...,vK ,k − sU

i

}

}

− ξh,k

(46)

Note that Av1,...,vk+1,...,vK ,k is the set of indexes of

cities that still have to be visited in state [v1, . . . , vk +
1, . . . , vK , k, tṽ+1]

T , thus indicating also the states

reachable from [v1, . . . , vk+1, . . . , vK , k, tṽ+1]
T . Note

that, in correspondence of final state [1, . . . , 1, 1, tK ]T ,

the set A1,...,1,1 is an empty set; this observation

provides the way how recursion (46) is initialized.

2) Build, for each (K+1)-tuple (v1, . . . , vK , h), such

that vk ∈ {0, 1}, k = 1, . . . ,K, ṽ <

K, and h ∈ {1, . . . ,K}, the set of functions

τk ◦
ṽ (v1, . . . , vK , h, tṽ), k ∈ Av1,...,vK ,h, as follows

τk ◦
ṽ (v1, . . . , vK , h, tṽ) =

=























sU
k tṽ ≤ λk

v1,...,vK ,h − sU
k

−tṽ + λk
v1,...,vK ,h λk

v1,...,vK ,h − sU
k < tṽ <

< λk
v1,...,vK ,h − sL

k

sL
k tṽ ≥ λk

v1,...,vK ,h − sL
k

(47)

or, equivalently

τk ◦
ṽ (v1, . . . , vK , h, tṽ) =

= min {sU
k ,max {λk

v1,...,vK ,h − tṽ, s
L
k}}

(48)

being τk ◦
ṽ (v1, . . . , vK , h, tṽ) the optimal duration of

the stopover time, provided that Tk is selected as the

next city to be visited after Th.

3) Determine, for each (K+1)-tuple (v1, . . . , vK , h), such

that vk ∈ {0, 1}, k = 1, . . . ,K, ṽ < K, and

h ∈ {1, . . . ,K}, the conditioned costs-to-go and the

optimal costs-to-go through the backward recursive

relations

Jv1,...,vK ,h(tṽ | δk,ṽ = 1) =

= αk max{tṽ + ξh,k + τṽ − dk, 0}+

+ β̂(sU
k − τṽ)+

+ J ◦
v1,...,vk+1,...,vK ,k(tṽ + ξh,k + τṽ)

(49)

for each k ∈ Av1,...,vK ,h,

J ◦
v1,...,vK ,h(tṽ) =

= min
k∈Av1,...,vK ,h

{

Jv1,...,vK ,h(tṽ | δk,ṽ = 1)
} (50)
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with initial condition J ◦
1,...,1,1(tK) = 0.

4) Then, the optimal control strategies, for each (K+1)-

tuple (v1, . . . , vK , h), such that vk ∈ {0, 1}, k =
1, . . . ,K, ṽ < K, and h ∈ {1, . . . ,K}, are obtained

as

• if ṽ ≤ K − 3:

δ◦k,ṽ(v1, . . . , vK , h, tṽ) =

=















1 if k = argminp

{

Jv1,...,vK ,h(tṽ | δp,ṽ = 1),
p ∈ Av1,...,vK ,h

}

0 otherwise

(51)

• if ṽ = K − 2:

δ◦k,ṽ(v1, . . . , vK , h, tṽ) =

=

{

1 if k ∈ {2, . . . ,K} and vk = 0
0 otherwise

(52)

• if ṽ = K − 1:

δ◦k,ṽ(v1, . . . , vK , h, tṽ) =

{

1 if k = 1
0 otherwise

(53)

and

τ◦
ṽ (v1, . . . , vK , h, tṽ) =

=
∑

k∈Av1,...,vK ,h

(

δ◦k,ṽ(v1, . . . , vK , h, tṽ)·

· τk ◦
ṽ (v1, . . . vK , h, tṽ)

)

(54)

Besides, the optimal cost-to-go J ◦
v1,...,vK ,h(tṽ) is a

PWL(M, β̂)-function, for some M , for any set

(v1, . . . , vK , h) such that vk ∈ {0, 1}, k = 1, . . . ,K,

ṽ < K, and h ∈ {1, . . . ,K}. �

VI. CONCLUSIONS

Two TSP models have been presented in this paper, and

two constructive procedures for the determination of optimal

control strategies have been proposed. In this way, it is

possible to take in real-time optimal decisions, even in

case of a deviation from the nominal system behaviour.

Obviously, it does not mean that the proposed solution

procedures overcome the difficulty of dealing with a NP-

hard problem. In particular, the two procedures, which are

based on the application of dynamic programming, require

the determination of the discrete state space of the considered

system, whose size has a non-polynomial dependence from

the number of cities to be visited.
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